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ABSTRACT
IQ tests provide numerous scores, but valid interpretation of those scores is dependent on how 
precisely each score reflects its intended construct and whether it provides unique information 
independent of other constructs. Thus, IQ scores must be evaluated for their reliability and 
dimensionality to determine their psychometric utility. As a tutorial, the Wechsler Intelligence 
Scale for Children–Fifth Edition (WISC-V) scores were evaluated and it was demonstrated that the 
WISC-V is multidimensional, but only the Full-Scale IQ (FSIQ) was found to be sufficiently reliable 
for clinical use. WISC-V group factors were not well defined and WISC-V index (i.e., factor) scores 
were contaminated with variance from other constructs and insufficiently reliable for clinical 
decisions. Clinicians were encouraged to go beyond structural goodness of fit and evaluate IQ 
test scores in terms of their reliability and ability to provide information that is not available from 
the general ability score as well their predictive and treatment validity. Software was provided 
to assist in that evaluation.

IMPACT STATEMENT
IQ tests provide numerous scores, but valid interpretation of those scores is dependent on how 
precisely each score reflects its intended construct and whether it provides unique information 
independent of other constructs. Thus, IQ scores must be evaluated for their reliability and 
dimensionality to determine their psychometric utility. This article describes an evidence-based 
approach that clinicians can employ to assess the psychometric utility of IQ scores, supplies software 
tools to assist in that analysis, and provides a tutorial example using Wechsler Intelligence Scale for 
Children–Fifth Edition (WISC-V) scores.

The Wechsler Intelligence Scale for Children–Fifth Edition 
(WISC-V; Wechsler, 2014a) is one of the most frequently 
used tests by school psychologists (Benson et al., 2019; 
Groth-Marnat & Wright, 2016; L. T. Miller et al., 2020). 
However, the WISC-V can produce 35 separate scores 
(Carlson et al., 2016; Wechsler, 2014b). Even with its 
abbreviated primary battery, the WISC-V generates one 
global score, five primary index scores, and 10 subtest 
scores. Psychologists must decide which, if any, of these 
16 scores to interpret.

Validity

Interpretation of WISC-V scores can only be justified with 
validity evidence (American Educational Research 
Association [AERA] et al., 2014). Several types of evidence 
must be integrated when evaluating the validity of test 
scores, most often, evidence about test content (content 

validity), internal structure (structural or factorial valid-
ity), and relationships to other variables (external validity). 
Following this template, Wechsler (2014b) provided con-
tent, structural, and external validity evidence in the 
WISC-V technical manual.

Evidence regarding the internal structure of a test is 
vital because that internal structure serves as the statistical 
rationale for the test’s scoring structure (Braden, 2013; 
Braden & Niebling, 2012; Canivez & Youngstrom, 2019; 
Furr, 2011). Evidence of structural validity is often 
obtained through factor analysis, which is a multivariate 
statistical technique that utilizes the variability among a 
set of scores to identify the underlying latent constructs 
or factors that theoretically caused that observed variabil-
ity (Montgomery et al., 2018).

Factor analysis was first developed by Spearman (1904) 
to analyze mental test scores in support of his theory of 
intelligence and has developed over the ensuing decades 
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into a family of multivariate methods, roughly demarcated 
into exploratory and confirmatory approaches. Detailed 
information regarding the structure of latent constructs 
and factor analytic models is readily available (Bornovalova 
et al., 2020; Brown, 2015; Brunner et al., 2012; Chen et al., 
2012; Chen & Zhang, 2018; Gorsuch, 1983; Gustafsson & 
Åberg-Bengtsson, 2010; Markon, 2019; Reise, 2012; Reise 
et al., 2013, 2018), Sellbom & Tellegen, 2019; Styck, 2019; 
Watkins, 2018).

In essence, factor analysis is used to verify that the inter-
nal structure of a scale (i.e., its dimensionality) “is consis-
tent with expectations regarding the construct(s) that the 
scale is intended to measure” (Flora & Flake, 2017, p. 82). 
That is, the scale’s actual structure should match its theo-
retical structure (Furr, 2011). Factor analysis has now 
become “central to the validation of measurement con-
structs” (Jewsbury & Bowden, 2017, p. 44) and “dictates 
the number of meaningful scores that a scale produces” 
(Furr, 2011, p. 7). For example, Wechsler (2014b) submit-
ted WISC-V subtest scores to a confirmatory factor anal-
ysis and concluded that five factors were responsible for 
the variability of its subtest scores. Subsequently, the 
WISC-V scoring structure of five primary index scores 
was based on those five factors.

