
Linear Algebra

Done Wrong

Sergei Treil

Department of Mathematics, Brown University



Copyright c© Sergei Treil, 2004, 2009, 2011, 2014



Preface

The title of the book sounds a bit mysterious. Why should anyone read this
book if it presents the subject in a wrong way? What is particularly done
“wrong” in the book?

Before answering these questions, let me first describe the target au-
dience of this text. This book appeared as lecture notes for the course
“Honors Linear Algebra”. It supposed to be a first linear algebra course for
mathematically advanced students. It is intended for a student who, while
not yet very familiar with abstract reasoning, is willing to study more rigor-
ous mathematics than what is presented in a “cookbook style” calculus type
course. Besides being a first course in linear algebra it is also supposed to be
a first course introducing a student to rigorous proof, formal definitions—in
short, to the style of modern theoretical (abstract) mathematics. The target
audience explains the very specific blend of elementary ideas and concrete
examples, which are usually presented in introductory linear algebra texts
with more abstract definitions and constructions typical for advanced books.

Another specific of the book is that it is not written by or for an alge-
braist. So, I tried to emphasize the topics that are important for analysis,
geometry, probability, etc., and did not include some traditional topics. For
example, I am only considering vector spaces over the fields of real or com-
plex numbers. Linear spaces over other fields are not considered at all, since
I feel time required to introduce and explain abstract fields would be better
spent on some more classical topics, which will be required in other dis-
ciplines. And later, when the students study general fields in an abstract
algebra course they will understand that many of the constructions studied
in this book will also work for general fields.

iii



iv Preface

Also, I treat only finite-dimensional spaces in this book and a basis
always means a finite basis. The reason is that it is impossible to say some-
thing non-trivial about infinite-dimensional spaces without introducing con-
vergence, norms, completeness etc., i.e. the basics of functional analysis.
And this is definitely a subject for a separate course (text). So, I do not
consider infinite Hamel bases here: they are not needed in most applica-
tions to analysis and geometry, and I feel they belong in an abstract algebra
course.

Notes for the instructor. There are several details that distinguish this
text from standard advanced linear algebra textbooks. First concerns the
definitions of bases, linearly independent, and generating sets. In the book
I first define a basis as a system with the property that any vector admits
a unique representation as a linear combination. And then linear indepen-
dence and generating system properties appear naturally as halves of the
basis property, one being uniqueness and the other being existence of the
representation.

The reason for this approach is that I feel the concept of a basis is a much
more important notion than linear independence: in most applications we
really do not care about linear independence, we need a system to be a basis.
For example, when solving a homogeneous system, we are not just looking
for linearly independent solutions, but for the correct number of linearly
independent solutions, i.e. for a basis in the solution space.

And it is easy to explain to students, why bases are important: they
allow us to introduce coordinates, and work with Rn (or Cn) instead of
working with an abstract vector space. Furthermore, we need coordinates
to perform computations using computers, and computers are well adapted
to working with matrices. Also, I really do not know a simple motivation
for the notion of linear independence.

Another detail is that I introduce linear transformations before teach-
ing how to solve linear systems. A disadvantage is that we did not prove
until Chapter 2 that only a square matrix can be invertible as well as some
other important facts. However, having already defined linear transforma-
tion allows more systematic presentation of row reduction. Also, I spend a
lot of time (two sections) motivating matrix multiplication. I hope that I
explained well why such a strange looking rule of multiplication is, in fact,
a very natural one, and we really do not have any choice here.

Many important facts about bases, linear transformations, etc., like the
fact that any two bases in a vector space have the same number of vectors,
are proved in Chapter 2 by counting pivots in the row reduction. While most
of these facts have “coordinate free” proofs, formally not involving Gaussian
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elimination, a careful analysis of the proofs reveals that the Gaussian elim-
ination and counting of the pivots do not disappear, they are just hidden
in most of the proofs. So, instead of presenting very elegant (but not easy
for a beginner to understand) “coordinate-free” proofs, which are typically
presented in advanced linear algebra books, we use “row reduction” proofs,
more common for the “calculus type” texts. The advantage here is that it is
easy to see the common idea behind all the proofs, and such proofs are easier
to understand and to remember for a reader who is not very mathematically
sophisticated.

I also present in Section 8 of Chapter 2 a simple and easy to remember
formalism for the change of basis formula.

Chapter 3 deals with determinants. I spent a lot of time presenting a
motivation for the determinant, and only much later give formal definitions.
Determinants are introduced as a way to compute volumes. It is shown that
if we allow signed volumes, to make the determinant linear in each column
(and at that point students should be well aware that the linearity helps a
lot, and that allowing negative volumes is a very small price to pay for it),
and assume some very natural properties, then we do not have any choice
and arrive to the classical definition of the determinant. I would like to
emphasize that initially I do not postulate antisymmetry of the determinant;
I deduce it from other very natural properties of volume.

Note, that while formally in Chapters 1–3 I was dealing mainly with real
spaces, everything there holds for complex spaces, and moreover, even for
the spaces over arbitrary fields.

Chapter 4 is an introduction to spectral theory, and that is where the
complex space Cn naturally appears. It was formally defined in the begin-
ning of the book, and the definition of a complex vector space was also given
there, but before Chapter 4 the main object was the real space Rn. Now
the appearance of complex eigenvalues shows that for spectral theory the
most natural space is the complex space Cn, even if we are initially dealing
with real matrices (operators in real spaces). The main accent here is on the
diagonalization, and the notion of a basis of eigesnspaces is also introduced.

Chapter 5 dealing with inner product spaces comes after spectral theory,
because I wanted to do both the complex and the real cases simultaneously,
and spectral theory provides a strong motivation for complex spaces. Other
then the motivation, Chapters 4 and 5 do not depend on each other, and an
instructor may do Chapter 5 first.

Although I present the Jordan canonical form in Chapter 9, I usually
do not have time to cover it during a one-semester course. I prefer to spend
more time on topics discussed in Chapters 6 and 7 such as diagonalization
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of normal and self-adjoint operators, polar and singular values decomposi-
tion, the structure of orthogonal matrices and orientation, and the theory
of quadratic forms.

I feel that these topics are more important for applications, then the
Jordan canonical form, despite the definite beauty of the latter. However, I
added Chapter 9 so the instructor may skip some of the topics in Chapters
6 and 7 and present the Jordan Decomposition Theorem instead.

I also included (new for 2009) Chapter 8, dealing with dual spaces and
tensors. I feel that the material there, especially sections about tensors, is a
bit too advanced for a first year linear algebra course, but some topics (for
example, change of coordinates in the dual space) can be easily included in
the syllabus. And it can be used as an introduction to tensors in a more
advanced course. Note, that the results presented in this chapter are true
for an arbitrary field.

I had tried to present the material in the book rather informally, prefer-
ring intuitive geometric reasoning to formal algebraic manipulations, so to
a purist the book may seem not sufficiently rigorous. Throughout the book
I usually (when it does not lead to the confusion) identify a linear transfor-
mation and its matrix. This allows for a simpler notation, and I feel that
overemphasizing the difference between a transformation and its matrix may
confuse an inexperienced student. Only when the difference is crucial, for
example when analyzing how the matrix of a transformation changes under
the change of the basis, I use a special notation to distinguish between a
transformation and its matrix.
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Chapter 1

Basic Notions

1. Vector spaces

A vector space V is a collection of objects, called vectors (denoted in this
book by lowercase bold letters, like v), along with two operations, addition
of vectors and multiplication by a number (scalar) 1 , such that the following
8 properties (the so-called axioms of a vector space) hold:

The first 4 properties deal with the addition:

1. Commutativity: v + w = w + v for all v,w ∈ V ; A question arises,
“How one can mem-
orize the above prop-
erties?” And the an-
swer is that one does
not need to, see be-
low!

2. Associativity: (u + v) + w = u + (v + w) for all u,v,w ∈ V ;

3. Zero vector: there exists a special vector, denoted by 0 such that
v + 0 = v for all v ∈ V ;

4. Additive inverse: For every vector v ∈ V there exists a vector w ∈ V
such that v + w = 0. Such additive inverse is usually denoted as
−v;

The next two properties concern multiplication:

5. Multiplicative identity: 1v = v for all v ∈ V ;

1We need some visual distinction between vectors and other objects, so in this book we use
bold lowercase letters for vectors and regular lowercase letters for numbers (scalars). In some (more
advanced) books Latin letters are reserved for vectors, while Greek letters are used for scalars; in

even more advanced texts any letter can be used for anything and the reader must understand
from the context what each symbol means. I think it is helpful, especially for a beginner to have

some visual distinction between different objects, so a bold lowercase letters will always denote a

vector. And on a blackboard an arrow (like in ~v) is used to identify a vector.

1



2 1. Basic Notions

6. Multiplicative associativity: (αβ)v = α(βv) for all v ∈ V and all
scalars α, β;

And finally, two distributive properties, which connect multipli-
cation and addition:

7. α(u + v) = αu + αv for all u,v ∈ V and all scalars α;

8. (α+ β)v = αv + βv for all v ∈ V and all scalars α, β.

