Homework Done Right

1.8) Prove that the intersection of any collection of subspaces of V'
is a subspace of V.

PROOF. Let Q2 be an indexing set such that U, is a subspace of V|
for every o € €2, and let I be the intersection of these subspaces, that
is, I = NaeqUa-

Since the U,’s are all subspaces, 0 € U, for every a € §2, and so,
0 € I. Let x and y belong to I; this means that x and y are in every
U,. It follows that = +y € U,, for every a € (), because the subspaces
are closed under addition. This demonstrates that I is closed under
addition as x+y € U,, for every a € §Q, implies that x4y € I. Now let
a € F'and let x € I. The U,’s, being subspaces, are closed under scalar
multiplication, and so ax € U,, for every a € €2; therefore, ax € I and

I is closed under scalar multiplication.
O

1.14) Suppose that U is a subspace of P(F') consisting of all polyno-
mials p of the form p(z) = az? + bz°, where a,b € F. Find a subspace
W of P(F) such that P(F)=U & W.

Observe that, by definition, U = span(z?%, z°), and so, U is a subspace
of P(F). Also, note that (1, z, 22, 23, 2%, .....) is a basis for P(F). Now

32428 27 28, ....); this means W is also a subspace

let W = span(1, z, z
of P(F).

If UN'W contains some nonzero polynomial such as az? 4 bz®, where
a,b € F, then we get that az? + bz° € span(1,z, 23,24, 25,27, 28, ...)).

3 2% .....) are linearly independent and

This is impossible as (1, z, 2%, 2
so no vector in the list may be expressed as a linear combination of
other vectors in the list. It follows that U N W = {0}.

Now U + W contains all the vectors in the list (1, z, 2%, 2%, 2%, .....),
which is a basis for P(F'), and thus, U+ W contains all linear combina-
tions of the basis vectors. This implies that U + W contains all vectors
in P(F); so P(F) C U+ W. Since U and W are subspaces of P(F),
U + W is a subspace of P(F); so U+ W C P(F). The two inclusions
of the sets obtained prove that U + W = P(F). This combined with

UNW = {0} shows that P(F)=U® W.



2.1) Prove that if (vq,vs, ..., v,) spans V, then so does the list (v; —
Vg, Vg — Vg, ey Up—1 — Up, Up)-

PROOF. Let w € V. So w = a1v1 + asvs + ... + a,v,, for some
ai, as, ...,a, € F. We can rewrite the expression as w = a;(v; — vg) +
(a1 + az)(vy —wv3) + (a1 +as +az)(vs —vg) + ... + (a1 + as + ... + a, ) vy.
This shows that w € span(vy — vg, Ve — V3, .., V1 — Vp, Up).

Conversely, suppose that v € span(v) — vg, Vg — V3, ..., Up_1 — Up, Uy),
that is, v = a1 (v) — ve) + ag(vy — v3) + as(vs — v4) + ... + apvy,, for some
ai,as, ..., a, € F. Then v = ajv; + (ag — ay)ve + (a3 — az)vs + ...(ap_1 —
Up—2)Un_1 + @V, which is certainly in span(vy, v, ...,v,). This shows
that the list (v; — vg, Vg — V3, ..., Uy_1 — Uy, Vy,) spans V.

O

2.10) Suppose V' is finite dimensional, with dim V' = n. Prove that
there exist one-dimensional subspaces Uy, Us, ..., U, of V such that V =
UeUs @ ... U,.

PROOF. Let (vq,vs,...,v,) be a basis for V', and let U; = span(v;),
for i € {1,2,...,n}. Since the v;’s are not zero, by definition, the U;’s
are one-dimensional subspaces of V.

Uy + Us + ... + U, contains every vector in the basis, and thus, it
contains every vector that can be expressed as a linear combination
of the basis elements. So V C U; + Uy + ... + U,, and thus, V =
U+ U+ ...+ U, since Uy + Uy + ... + U, is a subspace of V.

