Homework Done Right

1.8) Prove that the intersection of any collection of subspaces of V is a subspace of V.

PROOF. Let Ω be an indexing set such that U_{α} is a subspace of V, for every $\alpha \in \Omega$, and let I be the intersection of these subspaces, that is, $I=\cap_{\alpha \in \Omega} U_{\alpha}$.

Since the U_{α} 's are all subspaces, $0 \in U_{\alpha}$ for every $\alpha \in \Omega$, and so, $0 \in I$. Let x and y belong to I; this means that x and y are in every U_{α}. It follows that $x+y \in U_{\alpha}$, for every $\alpha \in \Omega$, because the subspaces are closed under addition. This demonstrates that I is closed under addition as $x+y \in U_{\alpha}$, for every $\alpha \in \Omega$, implies that $x+y \in I$. Now let $a \in F$ and let $x \in I$. The U_{α} 's, being subspaces, are closed under scalar multiplication, and so $a x \in U_{\alpha}$, for every $\alpha \in \Omega$; therefore, $a x \in I$ and I is closed under scalar multiplication.
1.14) Suppose that U is a subspace of $P(F)$ consisting of all polynomials p of the form $p(z)=a z^{2}+b z^{5}$, where $a, b \in F$. Find a subspace W of $P(F)$ such that $P(F)=U \oplus W$.

Observe that, by definition, $U=\operatorname{span}\left(z^{2}, z^{5}\right)$, and so, U is a subspace of $P(F)$. Also, note that $\left(1, z, z^{2}, z^{3}, z^{4}, \ldots ..\right)$ is a basis for $P(F)$. Now let $W=\operatorname{span}\left(1, z, z^{3}, z^{4}, z^{6}, z^{7}, z^{8}, \ldots\right)$; this means W is also a subspace of $P(F)$.

If $U \cap W$ contains some nonzero polynomial such as $a z^{2}+b z^{5}$, where $a, b \in F$, then we get that $a z^{2}+b z^{5} \in \operatorname{span}\left(1, z, z^{3}, z^{4}, z^{6}, z^{7}, z^{8}, \ldots.\right)$. This is impossible as $\left(1, z, z^{2}, z^{3}, z^{4}, \ldots ..\right)$ are linearly independent and so no vector in the list may be expressed as a linear combination of other vectors in the list. It follows that $U \cap W=\{0\}$.

Now $U+W$ contains all the vectors in the list $\left(1, z, z^{2}, z^{3}, z^{4}, \ldots.\right)$, which is a basis for $P(F)$, and thus, $U+W$ contains all linear combinations of the basis vectors. This implies that $U+W$ contains all vectors in $P(F)$; so $P(F) \subset U+W$. Since U and W are subspaces of $P(F)$, $U+W$ is a subspace of $P(F)$; so $U+W \subset P(F)$. The two inclusions of the sets obtained prove that $U+W=P(F)$. This combined with $U \cap W=\{0\}$ shows that $P(F)=U \oplus W$.
2.1) Prove that if $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ spans V, then so does the list $\left(v_{1}-\right.$ $\left.v_{2}, v_{2}-v_{3}, \ldots, v_{n-1}-v_{n}, v_{n}\right)$.

PROOF. Let $w \in V$. So $w=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}$, for some $a_{1}, a_{2}, \ldots, a_{n} \in F$. We can rewrite the expression as $w=a_{1}\left(v_{1}-v_{2}\right)+$ $\left(a_{1}+a_{2}\right)\left(v_{2}-v_{3}\right)+\left(a_{1}+a_{2}+a_{3}\right)\left(v_{3}-v_{4}\right)+\ldots+\left(a_{1}+a_{2}+\ldots+a_{n}\right) v_{n}$. This shows that $w \in \operatorname{span}\left(v_{1}-v_{2}, v_{2}-v_{3}, \ldots, v_{n-1}-v_{n}, v_{n}\right)$.

Conversely, suppose that $v \in \operatorname{span}\left(v_{1}-v_{2}, v_{2}-v_{3}, \ldots, v_{n-1}-v_{n}, v_{n}\right)$, that is, $v=a_{1}\left(v_{1}-v_{2}\right)+a_{2}\left(v_{2}-v_{3}\right)+a_{3}\left(v_{3}-v_{4}\right)+\ldots+a_{n} v_{n}$, for some $a_{1}, a_{2}, \ldots, a_{n} \in F$. Then $v=a_{1} v_{1}+\left(a_{2}-a_{1}\right) v_{2}+\left(a_{3}-a_{2}\right) v_{3}+\ldots\left(a_{n-1}-\right.$ $\left.a_{n-2}\right) v_{n-1}+a_{n} v_{n}$, which is certainly in $\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. This shows that the list $\left(v_{1}-v_{2}, v_{2}-v_{3}, \ldots, v_{n-1}-v_{n}, v_{n}\right)$ spans V.
2.10) Suppose V is finite dimensional, with $\operatorname{dim} V=n$. Prove that there exist one-dimensional subspaces $U_{1}, U_{2}, \ldots, U_{n}$ of V such that $V=$ $U_{1} \oplus U_{2} \oplus \ldots \oplus U_{n}$.