Questions About Validity and Multidimensionality

IQ tests have almost always been found to be hierarchically 
structured with multiple factors or dimensions (Beaujean 
& Benson, 2019). This multidimensional structure is 
reflected in modern theories of intelligence (Carroll, 1993) 
that are typically illustrated with path models as in Figure 1 
(Brunner et al., 2012; Canivez & Youngstrom, 2019). In 
path diagrams, ovals represent factors and rectangles rep-
resent measured variables. Directional relationships 
between variables are indicated by single-headed arrows 
and nondirectional (correlational) relationships by dou-
ble-headed arrows. A simplified higher-order factor struc-
ture is illustrated in the top panel of Figure 1. In this model, 
intelligence is assumed to consist of an overarching general 
factor (g) that influences the group factors (F1–F3) which, 
in turn, influence the measured variables or subtests (V1–
V9), but there are no direct relations between the general 
factor and the subtests. This creates group factor scores 
that are impure measures of their purported factors 
because they are influenced by both general and group 
factors and therefore “represent a collection of different 
attributes” (Beaujean & Benson, 2019, p. 129) and psychol-
ogists “will not know which attribute to invoke to account 
for a particular score” (Gustafsson & Åberg-Bengtsson, 
2010, p. 97). In sum, group factor IQ scores (i.e., WISC-V 
index scores) are conceptually complex and lack a univocal 

interpretation (Chen & Zhang, 2018; Ferrando & Lorenzo-
Seva, 2019b).

Multidimensionality and uncertainty regarding score 
interpretation are not unique to IQ tests. For example, 
measures of personality and psychopathology often con-
tain both general and group factors (Gomez et al., 2019; 
Reise et al., 2018; Rodriguez et al., 2016a, 2016b). Similar 
issues have been encountered with educational tests 
(Wainer & Feinberg, 2015) where a meaningful score was 
defined as “one that is reliable enough for its prospective 
use and one that has information that is not adequately 
contained in the total test score” (Wainer & Feinberg, 
2015, p. 18).

As described by Furr (2011), “Each score obtained from 
a scale should reflect a single coherent psychological vari-
able” (p. 26). Adhering to this admonition, test publishers 
often either implicitly or explicitly assume that each test 
score can be interpreted as a measure of a single construct 
that provides meaningful and reliable information inde-
pendent of other constructs (Beaujean & Benson, 2019; 
Canivez & Youngstrom, 2019; Reise et al., 2013). For exam-
ple, Wechsler (2014b) claimed that the WISC-V index 
scores are “reliable and valid measures of the primary cog-
nitive constructs they intend to represent” (p. 149) so that 
the Verbal Comprehension Index (VCI), for example, 
“measures the child’s ability to access and apply acquired 

Figure 1.  Simplified Model of Intelligence Expressed in a Higher-
Order Measurement Model (top panel) and Transformed With the 
Schmid-Leiman Procedure (bottom panel)

Note. Latent variables (factors) are represented by circles, mea-
sured variables by rectangles, and the direction of causal influ-
ence by directional arrows.
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word knowledge,” which involves “verbal concept forma-
tion, reasoning, and expression” (p. 157). Although encour-
aging clinicians to consider index scores within an 
ecological context, Wechsler (2014b) suggested an inter-
pretation system based on a comparison of index scores 
with each other and to the Full-Scale IQ (FSIQ) to identify 
strengths and weaknesses across the Verbal Comprehension, 
Visual Spatial, Fluid Reasoning, Working Memory, and 
Processing Speed cognitive domains.

Other successive-level approaches for the interpretation 
of IQ test scores have been developed for clinicians (e.g., 
Flanagan & Alfonso, 2017; Groth-Marnat & Wright, 2016; 
Kaufman et al., 2016; Sattler et al., 2016). Typically, these 
approaches assume that IQ scores are homogeneous, but 
they also “go beyond the information contained in the 
FSIQ or the index scores” (Sattler et al., 2016, p. 175) by 
using intraindividual or within-person comparisons of 
scores (an approach described as ipsative by McDermott 
et al., 1992, and idiographic by Freeman & Chen, 2019) to 
identify score patterns or profiles assumed to reflect cog-
nitive strengths and weaknesses that, in turn, underpin 
recommendations for remedial strategies, classroom mod-
ifications, instructional accommodations, curricular mod-
ifications, targeted interventions, and program placements 
(Groth-Marnat & Wright, 2016; Kaufman et al., 2016; J. L. 
Miller et al., 2016; Sattler et al., 2016; Wechsler, 2014b).

