Midterm 1

1) (Circular ring) Solve the heat equation $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$, $-L<x<L$, subject to $\frac{\partial u}{\partial x}(-L, t)=\frac{\partial u}{\partial x}(L, t), u(-L, t)=u(L, t)$, for $t>0$ and the following initial condition:

$$
u(x, 0)=|x|,-L<x<L .
$$

The general solution has the form

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} e^{(-n \pi / L)^{2} k t}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} e^{(-n \pi / L)^{2} k t} .
$$

First observe that $u(x, 0)=|x|$ is an even function. This implies that all the b_{n} 's are zero and

$$
a_{n}=\frac{2}{L} \int_{0}^{L} x \cos \frac{n \pi x}{L} d x=2 L \frac{\cos (n \pi)-1}{n^{2} \pi^{2}}=\left\{\begin{array}{cc}
\frac{-4 L}{n^{2} \pi^{2}}, & \text { if } n \text { is odd } \\
0, & \text { if } n \text { is even }
\end{array}\right.
$$

Also, $a_{0}=\frac{1}{2 L} \int_{-L}^{L}|x| d x=\frac{L}{2}$. So the solution is

$$
u(x, t)=\frac{L}{2}+\sum_{n=1}^{\infty} \frac{-4 L}{(2 n-1)^{2} \pi^{2}} \cos \frac{(2 n-1) \pi x}{L} e^{(-(2 n-1) \pi / L)^{2} k t} .
$$

2) a) Check that $u(x, t)=2 k a t+a x^{2}+c_{1} x+c_{0}$ is a solution to $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$, where a, c_{1}, and c_{0} are constants and k is the thermal diffusivity.

Check that $\frac{\partial u}{\partial t}=2 k a, \frac{\partial u}{\partial x}=2 a x+c_{1}$, and $k \frac{\partial^{2} u}{\partial x^{2}}=2 k a$. So $u(x, t)=$ $2 k a t+a x^{2}+c_{1} x+c_{0}$ is a solution to $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$.
b) Now consider the heat equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}(k=1)$ for a thin, uniform rod with constant thermal properties and length $1(0<x<1)$. Use part a) to provide a solution to the heat equation, in this situation, subject to the following boundary conditions and initial temperature distributions:
i) $\frac{\partial u}{\partial x}(0, t)=0, \frac{\partial u}{\partial x}(1, t)=1$, and $u(x, 0)=\frac{1}{2} x^{2}+100$.

Since $\frac{\partial u}{\partial x}=2 a x+c_{1}, \frac{\partial u}{\partial x}(0, t)=0$ implies that $c_{1}=0$ and $\frac{\partial u}{\partial x}(1, t)=1$ implies that $a=\frac{1}{2}$. Finally, we use $u(x, 0)=\frac{1}{2} x^{2}+100$ to see that $c_{0}=100$. So $u(x, t)=t+\frac{1}{2} x^{2}+100$ is the desired solution.
ii) $\frac{\partial u}{\partial x}(0, t)=1, \frac{\partial u}{\partial x}(1, t)=3, u(x, 0)=x^{2}+x$.

Since $\frac{\partial u}{\partial x}=2 a x+c_{1}, \frac{\partial u}{\partial x}(0, t)=1$ implies that $c_{1}=1$ and then $\frac{\partial u}{\partial x}(1, t)=3$ implies that $a=1$. Finally, we use $u(x, 0)=x^{2}+x$ to see that $c_{0}=0$. So $u(x, t)=2 t+x^{2}+x$ is the desired solution.