PROOF. Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a basis for V, and let $U_{i}=\operatorname{span}\left(v_{i}\right)$, for $i \in\{1,2, \ldots, n\}$. Since the v_{i} 's are not zero, by definition, the U_{i} 's are one-dimensional subspaces of V.
$U_{1}+U_{2}+\ldots+U_{n}$ contains every vector in the basis, and thus, it contains every vector that can be expressed as a linear combination of the basis elements. So $V \subset U_{1}+U_{2}+\ldots+U_{n}$, and thus, $V=$ $U_{1}+U_{2}+\ldots+U_{n}$ since $U_{1}+U_{2}+\ldots+U_{n}$ is a subspace of V.

Suppose $v \in U_{i} \cap U_{j}$, for $i, j \in\{1,2, \ldots, n\}$ and $i \neq j$. This implies that $v=a v_{i}=b v_{j}$, where $a, b \in F$. Since v_{i}, v_{j} are linearly independent, we get that $a=b=0$, and so $v=0$. It follows that $U_{i} \cap U_{j}=\{0\}$, for $i, j \in\{1,2, \ldots, n\}$ and $i \neq j$. This, together with the fact that $V=U_{1}+U_{2}+\ldots+U_{n}$, proves that $V=U_{1} \oplus U_{2} \oplus \ldots \oplus U_{n}$.
3.16) Suppose that U and V are finite-dimensional and $S \in L(V, W)$, $T \in L(U, V)$. Prove that $\operatorname{dim} \operatorname{null}(S T) \leq \operatorname{dim} \operatorname{null}(T)+\operatorname{dim} \operatorname{null}(S)$.

PROOF. First, some notation. Let T^{\prime} be the linear map T restricted to the subspace $\operatorname{null}(S T)$, that is, $T^{\prime} u=T u$ whenever $u \in \operatorname{null}(S T)$ and T^{\prime} is not defined otherwise.

Observe that if $u \in \operatorname{null}\left(T^{\prime}\right)$, then $T^{\prime} u=T u=0$. So $u \in \operatorname{null}(T)$ and we get the simple inclusion $\operatorname{null}\left(T^{\prime}\right) \subset \operatorname{null}(T)$. This implies that $\operatorname{dim} \operatorname{null}\left(T^{\prime}\right) \leq \operatorname{dim} \operatorname{null}(T)$.

Also, if $u \in \operatorname{null}(S T)$, then $(S T) u=0=S(T u)=S\left(T^{\prime} u\right)$. This implies that $T^{\prime} u \in \operatorname{null}(S)$, and hence, $\operatorname{range}\left(T^{\prime}\right) \subset \operatorname{null}(S)$. From this we obtain our second inequality dim $\operatorname{range}\left(T^{\prime}\right) \leq \operatorname{dim} \operatorname{null}(S)$.

Now, the dimension formula, Theorem 3.4, applied to $\operatorname{null}(S T)$ and T^{\prime} says $\operatorname{dim} \operatorname{null}(S T)=\operatorname{dim} \operatorname{null}\left(T^{\prime}\right)+\operatorname{dim} \operatorname{range}\left(T^{\prime}\right)$. Combining this with the inequalities $\operatorname{dim} \operatorname{null}\left(T^{\prime}\right) \leq \operatorname{dim} \operatorname{null}(T)$ and $\operatorname{dim} \operatorname{range}\left(T^{\prime}\right) \leq$ $\operatorname{dim} \operatorname{null}(S)$, we get the required result $\operatorname{dim} \operatorname{null}(S T) \leq \operatorname{dim} \operatorname{null}(T)+$ $\operatorname{dim} \operatorname{null}(S)$.
5.11) Suppose $S, T \in L(V)$. Prove that $S T$ and $T S$ have the same eigenvalues.

