Real Analysis Midterm Summer 2008

1) Provide an example or state that no such example exists (3 points each).
a) A subset of R that is open and compact.
Example: the empty set.
b) A subset of R that is not bounded and has a supremum.
Example: the interval (—oo,0) is not bounded and has a supremum.
¢) An infinite set with no accumulation points.
Example: the set of integers 7Z is infinite and has no accumulation points.
d) A monotone sequence that is bounded above and does not converge.
Example: the sequence (s,) = (—1,—2,-3,...) is monotone, bounded above, and not
convergent.
e) A function f: D — R, with D = {0}, such that lim,_.o f(z) exists.
No such example exists.

2) Prove or provide a counterexample (3 points each).
a) If sequences (s, + t,) and (t,) both converge, then the sequence (s,,) also converges.

Proof. Suppose that (s, + t,) converges to a and (t,) converges to b. Let ¢ > 0 be given.
There exists a N1 € R such that when n > Ny, |s, +t, —a| < § and there exists a No € R
such that when n > Na, [, —b| < §. Let N = max{Ny, Na}.

Now when n > N, |s, —(a—0b)| = |sp +t, —a+b—t,| <|[sp+t,—a| +[t,—b] < 5+5 = ¢
This shows that (s,) converges to a — b. O

Remark. There is another proof that utilizes the theorems about sums and constant
multiples of convergent sequences. It is known that sums of convergent sequences converge.
Furthermore, if a sequence converges, then that sequence multiplied by the constant —1 also
converges (see [1] for these results). Combining these two results, we obtain that the difference
of convergent sequences is also convergent. Now, since s, = (s, +t,) — t, for all n € N, (s,,)
converges.

b) If the sequence (s,) diverges, then every subsequence of (s,) must also diverge.
Counterexample. Let s, = (=1)" for n € N. This sequence diverges but (sz,) is a
constant, and hence convergent, subsequence.
c) Let (s,) be a convergent sequence and let (s,,) and (s,,,) be two subsequences of (s,,).
Then the sequence (s, S, ) also converges.

Proof. If (s,) converges, the subsequences (s,,) and (s,,,) must converge, and then (s, Sm, )
also converges. The text [1] is a good reference for these results. ]

d) Let (s,) and (¢,) be cauchy sequences. Then the sequence (s,t,) is also cauchy.

Proof. 1f (s,) and (t,) are cauchy sequences, they must converge, and then (s,t,) also con-
verges. Since convergent sequences are cauchy, (s,t,) is cauchy. Again, [1] may be consulted
for references to these results. ]

e) Let f: D — Rand g: D — R be two functions and let ¢ be an accumulation point of
D. If lim,_..(fg)(x) and lim,_,. g(x) exist, then lim,_.. f(x) also exists.



Counterexample. Let f : (0,1) — R and g : (0,1) — R be defined by f(z) = 1/x
and g(x) = x respectively. In this case, the function (fg)(z) = 1, lim, o(fg)(z) = 1,
lim,_ g(x) =0, and lim,_¢ f(z) does not exist.

3) Provide solutions for ezactly two of the following (10 points each).
a) Prove that the set S = {\/5 +q: q € Q} is dense in R, that is, for all z,y € R that
satisfy © < y, there exists a s € S so that x < s < y.

Proof. Let z,y € R, with z < y. It follows that  — v/2 < y — v/2. Since the rationals are
dense, there exists a ¢ € Q such that  — /2 < ¢ < y — /2. This implies that z < vV2+¢ < y.
Note that v/2 + q € S. This establishes the density of S. O

b) Let sy = 1 and let s,,41 = /1 + 2s,, for n > 1. Show that the limit of this sequence
exists and then find it.

Proof. First we provide a short argument to show that this sequence is bounded above. Ob-
serve that s; = 1 < 3. Now suppose that s, < 3 for some k € N. So 5341 = 1+ 25, <
/14 2(3) = /7 < 3. This induction argument shows that this sequence is bounded above by
3.

Now we will use another induction argument to prove that this is an increasing sequence.
Observe that s = 1 < 9 = /3. Suppose that s, < Sgr1 for some k € N. Now s =
V14 2s, < /T4 2sk11 = Sgr2. This establishes that the sequence is increasing.

Every increasing sequence that is bounded above converges; so let lim s, = s. Since this
limit exists, we may conclude that lim(s,418,41) = lim(1 + 2s,,). Now, several limit theorems
(see [1] for instance) imply that s> = 1 + 2s, and so, s = 1 + /2. Since the sequence is
increasing, it is bounded below by s; = 1. It now follows that s = 1 + /2. O]

¢) Show that lim, .o 2?/|z| = 0.
Proof. Let € > 0 be given and then let 6 = €. Observe that % = |z| if z # 0. So when

0 < |z —0] <d=¢, we have

% — 0‘ = |z| < § = €. This proves that lim, .o 2%/|z| =0. O

d) Let (s,) be a sequence of real numbers. If the subsequence (ss,) converges to s € R
and the subsequence (s,,_1) converges to s, then the sequence (s,,) also converges to s.

Proof. Let € > 0 be given. Since (s,) converges to s, there exists a N; € R so that when
n > Ny, |Sa, — S| < €. Since (s2,-1) converges to s, there exists a Ny € R so that when n > Nj,
|son—1 — s| < €. Let N = max{Ny, No}. Now when n > 2N |s,, — s| is either equal to |sg, — s
or |sen—1 — 8|, where n’ > N. In both cases, |s,, — s| < e. This shows that (s,) converges to
S. ]
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