These approaches to IQ score interpretation have 
achieved widespread use by school psychologists (Benson 
et al., 2020; J. L. Miller et al., 2016; Sotelo-Dynega & 
Dixon, 2014) and trainers (Lockwood & Farmer, 2020; L. 
T. Miller et al., 2020). For example, a recent survey found 
that they were routinely employed by a majority of school 
psychologists (Kranzler et al., 2020). In contrast, research-
ers have consistently criticized these approaches for inad-
equate reliability, validity, and diagnostic utility (Beaujean 
& Benson, 2019; Freeman & Chen, 2019; Glutting et al., 
1997; Kranzler et al., 2016, 2020; McDermott et al., 1992; 
McGill, 2016, 2018; McGill et al., 2018; Styck et al., 2019; 
Watkins, 2003, 2009). As a consequence, IQ score inter-
pretation is currently “in a state of disarray” (Beaujean & 
Benson, 2019, p. 126).

Purpose

Given this disarray, psychologists must possess consider-
able expertise in psychometrics to competently interpret 
scores from IQ tests (AERA et al., 2014; Beaujean & 
Benson, 2019; Gould et al., 2013; Reynolds & Milam, 2012). 
Unfortunately, instruction in psychometrics has been 
neglected in graduate training (Aiken et al., 2008; Canivez, 
2019; Charter, 2003; Perham, 2010). For example, Aiken 
et al. (2008) estimated that a majority of doctoral 

psychology students were unable to assess the reliability or 
validity of tests. Given that expertise in psychometrics is 
unlikely to develop without guidance and instruction 
(Canivez, 2019), this article describes an evidence-based 
approach that clinicians can employ to assess the psycho-
metric utility of IQ scores, supplies software tools to assist 
in that analysis, and provides a tutorial example using 
WISC-V scores.

An Evidence-Based Approach to IQ Score 
Interpretation

Specialists in educational and psychological measurement 
have developed methods to determine how precisely test 
scores reflect their intended constructs and whether scores 
provide sufficient unique information independent of each 
other (Brunner et al., 2012; Canivez & Youngstrom, 2019; 
Chen et al., 2012; Chen & Zhang, 2018; Ferrando & 
Lorenzo-Seva, 2018; Ferrando & Navarro-González, 2018; 
Reise et al., 2013, 2018; Rodriguez et al., 2016a, 2016b; 
Styck, 2019). Those methods undergird this evidence-based 
approach to IQ score interpretation.

Preliminary Information
Preliminary information is needed for computation of the 
indices that will subsequently be used to judge the psy-
chometric utility of IQ scores (Benson et al., 2018; Canivez 
& Youngstrom, 2019; Chen et al., 2012; Reise, 2012;  
Reise et al., 2013, 2018; Rodriguez et al., 2016a, 2016b). 
Specifically, results from a factor analysis with the same 
number of factors as specified in its scoring structure (e.g., 
five group factors and one general factor for the WISC-V). 
This information is frequently displayed in the test’s tech-
nical manual as a higher-order factor model as illustrated 
in Figure 2 for the WISC-V.

Factor Transformation
As previously described, higher-order factor models con-
flate general and group factor variance, making interpre-
tation of factor scores ambiguous. However, conceptual 
clarity can be attained with a mathematical transformation 
of the higher-order model via the Schmid-Leiman (S-L; 
Schmid & Leiman, 1957) procedure as illustrated in the 
bottom panel of Figure 1 (Brunner et al., 2012; Chen & 
Zhang, 2018; Gustafsson & Åberg-Bengtsson, 2010). In 
this transformed model, the general and group ability fac-
tors are all directly related to the indicator variables (i.e., 
subtest scores) and are uncorrelated with each other (i.e., 
they are orthogonal). This enhances “the interpretability 
of higher order and lower order factors” (Brunner et al., 
2012, p. 808) by estimating the direct and unique influence 

Utility of IQ Scores 621



DOI: 10.1080/2372966X.2020.181680

of each factor on each subtest score. In fact, Carroll (1993) 
used the S-L transformation when developing his influ-
ential model of intelligence that was one theoretical foun-
dation for the WISC-V (Wechsler, 2014b). Additionally, 
statistical simulations have found S-L results to be an accu-
rate factor recovery method (Giordano & Waller, 2020). 
Statistically, the higher-order model is nested within the 
orthogonal model even though these models have differ-
ent conceptual meanings that might otherwise be theoret-
ically or statistically important (Bornovalova et al., 2020; 
Chen et al., 2012; Chen & Zhang, 2018; Markon, 2019; 
Reise et al., 2018; Sellbom & Tellegen, 2019).

Variance Decomposition
Next, decomposition of the test’s variance is accomplished 
using the S-L transformed model as input. That is, sepa-
rating the test’s variance into that due to a general factor 
(variance common to all measured variables), group fac-
tors (variance uniquely shared by a group of measured 
variables), and uniqueness (i.e., reliable variance unique 
to a single observed variable plus measurement error).

Indices of Score Utility
The variance contributions of general and group factors 
and their interrelationships allow the computation of sev-
eral indices that assess the reliability of test scores and 
whether the test is best viewed as unidimensional or mul-
tidimensional.1 Together, these indices guide decisions 
about the utility of IQ scores.

