A Curvature Formula

Suppose we have a curve which is not parametrized by arc length and we wish to find curvature in a simple way. In the derivation of a simple formula below, we will asume that the curve is parametrized by t and the arc length parameter is s.

Curvature, $\kappa=\left|\alpha^{\prime \prime}(s)\right|$. Let $T(s)$ be the unit tangent tangent vector, then $\kappa=\left|\frac{d T}{d s}\right|$.

If s and T are functions of t, we may write $\kappa=\left|\frac{d T / d t}{d s / d t}\right|$.
$T=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$. So the numerator becomes $\left|\frac{d}{d t}\left(\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}\right)\right|$.
Also, $\alpha^{\prime}(t)=\alpha^{\prime}(s) \cdot \frac{d s}{d t}$, and since $\left|\alpha^{\prime}(s)\right|=1$, we get $\frac{d s}{d t}=\left|\alpha^{\prime}(t)\right|$.
So our formula becomes

$$
\kappa=\frac{\left|\frac{d}{d t}\left(\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}\right)\right|}{\left|\alpha^{\prime}(t)\right|}
$$

We may now use this to solve problems like problem 8, page 23 , quite easily.
$\alpha(t)=(t, \cosh (t)) \cdot \alpha^{\prime}(t)=(1, \sinh (t)) \cdot\left|\alpha^{\prime}(t)\right|=\cosh (t)$. So $T=\frac{(1, \sinh (t))}{\cosh (t)}$.
$\left|\frac{d}{d t}\left(\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}\right)\right|=\left|\left(\frac{\sinh (t)}{\cosh ^{2}(t)}, \frac{1}{\cosh ^{2}(t)}\right)\right|=\frac{1}{\cosh (t)}$.
When we divide by $\left|\alpha^{\prime}(t)\right|$, we get the required curvature $\frac{1}{\cosh ^{2}(t)}$.