Remark. The above properties seem hard to memorize, but it is not nec-
essary. They are simply the familiar rules of algebraic manipulations with
numbers, that you know from high school. The only new twist here is that
you have to understand what operations you can apply to what objects. You
can add vectors, and you can multiply a vector by a number (scalar). Of
course, you can do with number all possible manipulations that you have
learned before. But, you cannot multiply two vectors, or add a number to
a vector.

Remark. It is easy to prove that zero vector 0 is unique, and that given
v ∈ V its additive inverse −v is also unique.

It is also not hard to show using properties 5, 6 and 8 that 0 = 0v for
any v ∈ V , and that −v = (−1)v. Note, that to do this one still needs to
use other properties of a vector space in the proofs, in particular properties
3 and 4.

If the scalars are the usual real numbers, we call the space V a real
vector space. If the scalars are the complex numbers, i.e. if we can multiply
vectors by complex numbers, we call the space V a complex vector space.

Note, that any complex vector space is a real vector space as well (if we
can multiply by complex numbers, we can multiply by real numbers), but
not the other way around.

It is also possible to consider a situation when the scalars are elements ofIf you do not know
what a field is, do
not worry, since in
this book we con-
sider only the case
of real and complex
spaces.

an arbitrary field F. In this case we say that V is a vector space over the field
F. Although many of the constructions in the book (in particular, everything
in Chapters 1–3) work for general fields, in this text we are considering only
real and complex vector spaces.

If we do not specify the set of scalars, or use a letter F for it, then the
results are true for both real and complex spaces. If we need to distinguish
real and complex cases, we will explicitly say which case we are considering.

Note, that in the definition of a vector space over an arbitrary field, we
require the set of scalars to be a field, so we can always divide (without a
remainder) by a non-zero scalar. Thus, it is possible to consider vector space
over rationals, but not over the integers.
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1.1. Examples.

Example. The space Rn consists of all columns of size n,

v =


v1

v2
...
vn


whose entries are real numbers. Addition and multiplication are defined
entrywise, i.e.

α


v1

v2
...
vn

 =


αv1

αv2
...

αvn

 ,


v1

v2
...
vn

+


w1

w2
...
wn

 =


v1 + w1

v2 + w2
...

vn + wn


Example. The space Cn also consists of columns of size n, only the entries
now are complex numbers. Addition and multiplication are defined exactly
as in the case of Rn, the only difference is that we can now multiply vectors
by complex numbers, i.e. Cn is a complex vector space.

Many results in this text are true for both Rn and Cn. In such cases we
will use notation Fn.

Example. The space Mm×n (also denoted as Mm,n) of m×n matrices: the
addition and multiplication by scalars are defined entrywise. If we allow
only real entries (and so only multiplication only by reals), then we have a
real vector space; if we allow complex entries and multiplication by complex
numbers, we then have a complex vector space.

Formally, we have to distinguish between between real and complex
cases, i.e. write something like MR

m,n or MC
m,n. However, in most situa-

tions there is no difference between real and complex case, and there is no
need to specify which case we are considering. If there is a difference we say
explicitly which case we are considering.

Remark. As we mentioned above, the axioms of a vector space are just the
familiar rules of algebraic manipulations with (real or complex) numbers,
so if we put scalars (numbers) for the vectors, all axioms will be satisfied.
Thus, the set R of real numbers is a real vector space, and the set C of
complex numbers is a complex vector space.

More importantly, since in the above examples all vector operations
(addition and multiplication by a scalar) are performed entrywise, for these
examples the axioms of a vector space are automatically satisfied because
they are satisfied for scalars (can you see why?). So, we do not have to
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check the axioms, we get the fact that the above examples are indeed vector
spaces for free!

The same can be applied to the next example, the coefficients of the
polynomials play the role of entries there.

Example. The space Pn of polynomials of degree at most n, consists of all
polynomials p of form

p(t) = a0 + a1t+ a2t
2 + . . .+ ant

n,

where t is the independent variable. Note, that some, or even all, coefficients
ak can be 0.

In the case of real coefficients ak we have a real vector space, complex
coefficient give us a complex vector space. Again, we will specify whether we
treating real or complex case only when it is essential; otherwise everything
applies to both cases.

Question: What are zero vectors in each of the above examples?

1.2. Matrix notation. An m × n matrix is a rectangular array with m
rows and n columns. Elements of the array are called entries of the matrix.

It is often convenient to denote matrix entries by indexed letters: the
first index denotes the number of the row, where the entry is, and the second
one is the number of the column. For example

(1.1) A = (aj,k)
m,
j=1,

n
k=1 =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
...

am,1 am,2 . . . am,n


is a general way to write an m× n matrix.

Very often for a matrix A the entry in row number j and column number
k is denoted by Aj,k or (A)j,k, and sometimes as in example (1.1) above the
same letter but in lowercase is used for the matrix entries.

Given a matrix A, its transpose (or transposed matrix) AT , is defined
by transforming the rows of A into the columns. For example(

1 2 3
4 5 6

)T
=

 1 4
2 5
3 6

 .

So, the columns of AT are the rows of A and vice versa, the rows of AT are
the columns of A.

The formal definition is as follows: (AT )j,k = (A)k,j meaning that the

entry of AT in the row number j and column number k equals the entry of
A in the row number k and row number j.
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The transpose of a matrix has a very nice interpretation in terms of
linear transformations, namely it gives the so-called adjoint transformation.
We will study this in detail later, but for now transposition will be just a
useful formal operation.

One of the first uses of the transpose is that we can write a column
vector x ∈ Fn (recall that F is R or C) as x = (x1, x2, . . . , xn)T . If we put
the column vertically, it will use significantly more space.

Exercises.

1.1. Let x = (1, 2, 3)T , y = (y1, y2, y3)T , z = (4, 2, 1)T . Compute 2x, 3y, x + 2y−
3z.

1.2. Which of the following sets (with natural addition and multiplication by a
scalar) are vector spaces. Justify your answer.

a) The set of all continuous functions on the interval [0, 1];

b) The set of all non-negative functions on the interval [0, 1];

c) The set of all polynomials of degree exactly n;

d) The set of all symmetric n × n matrices, i.e. the set of matrices A =
{aj,k}nj,k=1 such that AT = A.

1.3. True or false:

a) Every vector space contains a zero vector;

b) A vector space can have more than one zero vector;

c) An m× n matrix has m rows and n columns;

d) If f and g are polynomials of degree n, then f + g is also a polynomial of
degree n;

e) If f and g are polynomials of degree at most n, then f + g is also a
polynomial of degree at most n

1.4. Prove that a zero vector 0 of a vector space V is unique.

1.5. What matrix is the zero vector of the space M2×3?

1.6. Prove that the additive inverse, defined in Axiom 4 of a vector space is unique.

1.7. Prove that 0v = 0 for any vector v ∈ V .

1.8. Prove that for any vector v its additive inverse −v is given by (−1)v.
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2. Linear combinations, bases.

Let V be a vector space, and let v1,v2, . . . ,vp ∈ V be a collection of vectors.
A linear combination of vectors v1,v2, . . . ,vp is a sum of form

α1v1 + α2v2 + . . .+ αpvp =

p∑
k=1

αkvk.

Definition 2.1. A system of vectors v1,v2, . . .vn ∈ V is called a basis (for
the vector space V ) if any vector v ∈ V admits a unique representation as
a linear combination

v = α1v1 + α2v2 + . . .+ αnvn =
n∑
k=1

αkvk.

The coefficients α1, α2, . . . , αn are called coordinates of the vector v (in the
basis, or with respect to the basis v1,v2, . . . ,vn).

Another way to say that v1,v2, . . . ,vn is a basis is to say that for any
possible choice of the right side v, the equation x1v1 +x2v2 +. . .+xmvn = v
(with unknowns xk) has a unique solution.

Before discussing any properties of bases2, let us give a few examples,
showing that such objects exist, and that it makes sense to study them.

Example 2.2. In the first example the space V is Fn, where F is either R
or C. Consider vectors

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , e3 =


0
0
1
...
0

 , . . . , en =


0
0
0
...
1

 ,

(the vector ek has all entries 0 except the entry number k, which is 1). The
system of vectors e1, e2, . . . , en is a basis in Fn. Indeed, any vector

v =


x1

x2
...
xn

 ∈ Fn

can be represented as the linear combination

v = x1e1 + x2e2 + . . . xnen =
n∑
k=1

xkek

2the plural for the “basis” is bases, the same as the plural for “base”
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and this representation is unique. The system e1, e2, . . . , en ∈ Fn is called
the standard basis in Fn

Example 2.3. In this example the space is the space Pn of the polynomials
of degree at most n. Consider vectors (polynomials) e0, e1, e2, . . . , en ∈ Pn
defined by

e0 := 1, e1 := t, e2 := t2, e3 := t3, . . . , en := tn.

Clearly, any polynomial p, p(t) = a0 +a1t+a2t
2 + . . .+ant

n admits a unique
representation

p = a0e0 + a1e1 + . . .+ anen.