Reliability 
Strong reliability is one of the fundamental requirements 
of evidence-based assessment (Hunsley & Mash, 2008). 
The reliability of factors and factor scores can be estimated 
with the H index (Hancock & Mueller, 2001) and omega 
coefficients, respectively (McDonald, 1999; Rodriguez 
et al., 2016a, 2016b; Watkins, 2017). Factors are latent con-
structs that are used for theoretical or conceptual pur-
poses, whereas factor scores are mathematically derived 
estimates of those constructs used to make clinical deci-
sions. For example, verbal comprehension (VC) is a latent 
construct thought to be measured by the WISC-V, and the 
VCI is a score estimated to represent that construct.

Figure 2. H igher-Order Measurement Model With Standardized Coefficients for the Wechsler Intelligence Scale for Children–Fifth Edition

Note. Adapted from figure 5.2 of Wechsler (2014b). The higher-order general intelligence latent construct was mislabeled “FSIQ” by 
Wechsler (2014b).
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Factors

A factor might be identified but not reliably specified. The 
reliability of factors can be estimated with the H index 
(Hancock & Mueller, 2001). H is the correlation between 
a factor and an optimally weighted factor score and is 
considered a measure of construct reliability or replica-
bility that quantifies how well a latent variable is repre-
sented by a set of indicators (Hancock & Mueller, 2001). 
According to Mueller and Hancock (2019), H is “an esti-
mate of the correlation that a factor is expected to have 
with itself over repeated administrations” (p. 455). H val-
ues lower than .80 suggest that the factor is not well 
defined and will not replicate across studies nor provide 
accurate path coefficients if included in statistical models 
(Ferrando & Lorenzo-Seva, 2018; Mueller & Hancock, 
2019; Rodriguez et al., 2016a).

Factor Scores

The reliability of unit-weighted factor scores can be 
indexed with omega coefficients, which make fewer and 
more realistic assumptions than traditional alpha coeffi-
cients (Watkins, 2017). Omega (ω) estimates the propor-
tion of variance in a unit-weighted factor score that is 
attributable to all modeled sources of common variance. 
Omega-hierarchical (ωh) estimates the proportion of vari-
ance in a unit-weighted factor score that is attributable to 
a single target factor after removing the variance due to all 
other sources. Thus, ω indicates how precisely a score mea-
sures the blend of general and group factors, whereas ωh 
specifies how precisely a score measures a single factor 
independent of all other factors.2 A comparison of ω to ωh 
reveals how the reliability of a factor score has been inflated 
by multidimensionality. Omega can also be seen as a valid-
ity measure because it addresses the proportion of variance 
contributed by latent constructs (Brunner et al., 2012; 
Gustafsson & Åberg-Bengtsson, 2010).

Like traditional estimates of internal consistency reli-
ability, omega indexes the total systematic variance in each 
unit-weighted score, whatever its source, and its magni-
tude should probably be judged similarly. Unfortunately, 
there is no consensus on what constitutes adequate reli-
ability: experts have suggested minimums as low as .70 
and as high as .96 (Kelley, 1927; Kline, 1998). However, 
evidence-based assessment guidelines recommend mini-
mal values of .80 to .90 for clinical applications (Hunsley 
& Mash, 2008), and a review of cognitive test score reli-
ability in the professional literature found an average of 
.85 (Charter, 2003). Thorndike and Thorndike-Christ 
(2010) argued that reliability estimates for making deci-
sions about individuals should reach .80 at a minimum. 
Consequently, .80 was recognized as the guideline for 

judging omega estimates in this study, although .90 might 
be a preferable minimum for confident interpretation of 
IQ scores (Kranzler & Floyd, 2013).

There is also no universally accepted guideline for 
acceptable or adequate levels of ωh for clinical decisions, 
but values less than .50 indicate that less than 50% of the 
score variance is due to the target factor, making “mean-
ingful interpretation of [those scores] arguably impossible” 
(Gignac & Watkins, 2013, p. 658). Consequently, .75 might 
be a preferable guideline for confident score interpretation 
(Canivez & Youngstrom, 2019; Reise, 2012; Reise et al., 
2013; Watkins, 2017). Some researchers (Giofrè et al., 2019) 
have accepted ωh values lower than .50 and cited Gignac 
and Kretzschmar (2017) for support. However, Gignac and 
Kretzschmar proposed those lower guidelines “within the 
context of pure research” (p. 140) and “did not mean for 
those guidelines to be applied to clinical interpretation” (G. 
Gignac, personal communication, October 21, 2019).