Suppose v € U; NUj, for i,j € {1,2,...,n} and ¢ # j. This im-
plies that v = av; = bvj, where a,b € F. Since v;,v; are linearly
independent, we get that a« = b = 0, and so v = 0. It follows that
UNU; ={0}, fori,j € {1,2,...,n} and i # j. This, together with the
fact that V =U; + Uy + ... + U, proves that V =U, @ U & ... & U,,.

O

3.16) Suppose that U and V are finite-dimensional and S € L(V, W),
T € L(U,V). Prove that dimnull(ST) < dimnull(T") + dim null(S).

PROOF. First, some notation. Let T” be the linear map T restricted
to the subspace null(ST), that is, T'u = T'u whenever u € null(ST)

and 7" is not defined otherwise.
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Observe that if u € null(17"), then T'u = Tu = 0. So u € null(T)
and we get the simple inclusion null(T") C null(T). This implies that
dim null(T") < dim null(T).

Also, if u € null(ST), then (ST)u = 0 = S(Tu) = S(T"u). This
implies that T"u € null(S), and hence, range(T") C null(S). From
this we obtain our second inequality dimrange(T") < dim null(S).

Now, the dimension formula, Theorem 3.4, applied to null(ST) and
T" says dim null(ST) = dimnull(T") + dim range(T"). Combining this
with the inequalities dim null(T") < dimnull(T) and dim range(T") <
dimnull(S), we get the required result dim null(ST) < dimnull(T) +
dim null(S).

U

5.11) Suppose S, T € L(V). Prove that ST and T'S have the same
eigenvalues.

PROOF. Let A be an eigenvalue for ST, that is ST'(v) = Av, for some
nonzero v € V. Apply T to both sides. T' (ST (v)) = (T'S) (Tv) = \T'v.
Now, if Tv # 0, then Tv is an eigenvector with eigenvalue A for T'S.
If Tv = 0, then A\ = 0 and T is not invertible, and hence, T'S is not
invertible, which implies that T'S has zero as an eigenvalue since its
null space is not trivial. So in all cases, if A is an eigenvalue for ST, it
is also an eigenvalue for T'S. A completely symmetric argument shows
that if A\ is an eigenvalue for 7T'S, it is also an eigenvalue for ST. It

follows that ST and T'S have the same eigenvalues.
O

5.14) Suppose V' is finite-dimensional and 7' € L(V'). Prove that T’
is a scalar multiple of the identity if and only if ST = T'S for every
S e L(V).

PROOF. If T = A for some A € F', then ST = S\ = \SI = \IS =
TS, for any S € L(V).

Suppose ST = T'S for every S € L(V). Let (v1,...,v,) be a basis.
Tvy = ajvy + ... + a,v,, for some aq,...,a, € F, because the image of
vy is some vector in V', and hence, a linear combination of the basis

elements.



Now define a linear map S by describing what it does to the basis
elements. S(v1) = vy and S sends all other basis vectors to zero. Then
look at ST'(vy) = T'S(vy). The left side of the equation is a;v; and
the right side is Tv;. So Tv; = a1v;. The same argument shows that
Tvg = agvy, for k € {1,....,n}.

We must show that all these a’s are the same. Again, define a
linear map S by describing what it does to the basis elements. S(v;) =
v, S(vg) = v1 and S sends all other basis vectors to zero. Then look at
ST(vy 4+ vy) = T'S(vy +v3). The left side of the equation is asv; + ajvy
while the right side is ajv; + asve. Since these are equal and because
vy, V9 are linearly independent, a; = as. Similar arguments show that
a; = aj, for i,5 € {1,...,n}.

Since all these a;’s are the same, we may rename them and call them
A. So we have shown that Tv; = Av;, fori € {1,...,n}. Let v be a vector
in V, that is v = a1v1 + ... + a,v,, for some aq,...,a, € F. Now Tv =
T(ayv1+...4a,0,) = Aa1v1+Aagvy...+Aapv, = Aa1v1+...+a,v,) = Av.
This shows that 7' is a scalar multiple of the identity.

O

5.21) Suppose P € L(V) and P? = P. Prove that V = null(P) &
range(P).