So the system e0, e1, e2, . . . , en ∈ Pn is a basis in Pn. We will call it the
standard basis in Pn.

Remark 2.4. If a vector space V has a basis v1,v2, . . . ,vn, then any vector
v is uniquely defined by its coefficients in the decomposition v =

∑n
k=1 αkvk. This is a very im-

portant remark, that
will be used through-
out the book. It al-
lows us to translate
any statement about
the standard column
space Fn to a vector
space V with a basis
v1,v2, . . . ,vn

So, if we stack the coefficients αk in a column, we can operate with them
as if they were column vectors, i.e. as with elements of Fn (again here F is
either R or C, but everything also works for an abstract field F).

Namely, if v =
∑n

k=1 αkvk and w =
∑n

k=1 βkvk, then

v + w =

n∑
k=1

αkvk +

n∑
k=1

βkvk =

n∑
k=1

(αk + βk)vk,

i.e. to get the column of coordinates of the sum one just need to add the
columns of coordinates of the summands. Similarly, to get the coordinates
of αv we need simply to multiply the column of coordinates of v by α.

2.1. Generating and linearly independent systems. The definition
of a basis says that any vector admits a unique representation as a linear
combination. This statement is in fact two statements, namely that the rep-
resentation exists and that it is unique. Let us analyze these two statements
separately.

If we only consider the existence we get the following notion

Definition 2.5. A system of vectors v1,v2, . . . ,vp ∈ V is called a generating
system (also a spanning system, or a complete system) in V if any vector
v ∈ V admits representation as a linear combination

v = α1v1 + α2v2 + . . .+ αpvp =

p∑
k=1

αkvk.

The only difference from the definition of a basis is that we do not assume
that the representation above is unique.
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The words generating, spanning and complete here are synonyms. I per-
sonally prefer the term complete, because of my operator theory background.
Generating and spanning are more often used in linear algebra textbooks.

Clearly, any basis is a generating (complete) system. Also, if we have a
basis, say v1,v2, . . . ,vn, and we add to it several vectors, say vn+1, . . . ,vp,
then the new system will be a generating (complete) system. Indeed, we can
represent any vector as a linear combination of the vectors v1,v2, . . . ,vn,
and just ignore the new ones (by putting corresponding coefficients αk = 0).

Now, let us turn our attention to the uniqueness. We do not want to
worry about existence, so let us consider the zero vector 0, which always
admits a representation as a linear combination.

Definition. A linear combination α1v1 +α2v2 + . . .+αpvp is called trivial
if αk = 0 ∀k.

A trivial linear combination is always (for all choices of vectors
v1,v2, . . . ,vp) equal to 0, and that is probably the reason for the name.

Definition. A system of vectors v1,v2, . . . ,vp ∈ V is called linearly inde-
pendent if only the trivial linear combination (

∑p
k=1 αkvk with αk = 0 ∀k)

of vectors v1,v2, . . . ,vp equals 0.

In other words, the system v1,v2, . . . ,vp is linearly independent iff the
equation x1v1 + x2v2 + . . .+ xpvp = 0 (with unknowns xk) has only trivial
solution x1 = x2 = . . . = xp = 0.

If a system is not linearly independent, it is called linearly dependent.
By negating the definition of linear independence, we get the following

Definition. A system of vectors v1,v2, . . . ,vp is called linearly dependent
if 0 can be represented as a nontrivial linear combination, 0 =

∑p
k=1 αkvk.

Non-trivial here means that at least one of the coefficient αk is non-zero.
This can be (and usually is) written as

∑p
k=1 |αk| 6= 0.

So, restating the definition we can say, that a system is linearly depen-
dent if and only if there exist scalars α1, α2, . . . , αp,

∑p
k=1 |αk| 6= 0 such

that
p∑

k=1

αkvk = 0.

An alternative definition (in terms of equations) is that a system v1,
v2, . . . ,vp is linearly dependent iff the equation

x1v1 + x2v2 + . . .+ xpvp = 0

(with unknowns xk) has a non-trivial solution. Non-trivial, once again
means that at least one of xk is different from 0, and it can be written
as
∑p

k=1 |xk| 6= 0.



2. Linear combinations, bases. 9

The following proposition gives an alternative description of linearly de-
pendent systems.

Proposition 2.6. A system of vectors v1,v2, . . . ,vp ∈ V is linearly de-
pendent if and only if one of the vectors vk can be represented as a linear
combination of the other vectors,

(2.1) vk =

p∑
j=1
j 6=k

βjvj .

Proof. Suppose the system v1,v2, . . . ,vp is linearly dependent. Then there
exist scalars αk,

∑p
k=1 |αk| 6= 0 such that

α1v1 + α2v2 + . . .+ αpvp = 0.

Let k be the index such that αk 6= 0. Then, moving all terms except αkvk
to the right side we get

αkvk = −
p∑
j=1
j 6=k

αjvj .

Dividing both sides by αk we get (2.1) with βj = −αj/αk.
On the other hand, if (2.1) holds, 0 can be represented as a non-trivial

linear combination

vk −
p∑
j=1
j 6=k

βjvj = 0.

�

Obviously, any basis is a linearly independent system. Indeed, if a system
v1,v2, . . . ,vn is a basis, 0 admits a unique representation

0 = α1v1 + α2v2 + . . .+ αnvn =

n∑
k=1

αkvk.

Since the trivial linear combination always gives 0, the trivial linear combi-
nation must be the only one giving 0.

So, as we already discussed, if a system is a basis it is a complete (gen-
erating) and linearly independent system. The following proposition shows
that the converse implication is also true.

Proposition 2.7. A system of vectors v1,v2, . . . ,vn ∈ V is a basis if and In many textbooks
a basis is defined
as a complete and
linearly independent
system. By Propo-
sition 2.7 this defini-
tion is equivalent to
ours.

only if it is linearly independent and complete (generating).
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Proof. We already know that a basis is always linearly independent and
complete, so in one direction the proposition is already proved.

Let us prove the other direction. Suppose a system v1,v2, . . . ,vn is lin-
early independent and complete. Take an arbitrary vector v ∈ V . Since the
system v1,v2, . . . ,vn is linearly complete (generating), v can be represented
as

v = α1v1 + α2v2 + . . .+ αnvn =
n∑
k=1

αkvk.

We only need to show that this representation is unique.

Suppose v admits another representation

v =
n∑
k=1

α̃kvk.

Then
n∑
k=1

(αk − α̃k)vk =
n∑
k=1

αkvk −
n∑
k=1

α̃kvk = v − v = 0.

Since the system is linearly independent, αk − α̃k = 0 ∀k, and thus the
representation v = α1v1 + α2v2 + . . .+ αnvn is unique. �

Remark. In many textbooks a basis is defined as a complete and linearly
independent system (by Proposition 2.7 this definition is equivalent to ours).
Although this definition is more common than one presented in this text, I
prefer the latter. It emphasizes the main property of a basis, namely that
any vector admits a unique representation as a linear combination.

Proposition 2.8. Any (finite) generating system contains a basis.

Proof. Suppose v1,v2, . . . ,vp ∈ V is a generating (complete) set. If it is
linearly independent, it is a basis, and we are done.

Suppose it is not linearly independent, i.e. it is linearly dependent. Then
there exists a vector vk which can be represented as a linear combination of
the vectors vj , j 6= k.

Since vk can be represented as a linear combination of vectors vj , j 6= k,
any linear combination of vectors v1,v2, . . . ,vp can be represented as a linear
combination of the same vectors without vk (i.e. the vectors vj , 1 ≤ j ≤ p,
j 6= k). So, if we delete the vector vk, the new system will still be a complete
one.

If the new system is linearly independent, we are done. If not, we repeat
the procedure.

Repeating this procedure finitely many times we arrive to a linearly
independent and complete system, because otherwise we delete all vectors
and end up with an empty set.



2. Linear combinations, bases. 11

So, any finite complete (generating) set contains a complete linearly
independent subset, i.e. a basis. �

Exercises.

2.1. Find a basis in the space of 3× 2 matrices M3×2.

2.2. True or false:

a) Any set containing a zero vector is linearly dependent

b) A basis must contain 0;

c) subsets of linearly dependent sets are linearly dependent;

d) subsets of linearly independent sets are linearly independent;

e) If α1v1 + α2v2 + . . .+ αnvn = 0 then all scalars αk are zero;

2.3. Recall, that a matrix is called symmetric if AT = A. Write down a basis in the
space of symmetric 2 × 2 matrices (there are many possible answers). How many
elements are in the basis?

2.4. Write down a basis for the space of

a) 3× 3 symmetric matrices;

b) n× n symmetric matrices;

c) n× n antisymmetric (AT = −A) matrices;

2.5. Let a system of vectors v1,v2, . . . ,vr be linearly independent but not gen-
erating. Show that it is possible to find a vector vr+1 such that the system
v1,v2, . . . ,vr,vr+1 is linearly independent. Hint: Take for vr+1 any vector that
cannot be represented as a linear combination

∑r
k=1 αkvk and show that the system

v1,v2, . . . ,vr,vr+1 is linearly independent.

