Quiz 3

1) Find all real zeros of the given polynomial.

$$P(x) = x^3 + 4x^2 + 3x - 2$$

The possible rational zeros are ± 1 and ± 2 . It is easy to see that -2 is a root, and so, divide by x+2 to get

$$P(x) = (x+2)(x^2 + 2x - 1).$$

Now use the quadratic formula to get the other two roots.

$$x = \frac{-2 \pm \sqrt{4+4}}{2} = -1 \pm \sqrt{2}.$$

2) Factor the given polynomial, find all zeros, and sketch the graph.

$$P(x) = x^3 + x^2 - x - 1$$

The polynomial factors as

$$P(x) = (x-1)(x+1)^2.$$

So the roots are -1 and 1.

Test point x	P(x)	Sign
2	$(2-1)(2+1)^2 = 9$	+
0	$(0-1)(0+1)^2 = -1$	_
-2	$(-2-1)(-2+1)^2 = -3$	_

Figure 1: $P(x) = (x-1)(x+1)^2$.

The y-intercept is -1.