
Homework Done Right

1.8) Prove that the intersection of any collection of subspaces of V

is a subspace of V .

PROOF. Let Ω be an indexing set such that Uα is a subspace of V ,

for every α ∈ Ω, and let I be the intersection of these subspaces, that

is, I = ∩α∈ΩUα.

Since the Uα’s are all subspaces, 0 ∈ Uα for every α ∈ Ω, and so,

0 ∈ I. Let x and y belong to I; this means that x and y are in every

Uα. It follows that x + y ∈ Uα, for every α ∈ Ω, because the subspaces

are closed under addition. This demonstrates that I is closed under

addition as x+y ∈ Uα, for every α ∈ Ω, implies that x+y ∈ I. Now let

a ∈ F and let x ∈ I. The Uα’s, being subspaces, are closed under scalar

multiplication, and so ax ∈ Uα, for every α ∈ Ω; therefore, ax ∈ I and

I is closed under scalar multiplication.

¤

1.14) Suppose that U is a subspace of P (F ) consisting of all polyno-

mials p of the form p(z) = az2 + bz5, where a, b ∈ F . Find a subspace

W of P (F ) such that P (F ) = U ⊕W .

Observe that, by definition, U = span(z2, z5), and so, U is a subspace

of P (F ). Also, note that (1, z, z2, z3, z4, .....) is a basis for P (F ). Now

let W = span(1, z, z3, z4, z6, z7, z8, ....); this means W is also a subspace

of P (F ).

If U ∩W contains some nonzero polynomial such as az2 + bz5, where

a, b ∈ F , then we get that az2 + bz5 ∈ span(1, z, z3, z4, z6, z7, z8, ....).

This is impossible as (1, z, z2, z3, z4, .....) are linearly independent and

so no vector in the list may be expressed as a linear combination of

other vectors in the list. It follows that U ∩W = {0}.
Now U + W contains all the vectors in the list (1, z, z2, z3, z4, .....),

which is a basis for P (F ), and thus, U +W contains all linear combina-

tions of the basis vectors. This implies that U +W contains all vectors

in P (F ); so P (F ) ⊂ U + W . Since U and W are subspaces of P (F ),

U + W is a subspace of P (F ); so U + W ⊂ P (F ). The two inclusions

of the sets obtained prove that U + W = P (F ). This combined with

U ∩W = {0} shows that P (F ) = U ⊕W .
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2.1) Prove that if (v1, v2, ..., vn) spans V , then so does the list (v1 −
v2, v2 − v3, ..., vn−1 − vn, vn).

PROOF. Let w ∈ V . So w = a1v1 + a2v2 + ... + anvn, for some

a1, a2, ..., an ∈ F . We can rewrite the expression as w = a1(v1 − v2) +

(a1 + a2)(v2− v3) + (a1 + a2 + a3)(v3− v4) + ... + (a1 + a2 + ... + an)vn.

This shows that w ∈ span(v1 − v2, v2 − v3, ..., vn−1 − vn, vn).

Conversely, suppose that v ∈ span(v1 − v2, v2 − v3, ..., vn−1 − vn, vn),

that is, v = a1(v1− v2) + a2(v2− v3) + a3(v3− v4) + ... + anvn, for some

a1, a2, ..., an ∈ F . Then v = a1v1 +(a2−a1)v2 +(a3−a2)v3 + ...(an−1−
an−2)vn−1 + anvn, which is certainly in span(v1, v2, ..., vn). This shows

that the list (v1 − v2, v2 − v3, ..., vn−1 − vn, vn) spans V .

¤

2.10) Suppose V is finite dimensional, with dim V = n. Prove that

there exist one-dimensional subspaces U1, U2, ..., Un of V such that V =

U1 ⊕ U2 ⊕ ...⊕ Un.

PROOF. Let (v1, v2, ..., vn) be a basis for V , and let Ui = span(vi),

for i ∈ {1, 2, ..., n}. Since the vi’s are not zero, by definition, the Ui’s

are one-dimensional subspaces of V .

U1 + U2 + ... + Un contains every vector in the basis, and thus, it

contains every vector that can be expressed as a linear combination

of the basis elements. So V ⊂ U1 + U2 + ... + Un, and thus, V =

U1 + U2 + ... + Un since U1 + U2 + ... + Un is a subspace of V .