Dimensionality 
Although an IQ score is likely to be multidimensional, it 
is possible that it is essentially unidimensional. That is, 
unidimensional enough that the score can be interpreted 
as a measure of its purported construct without excessive 
bias (Rodriguez et al., 2016a, 2016b). As described by Reise 
et al. (2013), the assumption of unidimensionality “is a 
convenient fiction, sometimes useful in applied contexts” 
(p. 136).

Two indices contribute to an evaluation of test dimen-
sionality: (a) percentage of uncontaminated correlations 
(PUC) and (b) explained common variance (ECV). PUC 
is the proportion of subtest correlations that are uncon-
taminated by multidimensionality. PUC values ≥ .80 sup-
port essential unidimensionality (Rodriguez et al., 2016a, 
2016b). ECV is an index of general factor strength com-
puted as a ratio of the variance explained by the general 
factor to the total common variance. ECV values ≥ .70 
suggest that minimal bias would result from estimating a 
unidimensional factor even for data that are multidimen-
sional (Gu et al., 2017; Rodriguez et al., 2016a, 2016b; 
Sellbom & Tellegen, 2019). However, ECV decreases in 
importance as an indicator of bias as the PUC increases 
(Rodriguez et al., 2016b), so an IQ score might be consid-
ered essentially unidimensional if ECV and PUC are both 
≥ .70 (Gu et al., 2017; Rodriguez et al., 2016a, 2016b; 
Sellbom & Tellegen, 2019).

WISC-V TUTORIAL EXAMPLE 

The WISC-V (Wechsler, 2014a) primary battery con-
tains 10 core subtests, each with a population mean of 
10 and standard deviation of 3. Five unit-weighted 
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factor index scores are produced from those 10 subtests: 
the VCI from the Similarities (SI) and Vocabulary (VO) 
subtests; the Visual Spatial Index (VSI) from the Block 
Design (BD) and Visual Puzzles (VP) subtests; the Fluid 
Reasoning Index (FRI) from the Matrix Reasoning 
(MR) and Figure Weights (FW) subtests; the Working 
Memory Index (WMI) from the Digit Span (DS) and 
Picture Span (PS) subtests; and the Processing Speed 
Index (PSI) from the Coding (CD) and Symbol Search 
(SS) subtests. The factor index and FSIQ scores each 
have a population mean of 100 and standard deviation 
of 15. A higher-order measurement model was provided 
by Wechsler (2014b) and an adapted version is pre-
sented in Figure 2.

Factor Transformation

Figure 3 illustrates use of the MacOrtho program (Watkins, 
2020) to input the first-order factor loadings reported by 
Wechsler (2014b), and Figure 4 displays the S-L transfor-
mation of that first-order structure. The resulting orthog-
onal model appears to be appropriate given that the general 
factor is loaded by all indicator variables (from .357 for 
CD to .697 for VO; Chen & Zhang, 2018; Eid et al., 2017; 

Sellbom & Tellegen, 2019). This information will subse-
quently be used to determine how precisely WISC-V 
scores reflect their intended constructs and whether 
WISC-V scores provide unique information independent 
of each other.

Variance Decomposition

The sources of variance in the WISC-V for this normative 
sample, based on results of the S-L transformation by the 
MacOrtho program and variance decomposition by the 
Omega program, are presented in Figure 5. Considerable 
research has indicated that subtests contain too little spe-
cific variance to be useful (McDermott et al., 1992). As 
long ago as 1959, for example, Cohen (1959) concluded 
that subtests were “quite inadequate to serve as a basis for 
a subtest-specific rationale” (p. 290), and similar judg-
ments have been repeated over the ensuing decades (Styck 
et al., 2019; Watkins, 2003; Zaboski et al., 2018). Unique 
variance exceeded the communality (i.e., variance contrib-
uted by general and group factors) for the MR, FW, PS, 
CD, and SS subtests. Similarly, the variance contributed 
by the general factor exceeded the variance due to the cor-
responding group factor for all subtests except CD and SS.

Figure 3. I nput for MacOrtho Software to Perform a Schmid-Leiman Transformation of the Wechsler Intelligence Scale for Children–Fifth 
Edition Higher-Order Model
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The general factor accounted for 38.4% of the total 
variance and the group factors contributed another 
18.4%, leaving 43.2% unexplained. The general factor 
accounted for 67.7% of the common variance, more than 
twice the amount contributed by the combined group 
factors. The FR factor was particularly weak, accounting 
for only 0.2% to 0.3% of the total and common variance, 
respectively. The relative variance contributions of all 
WISC-V subtest and composite scores are detailed in the 
Omega program output (see Figure 5) and visually illus-
trated in Figure 6.

Indices of Score Utility

Figure 5 also displays indices of score utility produced by 
the Omega program for the WISC-V normative data; that 
is, H and omega values to judge reliability as well as ECV 
and PUC values to evaluate dimensionality. Those indices 
are also reported in Table 1 in a format that could be used 
as a checklist for other instruments.