PROOF. Let λ be an eigenvalue for $S T$, that is $S T(v)=\lambda v$, for some nonzero $v \in V$. Apply T to both sides. $T(S T(v))=(T S)(T v)=\lambda T v$. Now, if $T v \neq 0$, then $T v$ is an eigenvector with eigenvalue λ for $T S$. If $T v=0$, then $\lambda=0$ and T is not invertible, and hence, $T S$ is not invertible, which implies that $T S$ has zero as an eigenvalue since its null space is not trivial. So in all cases, if λ is an eigenvalue for $S T$, it is also an eigenvalue for $T S$. A completely symmetric argument shows that if λ is an eigenvalue for $T S$, it is also an eigenvalue for $S T$. It follows that $S T$ and $T S$ have the same eigenvalues.
5.14) Suppose V is finite-dimensional and $T \in L(V)$. Prove that T is a scalar multiple of the identity if and only if $S T=T S$ for every $S \in L(V)$.

PROOF. If $T=\lambda I$ for some $\lambda \in F$, then $S T=S \lambda I=\lambda S I=\lambda I S=$ $T S$, for any $S \in L(V)$.

Suppose $S T=T S$ for every $S \in L(V)$. Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis. $T v_{1}=a_{1} v_{1}+\ldots+a_{n} v_{n}$, for some $a_{1}, \ldots, a_{n} \in F$, because the image of v_{1} is some vector in V, and hence, a linear combination of the basis elements.

Now define a linear map S by describing what it does to the basis elements. $S\left(v_{1}\right)=v_{1}$ and S sends all other basis vectors to zero. Then look at $S T\left(v_{1}\right)=T S\left(v_{1}\right)$. The left side of the equation is $a_{1} v_{1}$ and the right side is $T v_{1}$. So $T v_{1}=a_{1} v_{1}$. The same argument shows that $T v_{k}=a_{k} v_{k}$, for $k \in\{1, \ldots, n\}$.

We must show that all these a_{k} 's are the same. Again, define a linear map S by describing what it does to the basis elements. $S\left(v_{1}\right)=$ $v_{2}, S\left(v_{2}\right)=v_{1}$ and S sends all other basis vectors to zero. Then look at $S T\left(v_{1}+v_{2}\right)=T S\left(v_{1}+v_{2}\right)$. The left side of the equation is $a_{2} v_{1}+a_{1} v_{2}$ while the right side is $a_{1} v_{1}+a_{2} v_{2}$. Since these are equal and because v_{1}, v_{2} are linearly independent, $a_{1}=a_{2}$. Similar arguments show that $a_{i}=a_{j}$, for $i, j \in\{1, \ldots, n\}$.

Since all these a_{k} 's are the same, we may rename them and call them λ. So we have shown that $T v_{i}=\lambda v_{i}$, for $i \in\{1, \ldots, n\}$. Let v be a vector in V, that is $v=a_{1} v_{1}+\ldots+a_{n} v_{n}$, for some $a_{1}, \ldots, a_{n} \in F$. Now $T v=$ $T\left(a_{1} v_{1}+\ldots+a_{n} v_{n}\right)=\lambda a_{1} v_{1}+\lambda a_{2} v_{2} \ldots+\lambda a_{n} v_{n}=\lambda\left(a_{1} v_{1}+\ldots+a_{n} v_{n}\right)=\lambda v$. This shows that T is a scalar multiple of the identity.
5.21) Suppose $P \in L(V)$ and $P^{2}=P$. Prove that $V=\operatorname{null}(P) \oplus$ range (P).

PROOF. V is a direct sum of $\operatorname{null}(P)$ and $\operatorname{range}(P)$ if the intersection of $\operatorname{null}(P)$ and $\operatorname{range}(P)$ is just zero and every vector in V can be written as a sum of a vector in $\operatorname{null}(P)$ with a vector in range (P).

Suppose x is in both null (P) and range (P). Because x is in null (P), $P(x)=0$. But x is also in range (P) so there is a y in V such that $P y=x$. Since $P^{2}=P, P^{2} y=P y$, and also $P^{2}(y)=P(P y)=$ $P x$. It follows that $x=P y=P^{2} y=P x=0$. This gives us that $\operatorname{null}(P) \cap \operatorname{range}(P)=\{0\}$.

Let v be a vector in V. Then $v=P v+(v-P v)$. Now, $P v \in$ $\operatorname{range}(P)$, by definition, and $P(v-P v)=P v-P^{2} v=0$, because $P^{2}=P$, implies that $(v-P v) \in \operatorname{null}(P)$. So every vector in V can be written as a sum of a vector in $\operatorname{null}(P)$ with a vector in range (P).

Since we have checked these two conditions, we have proved that $V=\operatorname{null}(P) \oplus \operatorname{Range}(P)$.
6.17) Prove that if $P \in L(V), P^{2}=P$, and every vector in $\operatorname{null}(P)$ is orthogonal to every vector in range (P), then P is an orthogonal projection.