2.6. Is it possible that vectors v1,v2,v3 are linearly dependent, but the vectors
w1 = v1 + v2, w2 = v2 + v3 and w3 = v3 + v1 are linearly independent?
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3. Linear Transformations. Matrix–vector multiplication

A transformation T from a set X to a set Y is a rule that for each argumentThe words “trans-
formation”, “trans-
form”, “mapping”,
“map”, “operator”,
“function” all denote
the same object.

(input) x ∈ X assigns a value (output) y = T (x) ∈ Y .

The set X is called the domain of T , and the set Y is called the target
space or codomain of T .

We write T : X → Y to say that T is a transformation with the domain
X and the target space Y .

Definition. Let V , W be vector spaces (over the same field F). A transfor-
mation T : V →W is called linear if

1. T (u + v) = T (u) + T (v) ∀u,v ∈ V ;

2. T (αv) = αT (v) for all v ∈ V and for all scalars α ∈ F.

Properties 1 and 2 together are equivalent to the following one:

T (αu + βv) = αT (u) + βT (v) for all u,v ∈ V and for all scalars α, β.

3.1. Examples. You dealt with linear transformation before, may be with-
out even suspecting it, as the examples below show.

Example. Differentiation: Let V = Pn (the set of polynomials of degree at
most n), W = Pn−1, and let T : Pn → Pn−1 be the differentiation operator,

T (p) := p′ ∀p ∈ Pn.

Since (f + g)′ = f ′ + g′ and (αf)′ = αf ′, this is a linear transformation.

Example. Rotation: in this example V = W = R2 (the usual coordinate
plane), and a transformation Tγ : R2 → R2 takes a vector in R2 and rotates
it counterclockwise by γ radians. Since Tγ rotates the plane as a whole,
it rotates as a whole the parallelogram used to define a sum of two vectors
(parallelogram law). Therefore the property 1 of linear transformation holds.
It is also easy to see that the property 2 is also true.

Example. Reflection: in this example again V = W = R2, and the trans-
formation T : R2 → R2 is the reflection in the first coordinate axis, see the
fig. It can also be shown geometrically, that this transformation is linear,
but we will use another way to show that.

Namely, it is easy to write a formula for T ,

T
(( x1

x2

))
=

(
x1

−x2

)
and from this formula it is easy to check that the transformation is linear.
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Figure 1. Rotation

Example. Let us investigate linear transformations T : R → R. Any such
transformation is given by the formula

T (x) = ax where a = T (1).

Indeed,

T (x) = T (x× 1) = xT (1) = xa = ax.

So, any linear transformation of R is just a multiplication by a constant.

3.2. Linear transformations Fn → Fm. Matrix–column multiplica-
tion. It turns out that a linear transformation T : Fn → Fm also can be
represented as a multiplication, not by a scalar, but by a matrix.

Let us see how. Let T : Fn → Fm be a linear transformation. What
information do we need to compute T (x) for all vectors x ∈ Fn? My claim is
that it is sufficient to know how T acts on the standard basis e1, e2, . . . , en
of Fn. Namely, it is sufficient to know n vectors in Fm (i.e. the vectors of
size m),

a1 = T (e1), a2 := T (e2), . . . , an := T (en).
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Indeed, let

x =


x1

x2
...
xn

 .

Then x = x1e1 + x2e2 + . . .+ xnen =
∑n

k=1 xkek and

T (x) = T (
n∑
k=1

xkek) =
n∑
k=1

T (xkek) =
n∑
k=1

xkT (ek) =
n∑
k=1

xkak.

So, if we join the vectors (columns) a1,a2, . . . ,an together in a matrix
A = [a1,a2, . . . ,an] (ak being the kth column of A, k = 1, 2, . . . , n), this
matrix contains all the information about T .

Let us show how one should define the product of a matrix and a vector
(column) to represent the transformation T as a product, T (x) = Ax. Let

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
...

am,1 am,2 . . . am,n

 .

Recall, that the column number k of A is the vector ak, i.e.

ak =


a1,k

a2,k
...

am,k

 .

Then if we want Ax = T (x) we get

Ax =

n∑
k=1

xkak = x1


a1,1

a2,1
...

am,1

+ x2


a1,2

a2,2
...

am,2

+ . . .+ xn


a1,n

a2,n
...

am,n

 .

So, the matrix–vector multiplication should be performed by the follow-
ing column by coordinate rule:

multiply each column of the matrix by the corresponding coordi-
nate of the vector.

Example.(
1 2 3
3 2 1

) 1
2
3

 = 1

(
1
3

)
+ 2

(
2
2

)
+ 3

(
3
1

)
=

(
14
10

)
.
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The “column by coordinate” rule is very well adapted for parallel com-
puting. It will be also very important in different theoretical constructions
later.

However, when doing computations manually, it is more convenient to
compute the result one entry at a time. This can be expressed as the fol-
lowing row by column rule:

To get the entry number k of the result, one need to multiply row
number k of the matrix by the vector, that is, if Ax = y, then
yk =

∑n
j=1 ak,jxj , k = 1, 2, . . .m;

here xj and yk are coordinates of the vectors x and y respectively, and aj,k
are the entries of the matrix A.

Example.(
1 2 3
4 5 6

) 1
2
3

 =

(
1 · 1 + 2 · 2 + 3 · 3
4 · 1 + 5 · 2 + 6 · 3

)
=

(
14
32

)

3.3. Linear transformations and generating sets. As we discussed
above, linear transformation T (acting from Fn to Fm) is completely defined
by its values on the standard basis in Fn.

The fact that we consider the standard basis is not essential, one can
consider any basis, even any generating (spanning) set. Namely,

A linear transformation T : V → W is completely defined by its
values on a generating set (in particular by its values on a basis).

So, if v1,v2, . . . ,vn is a generating set (in particular, if it is a basis) in V ,
and T and T1 are linear transformations T, T1 : V →W such that

Tvk = T1vk, k = 1, 2, . . . , n

then T = T1.

The proof of this statement is trivial and left as an exercise.

3.4. Conclusions.

• To get the matrix of a linear transformation T : Fn → Fm one needs
to join the vectors ak = Tek (where e1, e2, . . . , en is the standard
basis in Fn) into a matrix: kth column of the matrix is ak, k =
1, 2, . . . , n.

• If the matrix A of the linear transformation T is known, then T (x)
can be found by the matrix–vector multiplication, T (x) = Ax. To
perform matrix–vector multiplication one can use either “column by
coordinate” or “row by column” rule.
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The latter seems more appropriate for manual computations.
The former is well adapted for parallel computers, and will be used
in different theoretical constructions.

For a linear transformation T : Fn → Fm, its matrix is usually denoted
as [T ]. However, very often people do not distinguish between a linear trans-
formation and its matrix, and use the same symbol for both. When it does
not lead to confusion, we will also use the same symbol for a transformation
and its matrix.

Since a linear transformation is essentially a multiplication, the notationThe notation Tv is
often used instead of
T (v).

Tv is often used instead of T (v). We will also use this notation. Note that
the usual order of algebraic operations apply, i.e. Tv + u means T (v) + u,
not T (v + u).

Remark. In the matrix–vector multiplication Ax the number of columnsIn the matrix vector
multiplication using
the “row by column”
rule be sure that you
have the same num-
ber of entries in the
row and in the col-
umn. The entries
in the row and in
the column should
end simultaneously:
if not, the multipli-
cation is not defined.

of the matrix A matrix must coincide with the size of the vector x, i.e. a
vector in Fn can only be multiplied by an m× n matrix.

It makes sense, since an m × n matrix defines a linear transformation
Fn → Fm, so vector x must belong to Fn.

The easiest way to remember this is to remember that if performing
multiplication you run out of some elements faster, then the multiplication
is not defined. For example, if using the “row by column” rule you run
out of row entries, but still have some unused entries in the vector, the
multiplication is not defined. It is also not defined if you run out of vector’s
entries, but still have unused entries in the row.

Remark. One does not have to restrict himself to the case of Fn with
standard basis: everything described in this section works for transformation
between arbitrary vector spaces as long as there is a basis in the domain and
in the target space. Of course, if one changes a basis, the matrix of the linear
transformation will be different. This will be discussed later in Section 8.

Exercises.

3.1. Multiply:

a)

(
1 2 3
4 5 6

) 1
3
2

;

b)

 1 2
0 1
2 0

( 1
3

)
;

c)


1 2 0 0
0 1 2 0
0 0 1 2
0 0 0 1




1
2
3
4

;
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d)


1 2 0
0 1 2
0 0 1
0 0 0




1
2
3
4

.