Reliability
In terms of factor reliability, as judged by the H index, the 
five WISC-V group factors were not well defined and will 
be unlikely to replicate across studies (i.e., H < .80). In 
contrast, the general factor was well defined and should 
replicate (H = .873). That is, an optimal composite of 
WISC-V subtests can explain 87% of the variability in the 
general factor, 33% of the variability in the VC factor, 20% 
of the variability in the VS factor, 2% of the variability in 
the FR factor, 28% of the variability in the WM factor, and 
62% of the variance in the PS factor.

How precisely a score measures the blend of general 
and group constructs is indexed by the ω coefficient. In 
that regard, only the FSIQ and VCI were reliable enough 
for high-stakes decisions about individuals (ω = .904 and 
.810, respectively). How precisely a score measures a single 
construct independent of all other constructs is indexed 
by ωh, with values less than .50 making “meaningful inter-
pretation of [those scores] arguably impossible” (Gignac 
& Watkins, 2013, p. 658). By this standard, the VCI, VSI, 

Figure 4.  Schmid-Leiman Transformation of the Wechsler Intelligence Scale for Children–Fifth Edition Higher-Order Model Computed by 
MacOrtho Software

Note. SI = Similarities, VO = Vocabulary, BD = Block Design, VP = Visual Puzzles, MR = Matrix Reasoning, FW = Figure Weights, DS = Digit 
Span, PS = Picture Span, CD = Coding, and SS = Symbol Search.
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FRI, and WMI scores were uninterpretable. The ωh index 
of .548 for the PSI met this minimal criterion but failed to 
reach the level preferred for confident score interpretation 
(i.e., ≥ .75; Canivez & Youngstrom, 2019; Reise, 2012; Reise 
et al., 2013; Watkins, 2017).

Dimensionality
According to Wechsler (2014b), the WISC-V is multidi-
mensional, offering five group factor index scores (VCI, 
VSI, FRI, WMI, and PSI) and one general factor score 
(FSIQ). If each score is essentially unidimensional it might 
be interpreted without excessive bias. PUC values ≥ .80 
and ECV values ≥ .70 would signal essential unidimen-
sionality (Gu et al., 2017; Rodriguez et al., 2016a, 2016b; 
Sellbom & Tellegen, 2019), which was achieved by the 
FSIQ (PUC = .89, ECV = .68) but none of the five group 
factor index scores.

Replication

Reliability estimates from the field may differ from esti-
mates derived from a test’s standardization sample 
(Thorndike & Thorndike-Christ, 2010), necessitating a 
replication of normative results in clinical samples. 
Fortunately, Canivez et al. (2020) recently provided reli-
ability and dimensionality indicators from a large clinical 
sample. Results from both normative and clinical samples 
were in agreement as demonstrated in Table 1.

GENERAL DISCUSSION

Modern IQ tests provide numerous subtest and composite 
scores but valid interpretation of those scores is dependent 
on how reliably each score reflects its intended construct 
and whether it provides unique information independent 
of other constructs (Brunner et al., 2012; Canivez & 
Youngstrom, 2019; Chen et al., 2012; Ferrando & 

Figure 5. V ariance Decomposition and Psychometric Utility Indicators From Omega Software Based on the Schmid-Leiman Transformation 
of the Wechsler Intelligence Scale for Children–Fifth Edition Higher-Order Model

Note. SI = Similarities, VO = Vocabulary, BD = Block Design, VP = Visual Puzzles, MR = Matrix Reasoning, FW = Figure Weights, DS = Digit 
Span, PS = Picture Span, CD = Coding, SS = Symbol Search, VC = Verbal Comprehension factor, VS = Visual Spatial factor, FR = Fluid 
Reasoning factor, WM = Working Memory factor, PSP = Processing Speed factor, g = general factor, H is from Mueller and Hancock (2019), 
ECV = explained common variance, and PUC = percent of uncontaminated correlations.
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Figure 6. G eneral, Group, and Unique Sources of Variance in Wechsler Intelligence Scale for Children–Fifth Edition Subtest and Composite 
Scores

Table 1.  Psychometric Utility of Wechsler Intelligence Scale for Children–Fifth Edition Factor Scores From Normative (N = 2,200) and 
Clinical (N = 2,512) Samples

