Name:

Quiz 4

1) Find the first five terms of the following recursively defined sequence.

$$
\begin{aligned}
a_{n} & =\frac{1}{1+2 a_{n-1}}, \quad a_{1}=0 \\
a_{1} & =0 \\
a_{2} & =\frac{1}{1+2(0)}=1 \\
a_{3} & =\frac{1}{1+2(1)}=\frac{1}{3} \\
a_{4} & =\frac{1}{1+2\left(\frac{1}{3}\right)}=\frac{3}{5} \\
a_{5} & =\frac{1}{1+2\left(\frac{3}{5}\right)}=\frac{5}{11}
\end{aligned}
$$

2) Find the sum

$$
\begin{aligned}
& \quad \sum_{i=1}^{5}\left[1+(-1)^{i}\right] \\
& =[1+(-1)]+[1+1]+[1+(-1)]+[1+1]+[1+(-1)] \\
& =0+2+0+2+0 \\
& =4
\end{aligned}
$$

3) Find the sum

$$
1+4+7+10+\cdots+58
$$

The terms in the sum form an arithmetic sequence, with the first term $a=1$ and the common difference $d=3$. The expression for the nth term is $a_{n}=$ $a+(n-1) d$.

First, we will determine which term is equal to 58 , that is, we will solve for n in the equation $58=a_{n}=1+(n-1) 3$. It is easy to see that $n=20$ (58 is the 20th term in the arithmetic sequence).

Now we use the formula for the sum of the first n terms to calculate the sum of the first 20 terms.

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{20} & =\frac{20}{2}[2(1)+(20-1) 3] \\
S_{20} & =\frac{20}{2}[59] \\
S_{20} & =(10)(59) \\
S_{20} & =590 .
\end{aligned}
$$

Alternatively, we could have used the other formula for the sum of the first n terms to arrive at the same answer.

$$
\begin{aligned}
S_{n} & =n\left(\frac{a+a_{n}}{2}\right) \\
S_{20} & =20\left(\frac{1+58}{2}\right) \\
S_{20} & =20\left(\frac{59}{2}\right) \\
S_{20} & =(10)(59) \\
S_{20} & =590 .
\end{aligned}
$$

Both these formulas can be derived from Gauss' method.

$$
\begin{array}{ccccccccccccc}
S_{20} & = & 1 & + & + & 7 & + & + & \ldots & + & 58 \\
S_{20} & = & 58 & +55 & + & 52 & + & 49 & + & \ldots & + & 1 \\
\hline 2 S_{20} & = & 59 & + & 59 & + & 59 & + & 59 & + & \ldots & + & 59
\end{array}
$$

So $2\left(S_{20}\right)=(20)(59)$, which implies that the sum must be 590 .