3.2. Let a linear transformation in R2 be the reflection in the line x1 = x2. Find
its matrix.

3.3. For each linear transformation below find it matrix

a) T : R2 → R3 defined by T (x, y)T = (x+ 2y, 2x− 5y, 7y)T ;

b) T : R4 → R3 defined by T (x1, x2, x3, x4)T = (x1 +x2 +x3 +x4, x2−x4, x1 +
3x2 + 6x4)T ;

c) T : Pn → Pn, Tf(t) = f ′(t) (find the matrix with respect to the standard
basis 1, t, t2, . . . , tn);

d) T : Pn → Pn, Tf(t) = 2f(t) + 3f ′(t) − 4f ′′(t) (again with respect to the
standard basis 1, t, t2, . . . , tn).

3.4. Find 3× 3 matrices representing the transformations of R3 which:

a) project every vector onto x-y plane;

b) reflect every vector through x-y plane;

c) rotate the x-y plane through 30◦, leaving z-axis alone.

3.5. Let A be a linear transformation. If z is the center of the straight interval
[x,y], show that Az is the center of the interval [Ax, Ay]. Hint: What does it
mean that z is the center of the interval [x,y]?

3.6. The set C of complex numbers can be canonically identified with the space R2

by treating each z = x+ iy ∈ C as a column (x, y)T ∈ R2.

a) Treating C as a complex vector space, show that the multiplication by
α = a+ ib ∈ C is a linear transformation in C. What is its matrix?

b) Treating C as the real vector space R2 show that the multiplication by
α = a+ ib defines a linear transformation there. What is its matrix?

c) Define T (x+ iy) = 2x−y+ i(x−3y). Show that this transformation is not
a linear transformation in the complex vectors space C, but if we treat C
as the real vector space R2 then it is a linear transformation there (i.e. that
T is a real linear but not a complex linear transformation).

Find the matrix of the real liner transformation T .

3.7. Show that any linear transformation in C (treated as a complex vector space)
is a multiplication by α ∈ C.

4. Linear transformations as a vector space

What operations can we perform with linear transformations? We can al-
ways multiply a linear transformation for a scalar, i.e. if we have a linear
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transformation T : V →W and a scalar α we can define a new transforma-
tion αT by

(αT )v = α(Tv) ∀v ∈ V.
It is easy to check that αT is also a linear transformation:

(αT )(α1v1 + α2v2) = α(T (α1v1 + α2v2)) by the definition of αT

= α(α1Tv1 + α2Tv2) by the linearity of T

= α1αTv1 + α2αTv2 = α1(αT )v1 + α2(αT )v2

If T1 and T2 are linear transformations with the same domain and target
space (T1 : V → W and T2 : V → W , or in short T1, T2 : V → W ),
then we can add these transformations, i.e. define a new transformation
T = (T1 + T2) : V →W by

(T1 + T2)v = T1v + T2v ∀v ∈ V.
It is easy to check that the transformation T1 + T2 is a linear one, one just
needs to repeat the above reasoning for the linearity of αT .

So, if we fix vector spaces V and W and consider the collection of all
linear transformations from V to W (let us denote it by L(V,W )), we can
define 2 operations on L(V,W ): multiplication by a scalar and addition.
It can be easily shown that these operations satisfy the axioms of a vector
space, defined in Section 1.

This should come as no surprise for the reader, since axioms of a vector
space essentially mean that operation on vectors follow standard rules of
algebra. And the operations on linear transformations are defined as to
satisfy these rules!

As an illustration, let us write down a formal proof of the first distribu-
tive law (axiom 7) of a vector space. We want to show that α(T1 + T2) =
αT1 + αT2. For any v ∈ V

α(T1 + T2)v = α((T1 + T2)v) by the definition of multiplication

= α(T1v + T2v) by the definition of the sum

= αT1v + αT2v by Axiom 7 for W

= (αT1 + αT2)v by the definition of the sum

So indeed α(T1 + T2) = αT1 + αT2.

Remark. Linear operations (addition and multiplication by a scalar) on
linear transformations T : Fn → Fm correspond to the respective operations
on their matrices. Since we know that the set of m× n matrices is a vector
space, this immediately implies that L(Fn,Fm) is a vector space.

We presented the abstract proof above, first of all because it work for
general spaces, for example, for spaces without a basis, where we cannot
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work with coordinates. Secondly, the reasonings similar to the abstract one
presented here, are used in many places, so the reader will benefit from
understanding it.

And as the reader gains some mathematical sophistication, he/she will
see that this abstract reasoning is indeed a very simple one, that can be
performed almost automatically.

5. Composition of linear transformations and matrix
multiplication.

5.1. Definition of the matrix multiplication. Knowing matrix–vector
multiplication, one can easily guess what is the natural way to define the
product AB of two matrices: Let us multiply by A each column of B (matrix-
vector multiplication) and join the resulting column-vectors into a matrix.
Formally,

if b1,b2, . . . ,br are the columns of B, then Ab1, Ab2, . . . , Abr are
the columns of the matrix AB.

Recalling the row by column rule for the matrix–vector multiplication we
get the following row by column rule for the matrices

the entry (AB)j,k (the entry in the row j and column k) of the
product AB is defined by

(AB)j,k = (row #j of A) · (column #k of B)

Formally it can be rewritten as

(AB)j,k =
∑
l

aj,lbl,k,

if aj,k and bj,k are entries of the matrices A and B respectively.

I intentionally did not speak about sizes of the matrices A and B, but
if we recall the row by column rule for the matrix–vector multiplication, we
can see that in order for the multiplication to be defined, the size of a row
of A should be equal to the size of a column of B.

In other words the product AB is defined if and only if A is an m × n
and B is n× r matrix.

5.2. Motivation: composition of linear transformations. One can
ask yourself here: Why are we using such a complicated rule of multiplica-
tion? Why don’t we just multiply matrices entrywise?

And the answer is, that the multiplication, as it is defined above, arises
naturally from the composition of linear transformations.
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Suppose we have two linear transformations, T1 : Fn → Fm and T2 :
Fr → Fn. Define the composition T = T1 ◦ T2 of the transformations T1, T2

as

T (x) = T1(T2(x)) ∀x ∈ Fr.
Note that T2(x) ∈ Fn. Since T1 : Fn → Fm, the expression T1(T2(x)) is well
defined and the result belongs to Fm. So, T : Fr → Fm.We will usually

identify a linear
transformation and
its matrix, but in
the next few
paragraphs we will
distinguish them

It is easy to show that T is a linear transformation (exercise), so it is
defined by an m × r matrix. How one can find this matrix, knowing the
matrices of T1 and T2?

Let A be the matrix of T1 and B be the matrix of T2. As we discussed in
the previous section, the columns of T are vectors T (e1), T (e2), . . . , T (er),
where e1, e2, . . . , er is the standard basis in Fr. For k = 1, 2, . . . , r we have

T (ek) = T1(T2(ek)) = T1(Bek) = T1(bk) = Abk

(operators T2 and T1 are simply the multiplication by B and A respectively).

So, the columns of the matrix of T are Ab1, Ab2, . . . , Abr, and that is
exactly how the matrix AB was defined!

Let us return to identifying again a linear transformation with its matrix.
Since the matrix multiplication agrees with the composition, we can (and
will) write T1T2 instead of T1 ◦ T2 and T1T2x instead of T1(T2(x)).

Note that in the composition T1T2 the transformation T2 is applied first!Note: order of
transformations! The way to remember this is to see that in T1T2x the transformation T2

meets x fist.

Remark. There is another way of checking the dimensions of matrices in a
product, different form the row by column rule: for a composition T1T2 to
be defined it is necessary that T2x belongs to the domain of T1. If T2 acts
from some space, say Fr to Fn, then T1 must act from Fn to some space, say
Fm. So, in order for T1T2 to be defined the matrices of T1 and T2 should be
of sizes m× n and n× r respectively—the same condition as obtained from
the row by column rule.

Example. Let T : R2 → R2 be the reflection in the line x1 = 3x2. It is
a linear transformation, so let us find its matrix. To find the matrix, we
need to compute Te1 and Te2. However, the direct computation of Te1 and
Te2 involves significantly more trigonometry than a sane person is willing
to remember.

An easier way to find the matrix of T is to represent it as a composition
of simple linear transformation. Namely, let γ be the angle between the
x1 axis and the line x1 = 3x2, and let T0 be the reflection in the x1-axis.
Then to get the reflection T we can first rotate the plane by the angle −γ,
moving the line x1 = 3x2 to the x1-axis, then reflect everything in the x1
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axis, and then rotate the plane by γ, taking everything back. Formally it
can be written as

T = RγT0R−γ

(note the order of terms!), where Rγ is the rotation by γ. The matrix of T0

is easy to compute,

T0 =

(
1 0
0 −1

)
,

the rotation matrices are known

Rγ =

(
cos γ − sin γ
sin γ cos γ,

)
,

R−γ =

(
cos(−γ) − sin(−γ)
sin(−γ) cos(−γ),

)
=

(
cos γ sin γ
− sin γ cos γ,

)
To compute sin γ and cos γ take a vector in the line x1 = 3x2, say a vector
(3, 1)T . Then

cos γ =
first coordinate

length
=

3√
32 + 12

=
3√
10

and similarly

sin γ =
second coordinate

length
=

1√
32 + 12

=
1√
10

Gathering everything together we get

T = RγT0R−γ =
1√
10

(
3 −1
1 3

)(
1 0
0 −1

)
1√
10

(
3 1
−1 3

)
=

1

10

(
3 −1
1 3

)(
1 0
0 −1

)(
3 1
−1 3

)
It remains only to perform matrix multiplication here to get the final result.

