Quiz 3

1) Solve the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0<x<L$, subject to $u(0, t)=$ $u(L, t)=0$ for the following initial conditions:
a) $u(x, 0)=\sin \frac{3 \pi x}{L}, \frac{\partial u}{\partial t}(x, 0)=\sin \frac{7 \pi x}{L}$.

We use the formulas (4.4.12) on page 144 to determine the coefficients A_{n} and B_{n}.

Observe that $A_{3}=1$ and all other A_{n} 's are zero. Also, $B_{7}=\frac{L}{7 \pi c}$ and all other B_{n} 's are zero. So the solution is

$$
u(x, t)=\sin \frac{3 \pi x}{L} \cos \frac{3 \pi c t}{L}+\frac{L}{7 \pi c} \sin \frac{7 \pi x}{L} \sin \frac{7 \pi c t}{L} .
$$

b) $u(x, 0)=0, \frac{\partial u}{\partial t}(x, 0)=1$.

First notice that all A_{n} 's are zero. Then calulate the B_{n} 's using $B_{n} \frac{n \pi c}{L}=$ $\frac{2}{L} \int_{0}^{L} \sin \frac{n \pi x}{L} d x$.

$$
B_{n}=\frac{L}{n \pi c} \begin{cases}0, & \text { if } n \text { is even } \\ \frac{4}{n \pi}, & \text { if } n \text { is odd }\end{cases}
$$

It now follows that

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{4 L}{(2 n-1)^{2} \pi^{2} c} \sin \frac{(2 n-1) \pi x}{L} \sin \frac{(2 n-1) \pi c t}{L} .
$$