PROOF. V is a direct sum of null(P) and range(P) if the intersec-
tion of null(P) and range(P) is just zero and every vector in V' can be
written as a sum of a vector in null(P) with a vector in range(P).

Suppose z is in both null(P) and range(P). Because x is in null(P),
P(z) = 0. But z is also in range(P) so there is a y in V such that
Py = z. Since P? = P, P>y = Py, and also P*(y) = P(Py) =
Pz. It follows that # = Py = P?y = Px = 0. This gives us that
null(P) Nrange(P) = {0}.

Let v be a vector in V. Then v = Pv + (v — Pv). Now, Pv €
range(P), by definition, and P(v — Pv) = Pv — P?v = 0, because
P? = P, implies that (v — Pv) € null(P). So every vector in V' can be
written as a sum of a vector in null(P) with a vector in range(P).

Since we have checked these two conditions, we have proved that
V' = null(P) ® Range(P). O
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6.17) Prove that if P € L(V), P? = P, and every vector in null(P)
is orthogonal to every vector in range(P), then P is an orthogonal
projection.

PROOF. By the previous exercise, V' = null(P) @ range(P) and
since every vector in null(P) is orthogonal to every vector in range(P),
null(P) = (range(P))*. Now let v € V, and so v = u + n, with
u € range(P) and n € null(P). Also, v = Pv+ (v — Pv), with Pv €
range(P) and (v — Pv) € null(P). Because V = null(P) & range(P),
the representation of v as a sum of a vector in range(P) with a vector
in null(P) is unique, and therefore, Pv = u.

So, by definition, P is a projection of V' onto range(P) and an or-
thogonal projection since null(P) = (range(P))*. O

6.2) Suppose u,v € V. Prove that (u,v) = 0 if and only if ||ul|| <
||u + av|| for all a € F.

PROOF. [u]| < ||u + av]] & [[ul® < l[u+ avlP & (u,u) < (u+
av,u + av)

& (u,u) < (u,u) +alu,v) + alu, v) + aav,v) <

—2Re{a(u,v)}
ity.

If (u,v) = 0, the inequality holds since the L.H.S is zero and R.H.S
is always greater than or equal to zero.

aa(v,v). We will only work with the last inequal-

Now suppose that ||u|| < ||u + av|| is true for all @ in F. So we
know that —2Re{a(u,v)} < aa(v,v) also holds for all a in F'. Suppose
(u,v) # 0. Write a = —b{u,v), where b is a positive real. Note that
—2Re{a(u,v)} = 2b{u,v)|* and aa{v,v) = b*|{u,v)|*{(v,v). So the
inequality reduces to 2b|(u, v)|* < b*[{u,v)|*{v,v). Since b is positive

and |(u,v)|* # 0, we can divide by b|(u, v)|?, preserving the inequality
to get 2 < b(v,v). Now we can make the R.H.S as small as we want
by letting b go to zero. When the R.H.S is smaller than 2, we get a
contradiction. So (u,v) = 0.

O

6.18) Prove that if P € L(V), P? = P, and ||Pw| < |Jw|| for all

w €V, then P is an orthogonal projection.



PROOF. By 6.17, it is sufficient to show that every vector in null(P)
is orthogonal to every vector in range(P). First, observe that if u €
range(P), then Pu = u. This is because there is some x € V' such that
Pz = u, and then Pu = P?x = Px = u.

Now, let v € null(P) and consider the vector w = w + av, with
a € F. Note that Pw = Pu+ aPv = w and so ||Pw|| = |ju||. The
given inequality |[Pw| < ||w| gives us ||[u|] < ||u + av||, where a
was some arbitrary scalar. It follows that ||u|| < |Ju + av]|| for all
a € F. By exercise 6.2, we get that u and v are orthogonal. Here
u was some arbitrary vector in range(P) and v was some arbitrary
vector in null(P). So we may conclude that every vector in null(P)
is orthogonal to every vector in range(P), which is sufficient to show
that P is an orthogonal projection.

O