�

5.3. Properties of matrix multiplication. Matrix multiplication enjoys
a lot of properties, familiar to us from high school algebra:

1. Associativity: A(BC) = (AB)C, provided that either left or right
side is well defined; we therefore can (and will) simply write ABC
in this case.

2. Distributivity: A(B + C) = AB + AC, (A + B)C = AC + BC,
provided either left or right side of each equation is well defined.

3. One can take scalar multiplies out: A(αB) = (αA)B = α(AB) =
αAB.
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These properties are easy to prove. One should prove the corresponding
properties for linear transformations, and they almost trivially follow from
the definitions. The properties of linear transformations then imply the
properties for the matrix multiplication.

The new twist here is that the commutativity fails:

matrix multiplication is non-commutative, i.e. generally for
matrices AB 6= BA.

One can see easily it would be unreasonable to expect the commutativity of
matrix multiplication. Indeed, let A and B be matrices of sizes m× n and
n× r respectively. Then the product AB is well defined, but if m 6= r, BA
is not defined.

Even when both products are well defined, for example, when A and B
are n×n (square) matrices, the multiplication is still non-commutative. If we
just pick the matrices A and B at random, the chances are that AB 6= BA:
we have to be very lucky to get AB = BA.

5.4. Transposed matrices and multiplication. Given a matrix A, its
transpose (or transposed matrix) AT is defined by transforming the rows of
A into the columns. For example(

1 2 3
4 5 6

)T
=

 1 4
2 5
3 6

 .

So, the columns of AT are the rows of A and vice versa, the rows of AT are
the columns of A.

The formal definition is as follows: (AT )j,k = (A)k,j meaning that the

entry of AT in the row number j and column number k equals the entry of
A in the row number k and row number j.

The transpose of a matrix has a very nice interpretation in terms of
linear transformations, namely it gives the so-called adjoint transformation.
We will study this in detail later, but for now transposition will be just a
useful formal operation.

One of the first uses of the transpose is that we can write a column
vector x ∈ Fn as x = (x1, x2, . . . , xn)T . If we put the column vertically, it
will use significantly more space.

A simple analysis of the row by columns rule shows that

(AB)T = BTAT ,

i.e. when you take the transpose of the product, you change the order of the
terms.
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5.5. Trace and matrix multiplication. For a square (n × n) matrix
A = (aj,k) its trace (denoted by traceA) is the sum of the diagonal entries

traceA =

n∑
k=1

ak,k.

Theorem 5.1. Let A and B be matrices of size m×n and n×m respectively
(so the both products AB and BA are well defined). Then

trace(AB) = trace(BA)

We leave the proof of this theorem as an exercise, see Problem 5.6 below.
There are essentially two ways of proving this theorem. One is to compute
the diagonal entries of AB and of BA and compare their sums. This method
requires some proficiency in manipulating sums in

∑
notation.

If you are not comfortable with algebraic manipulations, there is another
way. We can consider two linear transformations, T and T1, acting from
Mn×m to F = F1 defined by

T (X) = trace(AX), T1(X) = trace(XA)

To prove the theorem it is sufficient to show that T = T1; the equality for
X = B gives the theorem.

Since a linear transformation is completely defined by its values on a
generating system, we need just to check the equality on some simple ma-
trices, for example on matrices Xj,k, which has all entries 0 except the entry
1 in the intersection of jth column and kth row.

Exercises.

5.1. Let

A =

(
1 2
3 1

)
, B =

(
1 0 2
3 1 −2

)
, C =

(
1 −2 3
−2 1 −1

)
, D =

 −2
2
1


a) Mark all the products that are defined, and give the dimensions of the

result: AB, BA, ABC, ABD, BC, BCT , BTC, DC, DTCT .

b) Compute AB, A(3B + C), BTA, A(BD), (AB)D.

5.2. Let Tγ be the matrix of rotation by γ in R2. Check by matrix multiplication
that TγT−γ = T−γTγ = I

5.3. Multiply two rotation matrices Tα and Tβ (it is a rare case when the multi-
plication is commutative, i.e. TαTβ = TβTα, so the order is not essential). Deduce
formulas for sin(α+ β) and cos(α+ β) from here.

5.4. Find the matrix of the orthogonal projection in R2 onto the line x1 = −2x2.
Hint: What is the matrix of the projection onto the coordinate axis x1?

5.5. Find linear transformations A,B : R2 → R2 such that AB = 0 but BA 6= 0.
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5.6. Prove Theorem 5.1, i.e. prove that trace(AB) = trace(BA).

5.7. Construct a non-zero matrix A such that A2 = 0.

5.8. Find the matrix of the reflection through the line y = −2x/3. Perform all the
multiplications.

6. Invertible transformations and matrices. Isomorphisms

6.1. Identity transformation and identity matrix. Among all linear
transformations, there is a special one, the identity transformation (opera-
tor) I, Ix = x, ∀x.

To be precise, there are infinitely many identity transformations: for
any vector space V , there is the identity transformation I = I

V
: V → V ,

I
V

x = x, ∀x ∈ V . However, when it is does not lead to the confusion
we will use the same symbol I for all identity operators (transformations).
We will use the notation I

V
only we want to emphasize in what space the

transformation is acting.

Clearly, if I : Fn → Fn is the identity transformation in Fn, its matrixOften, the symbol E
is used in Linear Al-
gebra textbooks for
the identity matrix.
I prefer I, since it is
used in operator the-
ory.

is the n× n matrix

I = In =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


(1 on the main diagonal and 0 everywhere else). When we want to emphasize
the size of the matrix, we use the notation In; otherwise we just use I.

Clearly, for an arbitrary linear transformation A, the equalities

AI = A, IA = A

hold (whenever the product is defined).

6.2. Invertible transformations.

Definition. Let A : V → W be a linear transformation. We say that
the transformation A is left invertible if there exist a linear transformation
B : W → V such that

BA = I (I = I
V

here).

The transformation A is called right invertible if there exists a linear trans-
formation C : W → V such that

AC = I (here I = I
W

).
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The transformations B and C are called left and right inverses of A. Note,
that we did not assume the uniqueness of B or C here, and generally left
and right inverses are not unique.

Definition. A linear transformation A : V → W is called invertible if it is
both right and left invertible.

Theorem 6.1. If a linear transformation A : V →W is invertible, then its
left and right inverses B and C are unique and coincide.

Corollary. A transformation A : V → W is invertible if and only if there Very often this prop-
erty is used as the
definition of an in-
vertible transforma-
tion

exists a unique linear transformation (denoted A−1), A−1 : W → V such
that

A−1A = I
V
, AA−1 = I

W
.

The transformation A−1 is called the inverse of A.

Proof of Theorem 6.1. Let BA = I and AC = I. Then

BAC = B(AC) = BI = B.

On the other hand

BAC = (BA)C = IC = C,

and therefore B = C.

Suppose for some transformation B1 we have B1A = I. Repeating the
above reasoning with B1 instead of B we get B1 = C. Therefore the left
inverse B is unique. The uniqueness of C is proved similarly. �

Definition. A matrix is called invertible (resp. left invertible, right invert-
ible) if the corresponding linear transformation is invertible (resp. left in-
vertible, right invertible).

Theorem 6.1 asserts that a matrix A is invertible if there exists a unique
matrix A−1 such that A−1A = I, AA−1 = I. The matrix A−1 is called
(surprise) the inverse of A.

Examples.

1. The identity transformation (matrix) is invertible, I−1 = I;

2. The rotation Rγ

Rγ =

(
cos γ − sin γ
sin γ cos γ

)
is invertible, and the inverse is given by (Rγ)−1 = R−γ . This equality
is clear from the geometric description of Rγ , and it also can be
checked by the matrix multiplication;
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3. The column (1, 1)T is left invertible but not right invertible. One of
the possible left inverses in the row (1/2, 1/2).

To show that this matrix is not right invertible, we just notice
that there are more than one left inverse. Exercise: describe all
left inverses of this matrix.

4. The row (1, 1) is right invertible, but not left invertible. The column
(1/2, 1/2)T is a possible right inverse.

Remark 6.2. An invertible matrix must be square (n × n). Moreover, if
a square matrix A has either left or right inverse, it is invertible. So, it isAn invertible matrix

must be square (to
be proved later)

sufficient to check only one of the identities AA−1 = I, A−1A = I.

This fact will be proved later. Until we prove this fact, we will not use
it. I presented it here only to stop students from trying wrong directions.

6.2.1. Properties of the inverse transformation.

Theorem 6.3 (Inverse of the product). If linear transformations A and B
are invertible (and such that the product AB is defined), then the productInverse of a product:

(AB)−1 = B−1A−1.
Note the change of
order

AB is invertible and
(AB)−1 = B−1A−1

(note the change of the order!)

