Quiz 5

1) Find the sum.

$$
1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\ldots-\frac{1}{512}
$$

The first term is 1 , that is $a=1$, and the common ratio $r=-\frac{1}{2}$. We need to calculate n and then plug it in to the formula

$$
S_{n}=a\left[\frac{1-r^{n}}{1-r}\right]
$$

So $a r^{n-1}=\left(-\frac{1}{2}\right)^{n-1}=-\frac{1}{512}$, which implies that $n-1=9$, and therefore, $n=10$. Now, the required sum is

$$
S_{10}=1\left[\frac{1-\left(\frac{1}{2}\right)^{10}}{1+\frac{1}{2}}\right]=\frac{341}{512}
$$

2) Find the sum of the infinite series

$$
\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\ldots
$$

The first term $a=\frac{1}{3}$ and the common ratio $r=\frac{1}{3}$. Use the formula

$$
S_{\infty}=\frac{a}{1-r}
$$

to obtain the sum of the infinite series

$$
S_{\infty}=\frac{\frac{1}{3}}{1-\frac{1}{3}}=\frac{1}{2} .
$$

3) Expand the expression

$$
\begin{gathered}
\left(x+\frac{1}{x}\right)^{5} \\
=x^{5}+5 x^{4} \frac{1}{x}+10 x^{3} \frac{1}{x^{2}}+10 x^{2} \frac{1}{x^{3}}+5 x \frac{1}{x^{4}}+\frac{1}{x^{5}} \\
=x^{5}+5 x^{3}+10 x+\frac{10}{x}+\frac{5}{x^{3}}+\frac{1}{x^{5}}
\end{gathered}
$$

