Quiz 3

1) Find all real zeros of the given polynomial.

$$
P(x)=x^{3}+4 x^{2}+3 x-2
$$

The possible rational zeros are ± 1 and ± 2. It is easy to see that -2 is a root, and so, divide by $x+2$ to get

$$
\begin{array}{c|rrrr}
-2 & 1 & 4 & 3 & -2 \\
& & -2 & -4 & 2 \\
\hline & 1 & 2 & -1 & 0 \\
P(x)=(x+2)\left(x^{2}+2 x-1\right) .
\end{array}
$$

Now use the quadratic formula to get the other two roots.

$$
x=\frac{-2 \pm \sqrt{4+4}}{2}=-1 \pm \sqrt{2}
$$

2) Factor the given polynomial, find all zeros, and sketch the graph.

$$
P(x)=x^{3}+x^{2}-x-1
$$

The polynomial factors as

$$
P(x)=(x-1)(x+1)^{2} .
$$

So the roots are -1 and 1 .

Test point x	$P(x)$	Sign
2	$(2-1)(2+1)^{2}=9$	+
0	$(0-1)(0+1)^{2}=-1$	-
-2	$(-2-1)(-2+1)^{2}=-3$	-

Figure 1: $P(x)=(x-1)(x+1)^{2}$.
The y-intercept is -1 .