Proof. Direct computation shows:

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and similarly

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

�

Remark 6.4. The invertibility of the product AB does not imply the in-
vertibility of the factors A and B (can you think of an example?). However,
if one of the factors (either A or B) and the product AB are invertible, then
the second factor is also invertible.

We leave the proof of this fact as an exercise.

Theorem 6.5 (Inverse of AT ). If a matrix A is invertible, then AT is also
invertible and

(AT )−1 = (A−1)T

Proof. Using (AB)T = BTAT we get

(A−1)TAT = (AA−1)T = IT = I,

and similarly
AT (A−1)T = (A−1A)T = IT = I.

�
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And finally, if A is invertible, then A−1 is also invertible, (A−1)−1 = A.

So, let us summarize the main properties of the inverse:

1. If A is invertible, then A−1 is also invertible, (A−1)−1 = A;

2. If A and B are invertible and the product AB is defined, then AB
is invertible and (AB)−1 = B−1A−1.

3. If A is invertible, then AT is also invertible and (AT )−1 = (A−1)T .

6.3. Isomorphism. Isomorphic spaces. An invertible linear transfor-
mation A : V →W is called an isomorphism. We did not introduce anything
new here, it is just another name for the object we already studied.

Two vector spaces V and W are called isomorphic (denoted V ∼= W ) if
there is an isomorphism A : V →W .

Isomorphic spaces can be considered as different representation of the
same space, meaning that all properties and constructions involving vector
space operations are preserved under isomorphism.

The theorem below illustrates this statement.

Theorem 6.6. Let A : V → W be an isomorphism, and let v1,v2, . . . ,vn
be a basis in V . Then the system Av1, Av2, . . . , Avn is a basis in W .

We leave the proof of the theorem as an exercise.

Remark. In the above theorem one can replace “basis” by “linearly inde-
pendent”, or “generating”, or “linearly dependent”—all these properties are
preserved under isomorphisms.

Remark. If A is an isomorphism, then so is A−1. Therefore in the above
theorem we can state that v1,v2, . . . ,vn is a basis if and only if Av1, Av2,
. . . , Avn is a basis.

The converse to the Theorem 6.6 is also true

Theorem 6.7. Let A : V → W be a linear map,and let v1,v2, . . . ,vn
and w1,w2, . . . ,wn be bases in V and W respectively. If Avk = wk, k =
1, 2, . . . , n, then A is an isomorphism.

Proof. Define the inverse transformation A−1 by A−1wk = vk, k = 1,
2, . . . , n (as we know, a linear transformation is defined by its values on a
basis). �

Examples.

1. Let A : Fn+1 → PF
n (PF

n is the set of polynomials
∑n

k=0 akt
k, αk ∈ F

of degree at most n) is defined by

Ae1 = 1, Ae2 = t, . . . , Aen = tn−1, Aen+1 = tn
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By Theorem 6.7 A is an isomorphism, so PF
n
∼= Fn+1.

2. Let V be a vector space (over F) with a basis v1,v2, . . . ,vn. Define
transformation A : Fn → V byAny real vector

space with a basis
is isomorphic to Rn
(for some n). Sim-
ilarly, any complex
vector space with a
basis is isomorphic
to Cn.

Aek = vk, k = 1, 2, . . . , n,

where e1, e2, . . . , en is the standard basis in Fn. Again by Theorem
6.7 A is an isomorphism, so V ∼= Fn.

3. The space MF
2×3 of 2× 3 matrices with entries in F is isomorphic to

R6;

4. More generally, MF
m×n ∼= Fm·n

6.4. Invertibility and equations.

Theorem 6.8. Let A : X → Y be a linear transformation. Then A isDoesn’t this remind
you of a basis? invertible if and only if for any right side b ∈ Y the equation

Ax = b

has a unique solution x ∈ X.

Proof. Suppose A is invertible. Then x = A−1b solves the equation Ax =
b. To show that the solution is unique, suppose that for some other vector
x1 ∈ X

Ax1 = b

Multiplying this identity by A−1 from the left we get

A−1Ax1 = A−1b,

and therefore x1 = A−1b = x. Note that both identities, AA−1 = I and
A−1A = I were used here.

Let us now suppose that the equation Ax = b has a unique solution x
for any b ∈ Y . Let us use symbol y instead of b. We know that given y ∈ Y
the equation

Ax = y

has a unique solution x ∈ X. Let us call this solution B(y).

Note that B(y) is defined for all y ∈ Y , so we defined a transformation
B : Y → X.

Let us check that B is a linear transformation. We need to show that
B(αy1+βy2) = αB(y1)+βB(y2). Let xk := B(yk), k = 1, 2, i.e. Axk = yk,
k = 1, 2. Then

A(αx1 + βx2) = αAx1 + βAx2 = αy1 + βy2,

which means

B(αy1 + βy2) = αB(y1) + βB(y2).



6. Invertible transformations and matrices. Isomorphisms 29

And finally, let us show that B is indeed the inverse of A. Take x ∈ X
and let y = Ax, so by the definition of B we have x = By. Then for all
x ∈ X

BAx = By = x,

so BA = I. Similarly, for arbitrary y ∈ Y let x = By, so y = Ax. Then for
all y ∈ Y

ABy = Ax = y

so AB = I. �

Recalling the definition of a basis we get the following corollary of The-
orems 6.6 and 6.7.

Corollary 6.9. An m × n matrix is invertible if and only if its columns
form a basis in Fm.

Exercises.

6.1. Prove, that if A : V → W is an isomorphism (i.e. an invertible linear trans-
formation) and v1,v2, . . . ,vn is a basis in V , then Av1, Av2, . . . , Avn is a basis in
W .

6.2. Find all right inverses to the 1 × 2 matrix (row) A = (1, 1). Conclude from
here that the row A is not left invertible.

6.3. Find all left inverses of the column (1, 2, 3)T

6.4. Is the column (1, 2, 3)T right invertible? Justify

6.5. Find two matrices A and B that AB is invertible, but A and B are not. Hint:
square matrices A and B would not work. Remark: It is easy to construct such
A and B in the case when AB is a 1× 1 matrix (a scalar). But can you get 2× 2
matrix AB? 3× 3? n× n?

6.6. Suppose the product AB is invertible. Show that A is right invertible and B
is left invertible. Hint: you can just write formulas for right and left inverses.

6.7. Let A and AB be invertible (assuming that the product AB is well defined).
Prove that B is invertible.

6.8. Let A be n× n matrix. Prove that if A2 = 0 then A is not invertible

6.9. Suppose AB = 0 for some non-zero matrix B. Can A be invertible? Justify.

6.10. Write matrices of the linear transformations T1 and T2 in F5, defined as
follows: T1 interchanges the coordinates x2 and x4 of the vector x, and T2 just
adds to the coordinate x2 a times the coordinate x4, and does not change other
coordinates, i.e.

T1


x1

x2

x3

x4

x5

 =


x1

x4

x3

x2

x5

 , T2


x1

x2

x3

x4

x5

 =


x1

x2 + ax4

x3

x4

x5

 ;
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here a is some fixed number.

Show that T1 and T2 are invertible transformations, and write the matrices of
the inverses. Hint: it may be simpler, if you first describe the inverse transforma-
tion, and then find its matrix, rather than trying to guess (or compute) the inverses
of the matrices T1, T2.

6.11. Find the matrix of the rotation in R3 through the angle α around the vector
(1, 2, 3)T . We assume that the rotation is counterclockwise if we sit at the tip of
the vector and looking at the origin.

You can present the answer as a product of several matrices: you don’t have
to perform the multiplication.

6.12. Give examples of matrices (say 2× 2) such that:

a) A+B is not invertible although both A and B are invertible;

b) A+B is invertible although both A and B are not invertible;

c) All of A, B and A+B are invertible

6.13. Let A be an invertible symmetric (AT = A) matrix. Is the inverse of A
symmetric? Justify.

7. Subspaces.

A subspace of a vector space V is a non-empty subset V0 ⊂ V of V which is
closed under the vector addition and multiplication by scalars, i.e.

1. If v ∈ V0 then αv ∈ V0 for all scalars α;

2. For any u,v ∈ V0 the sum u + v ∈ V0;

Again, the conditions 1 and 2 can be replaced by the following one:

αu + βv ∈ V0 for all u,v ∈ V0, and for all scalars α, β.

Note, that a subspace V0 ⊂ V with the operations (vector addition
and multiplication by scalars) inherited from V , is a vector space. Indeed,
because all operations are inherited from the vector space V they must
satisfy all eight axioms of the vector space. The only thing that could
possibly go wrong, is that the result of some operation does not belong to
V0. But the definition of a subspace prohibits this!

Now let us consider some examples:

1. Trivial subspaces of a space V , namely V itself and {0} (the sub-
space consisting only of zero vector). Note, that the empty set ∅ is
not a vector space, since it does not contain a zero vector, so it is
not a subspace.

