FINAL

1) On $P_{2}(R)$ consider the inner product given by

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Apply the Gram-Schmidt procedure to the basis $\left(1, x, x^{2}\right)$ to obtain an orthonormal basis of $P_{2}(R)$.
2) Suppose U is a subspace of a finite-dimensional vector space V. Prove that $U^{\perp}=\{0\}$ if and only if $U=V$.
3) Let V be a nonzero finite-dimensional vector space and let $P \in$ $L(V)$ such that $P^{2}=P$. Prove that P is an orthogonal projection if and only if P is self-adjoint.
4) Suppose V is finite-dimensional and $T \in L(V)$. Prove that T is a scalar multiple of the identity if and only if $S T=T S$ for every $S \in L(V)$. Note that T is a scalar multiple of the identity means that $T=\lambda I$ for some $\lambda \in F$, that is, $T v=\lambda v$ for all $v \in V$.
5) Prove or disprove: there is an inner product on R^{2} such that the associated norm is given by $\|(x, y)\|=|x|+|y|$ for all $(x, y) \in R^{2}$.
6) Let $V=\left\{a x^{3}+b x^{2}+c x: a, b, c \in R\right\}$. Show that V is a subspace of $P_{3}(R)$. Let $D \in L\left(V, P_{2}(R)\right)$ be the differentiation map and let $T \in L\left(P_{2}(R), V\right)$ be the isomorphism defined by $T\left(x^{2}\right)=x^{3}, T(x)=x^{2}$, and $T(1)=x$. Find all eigenvalues and corresponding eigenvectors of $T D$. Note that $T D \in L(V)$.