Suppose v ∈ Ui ∩ Uj, for i, j ∈ {1, 2, ..., n} and i 6= j. This im-

plies that v = avi = bvj, where a, b ∈ F . Since vi, vj are linearly

independent, we get that a = b = 0, and so v = 0. It follows that

Ui ∩Uj = {0}, for i, j ∈ {1, 2, ..., n} and i 6= j. This, together with the

fact that V = U1 + U2 + ... + Un, proves that V = U1 ⊕ U2 ⊕ ...⊕ Un.

¤

3.16) Suppose that U and V are finite-dimensional and S ∈ L(V, W ),

T ∈ L(U, V ). Prove that dim null(ST ) ≤ dim null(T ) + dim null(S).

PROOF. First, some notation. Let T ′ be the linear map T restricted

to the subspace null(ST ), that is, T ′u = Tu whenever u ∈ null(ST )

and T ′ is not defined otherwise.
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Observe that if u ∈ null(T ′), then T ′u = Tu = 0. So u ∈ null(T )

and we get the simple inclusion null(T ′) ⊂ null(T ). This implies that

dim null(T ′) ≤ dim null(T ).

Also, if u ∈ null(ST ), then (ST )u = 0 = S(Tu) = S(T ′u). This

implies that T ′u ∈ null(S), and hence, range(T ′) ⊂ null(S). From

this we obtain our second inequality dim range(T ′) ≤ dim null(S).

Now, the dimension formula, Theorem 3.4, applied to null(ST ) and

T ′ says dim null(ST ) = dim null(T ′) + dim range(T ′). Combining this

with the inequalities dim null(T ′) ≤ dim null(T ) and dim range(T ′) ≤
dim null(S), we get the required result dim null(ST ) ≤ dim null(T ) +

dim null(S).

¤

5.11) Suppose S, T ∈ L(V ). Prove that ST and TS have the same

eigenvalues.

PROOF. Let λ be an eigenvalue for ST , that is ST (v) = λv, for some

nonzero v ∈ V . Apply T to both sides. T (ST (v)) = (TS) (Tv) = λTv.

Now, if Tv 6= 0, then Tv is an eigenvector with eigenvalue λ for TS.

If Tv = 0, then λ = 0 and T is not invertible, and hence, TS is not

invertible, which implies that TS has zero as an eigenvalue since its

null space is not trivial. So in all cases, if λ is an eigenvalue for ST , it

is also an eigenvalue for TS. A completely symmetric argument shows

that if λ is an eigenvalue for TS, it is also an eigenvalue for ST . It

follows that ST and TS have the same eigenvalues.

¤

5.14) Suppose V is finite-dimensional and T ∈ L(V ). Prove that T

is a scalar multiple of the identity if and only if ST = TS for every

S ∈ L(V ).

PROOF. If T = λI for some λ ∈ F , then ST = SλI = λSI = λIS =

TS, for any S ∈ L(V ).

Suppose ST = TS for every S ∈ L(V ). Let (v1, ..., vn) be a basis.

Tv1 = a1v1 + ... + anvn, for some a1, ..., an ∈ F , because the image of

v1 is some vector in V , and hence, a linear combination of the basis

elements.
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Now define a linear map S by describing what it does to the basis

elements. S(v1) = v1 and S sends all other basis vectors to zero. Then

look at ST (v1) = TS(v1). The left side of the equation is a1v1 and

the right side is Tv1. So Tv1 = a1v1. The same argument shows that

Tvk = akvk, for k ∈ {1, ..., n}.
We must show that all these ak’s are the same. Again, define a

linear map S by describing what it does to the basis elements. S(v1) =

v2, S(v2) = v1 and S sends all other basis vectors to zero. Then look at

ST (v1 + v2) = TS(v1 + v2). The left side of the equation is a2v1 + a1v2

while the right side is a1v1 + a2v2. Since these are equal and because

v1, v2 are linearly independent, a1 = a2. Similar arguments show that

ai = aj, for i, j ∈ {1, ..., n}.
Since all these ak’s are the same, we may rename them and call them

λ. So we have shown that Tvi = λvi, for i ∈ {1, ..., n}. Let v be a vector

in V , that is v = a1v1 + ... + anvn, for some a1, ..., an ∈ F . Now Tv =

T (a1v1+...+anvn) = λa1v1+λa2v2...+λanvn = λ(a1v1+...+anvn) = λv.

This shows that T is a scalar multiple of the identity.

¤

5.21) Suppose P ∈ L(V ) and P 2 = P . Prove that V = null(P ) ⊕
range(P ).

PROOF. V is a direct sum of null(P ) and range(P ) if the intersec-

tion of null(P ) and range(P ) is just zero and every vector in V can be

written as a sum of a vector in null(P ) with a vector in range(P ).