General VC VS FR WM PS

Dimensionality
  PUC
    Norm .889 — — — — —
  C  linical .889 — — — — —
 E ssential unidimensional (≥.80) Yes — — — — —
 ECV
    Norm .677 .071 .040 .003 .057 .154
  C  linical .733 .085 .041 .008 .049 .083
 E ssential unidimensional (≥.70) Yes No No No No No
Reliability
 C onstructs (H)
    Norm .873 .334 .202 .018 .278 .617
  C  linical .902 .413 .225 .050 .265 .411
  Minimum reliability (≥.80) Yes No No No No No
  Preferable reliability (≥.90) Yes No No No No No
Scores (ω)
  Norm .904 .810 .744 .632 .678 .740
 C linical .924 .846 .823 .746 .722 .641
Minimum reliability (≥.80) Yes Yes No No No No
Preferable reliability (≥.90) Yes No No No No No
Scores (ωh)
  Norm .823 .238 .141 .013 .211 .548
 C linical .860 .300 .149 .032 .193 .345
Minimum reliability (≥.50) Yes No No No No Yes
Preferable reliability (≥.75) Yes No No No No No

Note. Metrics meeting minimum standards in bold and metrics meeting preferable standards in bold italic. 
VC = Verbal Comprehension, VS = Visual Spatial, FR = Fluid Reasoning, WM = Working Memory, PS = Processing Speed, ω = omega, ωh = omega hierarchical, 
H = construct replicability index, and PUC = percent of uncontaminated correlations. Metrics meeting minimum standards in bold and metrics meeting 
preferable standards in bold italic. Yes-No decision based on normative sample metric.

Note. The Y-axis displays total variance for subtests and explained common variance for composite scores.
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Lorenzo-Seva, 2018; Ferrando & Navarro-González, 2018; 
Reise et al., 2013, 2018; Rodriguez et al., 2016a, 2016b; 
Wainer & Feinberg, 2015). Accordingly, IQ scores must be 
evaluated for their reliability (measured by omega coeffi-
cients) and their dimensionality (measured by ECV and 
PUC indices) to determine their psychometric utility. 
These measures of utility are unlikely to be provided by 
test publishers, but can easily be generated with the tools 
provided in this tutorial.

In this example using WISC-V normative sample 
data, WISC-V group factors were not well defined by 
their indicators (i.e., subtests), and WISC-V index (i.e., 
factor) scores were unreliable and contaminated with 
variance from other constructs. Similar results have 
been found with other IQ tests, making this an almost 
universal conclusion (Benson et al., 2018; Canivez et al., 
2019, 2020; Dombrowski et al., 2018, 2019; Fenollar-
Cortés et al., 2019; Gignac & Watkins, 2013; Gomez 
et al., 2019; Styck, 2019; Watkins, 2006, 2018). In con-
trast, the WISC-V FSIQ score was essentially unidimen-
sional and sufficiently reliable for clinical use. Similar 
results have been found for educational tests where 
subscores have generally added little value beyond total 
scores (Wainer & Feinberg, 2015).

These conclusions have been based on estimates of 
structural validity and assume that the factor structure is 
an accurate representation of the underlying structure of 
the test. If severely misspecified, factor analytic results may 
be biased estimates of population values. Potential symp-
toms of a structural mismatch include nonconvergence of 
factor models, poorly fitting factor models, and mathe-
matically inadmissible parameter values (Brown, 2015; 
Chen & Zhang, 2018). Likewise, caution should be exer-
cised when all subtests load at near-zero levels on a group 
factor, multiple subtests load at near-zero levels on the 
general factor, or the general factor accounts for a minis-
cule proportion of the test’s variance (Eid et al., 2017; 
Gorsuch, 1983). Although validity evidence can be 
obtained from test publishers and independent research-
ers, “the test user is ultimately responsible for evaluating 
the evidence in the particular setting in which the test is 
used” (AERA et al., 2014, p. 13). Thus, it is vital that 
reports of validity evidence, including those contributed 
by test publishers, be based on a transparent account of all 
measurement decisions and avoid questionable measure-
ment practices (Flake & Fried, 2020).

Given that “validation evidence allows for a summary 
judgment of the intended interpretation that is well sup-
ported and defensible” (AERA et al., 2014, p. 22), the con-
tent validity of WISC-V scores, their stability over time, 
and their relationship with other variables must also be 
considered (Ferrando & Lorenzo-Seva, 2019a). The FSIQ 
has usually been more reliable than factor index scores 

across time (e.g., Watkins & Smith, 2013), and factor index 
scores have often exhibited little ability to predict academic 
achievement beyond the FSIQ (with the possible exception 
of the VCI) even in the presence of index score scatter 
(Canivez et al., 2014; Daniel, 2007; Freberg et al., 2008; 
Glutting et al., 1997; Oh et al., 2004; Styck, 2019; Watkins 
et al., 2007). Further, little evidence has been found to sup-
port the diagnostic utility and treatment validity of group 
factor scores (Benson et al., 2018; Braden, 2013; Braden & 
Niebling, 2012; Burns et al., 2016; Canivez & Youngstrom, 
2019; Freeman & Chen, 2019; Kranzler et al., 2016; McGill, 
2018; McGill et al., 2018; Styck & Watkins, 2013; Zaboski 
et al., 2018).