PROOF. By the previous exercise, $V=\operatorname{null}(P) \oplus \operatorname{range}(P)$ and since every vector in $\operatorname{null}(P)$ is orthogonal to every vector in $\operatorname{range}(P)$, $\operatorname{null}(P)=(\operatorname{range}(P))^{\perp}$. Now let $v \in V$, and so $v=u+n$, with $u \in \operatorname{range}(P)$ and $n \in \operatorname{null}(P)$. Also, $v=P v+(v-P v)$, with $P v \in$ $\operatorname{range}(P)$ and $(v-P v) \in \operatorname{null}(P)$. Because $V=\operatorname{null}(P) \oplus \operatorname{range}(P)$, the representation of v as a sum of a vector in $\operatorname{range}(P)$ with a vector in $\operatorname{null}(P)$ is unique, and therefore, $P v=u$.

So, by definition, P is a projection of V onto $\operatorname{range}(P)$ and an orthogonal projection since $\operatorname{null}(P)=(\text { range }(P))^{\perp}$.
6.2) Suppose $u, v \in V$. Prove that $\langle u, v\rangle=0$ if and only if $\|u\| \leq$ $\|u+a v\|$ for all $a \in F$.

PROOF. $\|u\| \leq\|u+a v\| \Leftrightarrow\|u\|^{2} \leq\|u+a v\|^{2} \Leftrightarrow\langle u, u\rangle \leq\langle u+$ $a v, u+a v\rangle$
$\Leftrightarrow\langle u, u\rangle \leq\langle u, u\rangle+\bar{a}\langle u, v\rangle+a \overline{\langle u, v\rangle}+a \bar{a}\langle v, v\rangle \Leftrightarrow$
$-2 \operatorname{Re}\{a\langle u, v\rangle\} \leq a \bar{a}\langle v, v\rangle$. We will only work with the last inequality.

If $\langle u, v\rangle=0$, the inequality holds since the L.H.S is zero and R.H.S is always greater than or equal to zero.

Now suppose that $\|u\| \leq\|u+a v\|$ is true for all a in F. So we know that $-2 \operatorname{Re}\{a\langle u, v\rangle\} \leq a \bar{a}\langle v, v\rangle$ also holds for all a in F. Suppose $\langle u, v\rangle \neq 0$. Write $a=-b \overline{\langle u, v\rangle}$, where b is a positive real. Note that $-2 \operatorname{Re}\{a\langle u, v\rangle\}=2 b|\langle u, v\rangle|^{2}$ and $a \bar{a}\langle v, v\rangle=b^{2}|\langle u, v\rangle|^{2}\langle v, v\rangle$. So the inequality reduces to $2 b|\langle u, v\rangle|^{2} \leq b^{2}|\langle u, v\rangle|^{2}\langle v, v\rangle$. Since b is positive and $|\langle u, v\rangle|^{2} \neq 0$, we can divide by $b|\langle u, v\rangle|^{2}$, preserving the inequality to get $2 \leq b\langle v, v\rangle$. Now we can make the R.H.S as small as we want by letting b go to zero. When the R.H.S is smaller than 2 , we get a contradiction. So $\langle u, v\rangle=0$.
6.18) Prove that if $P \in L(V), P^{2}=P$, and $\|P w\| \leq\|w\|$ for all $w \in V$, then P is an orthogonal projection.

PROOF. By 6.17, it is sufficient to show that every vector in $\operatorname{null}(P)$ is orthogonal to every vector in $\operatorname{range}(P)$. First, observe that if $u \in$ $\operatorname{range}(P)$, then $P u=u$. This is because there is some $x \in V$ such that $P x=u$, and then $P u=P^{2} x=P x=u$.

Now, let $v \in \operatorname{null}(P)$ and consider the vector $w=u+a v$, with $a \in F$. Note that $P w=P u+a P v=u$ and so $\|P w\|=\|u\|$. The given inequality $\|P w\| \leq\|w\|$ gives us $\|u\| \leq\|u+a v\|$, where a was some arbitrary scalar. It follows that $\|u\| \leq\|u+a v\|$ for all $a \in F$. By exercise 6.2, we get that u and v are orthogonal. Here u was some arbitrary vector in $\operatorname{range}(P)$ and v was some arbitrary vector in $\operatorname{null}(P)$. So we may conclude that every vector in $\operatorname{null}(P)$ is orthogonal to every vector in range (P), which is sufficient to show that P is an orthogonal projection.