Suppose x is in both null(P ) and range(P ). Because x is in null(P ),

P (x) = 0. But x is also in range(P ) so there is a y in V such that

Py = x. Since P 2 = P , P 2y = Py, and also P 2(y) = P (Py) =

Px. It follows that x = Py = P 2y = Px = 0. This gives us that

null(P ) ∩ range(P ) = {0}.
Let v be a vector in V . Then v = Pv + (v − Pv). Now, Pv ∈

range(P ), by definition, and P (v − Pv) = Pv − P 2v = 0, because

P 2 = P , implies that (v−Pv) ∈ null(P ). So every vector in V can be

written as a sum of a vector in null(P ) with a vector in range(P ).

Since we have checked these two conditions, we have proved that

V = null(P )⊕Range(P ). ¤
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6.17) Prove that if P ∈ L(V ), P 2 = P , and every vector in null(P )

is orthogonal to every vector in range(P ), then P is an orthogonal

projection.

PROOF. By the previous exercise, V = null(P ) ⊕ range(P ) and

since every vector in null(P ) is orthogonal to every vector in range(P ),

null(P ) = (range(P ))⊥. Now let v ∈ V , and so v = u + n, with

u ∈ range(P ) and n ∈ null(P ). Also, v = Pv + (v − Pv), with Pv ∈
range(P ) and (v − Pv) ∈ null(P ). Because V = null(P )⊕ range(P ),

the representation of v as a sum of a vector in range(P ) with a vector

in null(P ) is unique, and therefore, Pv = u.

So, by definition, P is a projection of V onto range(P ) and an or-

thogonal projection since null(P ) = (range(P ))⊥. ¤

6.2) Suppose u, v ∈ V . Prove that 〈u, v〉 = 0 if and only if ||u|| ≤
||u + av|| for all a ∈ F .

PROOF. ||u|| ≤ ||u + av|| ⇔ ||u||2 ≤ ||u + av||2 ⇔ 〈u, u〉 ≤ 〈u +

av, u + av〉
⇔ 〈u, u〉 ≤ 〈u, u〉+ a〈u, v〉+ a〈u, v〉+ aa〈v, v〉 ⇔
−2Re{a〈u, v〉} ≤ aa〈v, v〉. We will only work with the last inequal-

ity.

If 〈u, v〉 = 0, the inequality holds since the L.H.S is zero and R.H.S

is always greater than or equal to zero.

Now suppose that ||u|| ≤ ||u + av|| is true for all a in F . So we

know that −2Re{a〈u, v〉} ≤ aa〈v, v〉 also holds for all a in F . Suppose

〈u, v〉 6= 0. Write a = −b〈u, v〉, where b is a positive real. Note that

−2Re{a〈u, v〉} = 2b|〈u, v〉|2 and aa〈v, v〉 = b2|〈u, v〉|2〈v, v〉. So the

inequality reduces to 2b|〈u, v〉|2 ≤ b2|〈u, v〉|2〈v, v〉. Since b is positive

and |〈u, v〉|2 6= 0, we can divide by b|〈u, v〉|2, preserving the inequality

to get 2 ≤ b〈v, v〉. Now we can make the R.H.S as small as we want

by letting b go to zero. When the R.H.S is smaller than 2, we get a

contradiction. So 〈u, v〉 = 0.

¤

6.18) Prove that if P ∈ L(V ), P 2 = P , and ‖Pw‖ ≤ ‖w‖ for all

w ∈ V , then P is an orthogonal projection.
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PROOF. By 6.17, it is sufficient to show that every vector in null(P )

is orthogonal to every vector in range(P ). First, observe that if u ∈
range(P ), then Pu = u. This is because there is some x ∈ V such that

Px = u, and then Pu = P 2x = Px = u.

Now, let v ∈ null(P ) and consider the vector w = u + av, with

a ∈ F . Note that Pw = Pu + aPv = u and so ‖Pw‖ = ‖u‖. The

given inequality ‖Pw‖ ≤ ‖w‖ gives us ||u|| ≤ ||u + av||, where a

was some arbitrary scalar. It follows that ||u|| ≤ ||u + av|| for all

a ∈ F . By exercise 6.2, we get that u and v are orthogonal. Here

u was some arbitrary vector in range(P ) and v was some arbitrary

vector in null(P ). So we may conclude that every vector in null(P )

is orthogonal to every vector in range(P ), which is sufficient to show

that P is an orthogonal projection.

¤