Nevertheless, expert recommendations for the inter-
pretation of cognitive ability test scores (Flanagan & 
Alfonso, 2017; Groth-Marnat & Wright, 2016; Kaufman 
et al., 2016; J. L. Miller et al., 2016; Sattler et al., 2016; 
Wechsler, 2014b) are popular among school psychology 
practitioners and trainers (Benson et al., 2020; Lockwood 
& Farmer, 2020; L. T. Miller et al., 2020; Sotelo-Dynega 
& Dixon, 2014). These interpretational strategies often 
rest on evidence regarding the test’s structure obtained 
via a factor analysis that is used to justify univocal inter-
pretation of factor scores (Braden, 2013; Braden & 
Niebling, 2012; Canivez & Youngstrom, 2019). However, 
the fit of data to a model, as in a confirmatory factor 
analysis, does not guarantee that the resulting factors are 
precisely specified or that factor scores are reliable mea-
sures of the target construct that can provide accurate 
individual measurement (Beaujean & Benson, 2019; 
Benson et al., 2018; Ferrando & Lorenzo-Seva, 2019a, 
2019b; Ferrando & Navarro-González, 2018; Rodriguez 
et al., 2016a, 2016b).

In sum, “to make valid and useful clinical judgments, 
clinicians must understand the dimensionality of the 
constructs they assess and of the measures used to asses 
them” (Haynes et al., 2019, p. 151). Therefore, clinicians 
are encouraged to eschew “eminence-based practices” in 
favor of “evidence-based practices” (Kranzler et al., 2020, 
p. 10) by responding in the affirmative to two questions 
before interpreting any IQ score: (a) Is this score a suffi-
ciently reliable measure of the multidimensional con-
structs it purports to measure (i.e., ω at least ≥ .80 and 
preferably ≥ .90)? and (b) Is this score a sufficiently reli-
able measure of the single construct it purports to mea-
sure independent of other constructs (i.e., ωh at least ≥ 
.50 and preferably ≥ .75)? A third question must be 
answered positively if the scores are to be quantitatively 
compared to identify intraindividual cognitive strengths 
and weaknesses (i.e., use of difference scores to create 
ipsative profiles). Namely, do these scores retain sufficient 
reliability for clinical decisions given that difference 
scores are less reliable than their constituent scores 
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(Thorndike & Thorndike-Christ, 2010)? For example, 
Farmer and Kim (2020) reported that the median 
WISC-V subtest and composite difference score reliabil-
ity was .70 and .81, respectively. Given the psychometric 
limitations of difference and ipsative scores (Beaujean & 
Benson, 2019; McDermott et al., 1992), it is unlikely that 
cognitive profiles will exhibit sufficient reliability for clin-
ical decisions (i.e., at least ≥ .80 and preferably ≥ .90). A 
final question must be answered in the affirmative if cog-
nitive ability scores are to be used for diagnostic deter-
minations or treatment recommendations. Specifically, 
is there evidence to support the diagnostic utility, predic-
tive validity, or treatment validity of this score (AERA 
et al., 2014; Reynolds & Milam, 2012)? By following these 
evidence-based practices, practitioners can demonstrate 
that they know “what tests can and cannot do” (Weiner, 
1989, p. 830).

NOTES

	 1.	 Factor transformation via the S-L procedure can be  
directly implemented with the free psych package in the 
R software system (R Development Core Team, 2020), 
the free FACTOR program (Lorenzo-Seva & Ferrando, 
2006), and the SPSS system with syntax provided by 
Wolff and Preising (2005). Alternatively, the S-L proce-
dure can be indirectly computed from the validity infor-
mation extracted from the test’s technical manual with 
the MacOrtho program (Watkins, 2020). Variance de-
composition and indices of score quality can be complet-
ed with a versatile spreadsheet contributed by Dueber 
(2017) that is available at https://uknowledge.uky.edu/
edp_tools/1/. Similar metrics can be extracted from  
two R packages: BifactorIndicesCalculator at https://
cran.r-project.org/web/packages/BifactorIndices 
Calculator/index.html and psych at https://cran.r-project.
org/web/packages/psych/index.html. The free Omega 
(Watkins, 2013) program can also accomplish these 
tasks.

	 2.	 The labels applied to omega coefficients have been  
inconsistent. Some authors use specific labels for omega 
coefficients applied to general and group factors. For ex-
ample, ω for the amalgam of general and group factor 
variance in the general factor score (i.e., FSIQ), ωs for the 
amalgam of general and group factor variance in the 
group factor scores (i.e., VCI, VSI, etc.), ωh for the gener-
al factor variance in the general factor score, and ωhs for 
the group factor variance in the group factor scores.
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