## A Curvature Formula

Suppose we have a curve which is not parametrized by arc length and we wish to find curvature in a simple way. In the derivation of a simple formula below, we will asume that the curve is parametrized by t and the arc length parameter is s.

Curvature,  $\kappa = |\alpha''(s)|$ . Let T(s) be the unit tangent tangent vector, then  $\kappa = \left| \frac{dT}{ds} \right|$ .

If s and T are functions of t, we may write  $\kappa = \left| \frac{dT/dt}{ds/dt} \right|$ .  $T = \frac{\alpha'(t)}{|\alpha'(t)|}$ . So the numerator becomes  $\left| \frac{d}{dt} \left( \frac{\alpha'(t)}{|\alpha'(t)|} \right) \right|$ . Also,  $\alpha'(t) = \alpha'(s) \cdot \frac{ds}{dt}$ , and since  $|\alpha'(s)| = 1$ , we get  $\frac{ds}{dt} = |\alpha'(t)|$ . So our formula becomes

$$\kappa = \frac{\left|\frac{d}{dt} \left(\frac{\alpha'(t)}{|\alpha'(t)|}\right)\right|}{|\alpha'(t)|}$$

We may now use this to solve problems like problem 8, page 23, quite easily.

 $\alpha(t) = (t, \cosh(t)). \ \alpha'(t) = (1, \sinh(t)). \ |\alpha'(t)| = \cosh(t). \ \text{So} \ T = \frac{(1, \sinh(t))}{\cosh(t)}$  $\left| \frac{d}{dt} \left( \frac{\alpha'(t)}{|\alpha'(t)|} \right) \right| = \left| \left( \frac{\sinh(t)}{\cosh^2(t)}, \frac{1}{\cosh^2(t)} \right) \right| = \frac{1}{\cosh(t)}.$ When we divide by  $|\alpha'(t)|$ , we get the required curvature  $\frac{1}{\cosh^2(t)}$ .