With each linear transformation A : V →W we can associate the following
two subspaces:
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2. The null space, or kernel of A, which is denoted as NullA or KerA
and consists of all vectors v ∈ V such that Av = 0

3. The range RanA is defined as the set of all vectors w ∈ W which
can be represented as w = Av for some v ∈ V .

If A is a matrix, i.e. A : Fm → Fn, then recalling column by coordinate rule
of the matrix–vector multiplication, we can see that any vector w ∈ RanA
can be represented as a linear combination of columns of the matrix A. That
explains why the term column space (and notation ColA) is often used for
the range of the matrix. So, for a matrix A, the notation ColA is often used
instead of RanA.

And now the last example.

4. Given a system of vectors v1,v2, . . . ,vr ∈ V its linear span (some-
times called simply span) L{v1,v2, . . . ,vr} is the collection of all
vectors v ∈ V that can be represented as a linear combination
v = α1v1 + α2v2 + . . . + αrvr of vectors v1,v2, . . . ,vr. The no-
tation span{v1,v2, . . . ,vr} is also used instead of L{v1,v2, . . . ,vr}

It is easy to check that in all of these examples we indeed have subspaces.
We leave this an an exercise for the reader. Some of the statements will be
proved later in the text.

Exercises.

7.1. Let X and Y be subspaces of a vector space V . Prove that X∩Y is a subspace
of V .

7.2. Let V be a vector space. For X,Y ⊂ V the sum X + Y is the collection of all
vectors v which can be represented as v = x + y, x ∈ X, y ∈ Y . Show that if X
and Y are subspaces of V , then X + Y is also a subspace.

7.3. Let X be a subspace of a vector space V , and let v ∈ V , v /∈ X. Prove that
if x ∈ X then x + v /∈ X.

7.4. Let X and Y be subspaces of a vector space V . Using the previous exercise,
show that X ∪ Y is a subspace if and only if X ⊂ Y or Y ⊂ X.

7.5. What is the smallest subspace of the space of 4 × 4 matrices which contains
all upper triangular matrices (aj,k = 0 for all j > k), and all symmetric matrices
(A = AT )? What is the largest subspace contained in both of those subspaces?

8. Application to computer graphics.

In this section we give some ideas of how linear algebra is used in computer
graphics. We will not go into the details, but just explain some ideas.
In particular we explain why manipulation with 3 dimensional images are
reduced to multiplications of 4× 4 matrices.
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8.1. 2-dimensional manipulation. The x-y plane (more precisely, a rec-
tangle there) is a good model of a computer monitor. Any object on a
monitor is represented as a collection of pixels, each pixel is assigned a spe-
cific color. Position of each pixel is determined by the column and row,
which play role of x and y coordinates on the plane. So a rectangle on a
plane with x-y coordinates is a good model for a computer screen: and a
graphical object is just a collection of points.

Remark. There are two types of graphical objects: bitmap objects, where
every pixel of an object is described, and vector object, where we describe
only critical points, and graphic engine connects them to reconstruct the
object. A (digital) photo is a good example of a bitmap object: every pixel
of it is described. Bitmap object can contain a lot of points, so manipulations
with bitmaps require a lot of computing power. Anybody who has edited
digital photos in a bitmap manipulation program, like Adobe Photoshop,
knows that one needs quite a powerful computer, and even with modern
and powerful computers manipulations can take some time.

That is the reason that most of the objects, appearing on a computer
screen are vector ones: the computer only needs to memorize critical points.
For example, to describe a polygon, one needs only to give the coordinates
of its vertices, and which vertex is connected with which. Of course, not
all objects on a computer screen can be represented as polygons, some, like
letters, have curved smooth boundaries. But there are standard methods
allowing one to draw smooth curves through a collection of points, for exam-
ple Bezier splines, used in PostScript and Adobe PDF (and in many other
formats).

Anyhow, this is the subject of a completely different book, and we will
not discuss it here. For us a graphical object will be a collection of points
(either wireframe model, or bitmap) and we would like to show how one can
perform some manipulations with such objects.

The simplest transformation is a translation (shift), where each point
(vector) v is translated by a, i.e. the vector v is replaced by v + a (nota-
tion v 7→ v + a is used for this). Vector addition is very well adapted to
computers, so the translation is easy to implement.

Note, that the translation is not a linear transformation (if a 6= 0): while
it preserves the straight lines, it does not preserve 0.

All other transformation used in computer graphics are linear. The first
one that comes to mind is rotation. The rotation by γ around the origin 0
is given by the multiplication by the rotation matrix Rγ we discussed above,

Rγ =

(
cos γ − sin γ
sin γ cos γ

)
.
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If we want to rotate around a point a, we first need to translate the picture
by −a, moving the point a to 0, then rotate around 0 (multiply by Rγ) and
then translate everything back by a.

Another very useful transformation is scaling, given by a matrix(
a 0
0 b

)
,

a, b ≥ 0. If a = b it is uniform scaling which enlarges (reduces) an object,
preserving its shape. If a 6= b then x and y coordinates scale differently; the
object becomes “taller” or “wider”.

Another often used transformation is reflection: for example the matrix(
1 0
0 −1

)
,

defines the reflection through x-axis.

We will show later in the book, that any linear transformation in R2 can
be represented either as a composition of scaling rotations and reflections.
However it is sometimes convenient to consider some different transforma-
tions, like the shear transformation, given by the matrix(

1 tanϕ
0 1

)
.

This transformation makes all objects slanted, the horizontal lines remain
horizontal, but vertical lines go to the slanted lines at the angle ϕ to the
horizontal ones.

8.2. 3-dimensional graphics. Three-dimensional graphics is more com-
plicated. First we need to be able to manipulate 3-dimensional objects, and
then we need to represent it on 2-dimensional plane (monitor).

The manipulations with 3-dimensional objects is pretty straightforward,
we have the same basic transformations: translation, reflection through a
plane, scaling, rotation. Matrices of these transformations are very similar
to the matrices of their 2× 2 counterparts. For example the matrices 1 0 0

0 1 0
0 0 −1

 ,

 a 0 0
0 b 0
0 0 c

 ,

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1


represent respectively reflection through x-y plane, scaling, and rotation
around z-axis.

Note, that the above rotation is essentially 2-dimensional transforma-
tion, it does not change z coordinate. Similarly, one can write matrices for
the other 2 elementary rotations around x and around y axes. It will be
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x

y

z

F

Figure 2. Perspective projection onto x-y plane: F is the center (focal
point) of the projection

shown later that a rotation around an arbitrary axis can be represented as
a composition of elementary rotations.

So, we know how to manipulate 3-dimensional objects. Let us now
discuss how to represent such objects on a 2-dimensional plane. The simplest
way is to project it to a plane, say to the x-y plane. To perform such
projection one just needs to replace z coordinate by 0, the matrix of this
projection is  1 0 0

0 1 0
0 0 0

 .

Such method is often used in technical illustrations. Rotating an object
and projecting it is equivalent to looking at it from different points. However,
this method does not give a very realistic picture, because it does not take
into account the perspective, the fact that the objects that are further away
look smaller.

To get a more realistic picture one needs to use the so-called perspective
projection. To define a perspective projection one needs to pick a point (the
center of projection or the focal point) and a plane to project onto. Then
each point in R3 is projected into a point on the plane such that the point,
its image and the center of the projection lie on the same line, see Fig. 2.

This is exactly how a camera works, and it is a reasonable first approx-
imation of how our eyes work.
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x

x∗

z

d−z

(x, y, z)

(x∗, y∗, 0)

x

z

y

(0, 0, d)
a) b)

Figure 3. Finding coordinates x∗, y∗ of the perspective projection of
the point (x, y, z)T .

Let us get a formula for the projection. Assume that the focal point is
(0, 0, d)T and that we are projecting onto x-y plane, see Fig. 3 a). Consider
a point v = (x, y, z)T , and let v∗ = (x∗, y∗, 0)T be its projection. Analyzing
similar triangles see Fig. 3 b), we get that

x∗

d
=

x

d− z ,
so

x∗ =
xd

d− z =
x

1− z/d,

and similarly

y∗ =
y

1− z/d.

Note, that this formula also works if z > d and if z < 0: you can draw the
corresponding similar triangles to check it.

Thus the perspective projection maps a point (x, y, z)T to the point(
x

1−z/d ,
y

1−z/d , 0
)T

.

This transformation is definitely not linear (because of z in the denomi-
nator). However it is still possible to represent it as a linear transformation.
To do this let us introduce the so-called homogeneous coordinates.

In the homogeneous coordinates, every point in R3 is represented by 4
coordinates, the last, 4th coordinate playing role of the scaling coefficient.
Thus, to get usual 3-dimensional coordinates of the vector v = (x, y, z)T

from its homogeneous coordinates (x1, x2, x3, x4)T one needs to divide all
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entries by the last coordinate x4 and take the first 3 coordinates 3 (if x4 = 0
this recipe does not work, so we assume that the case x4 = 0 corresponds
to the point at infinity).

Thus in homogeneous coordinates the vector v∗ can be represented as
(x, y, 0, 1−z/d)T , so in homogeneous coordinates the perspective projection
is a linear transformation:

x
y
0

1− z/d

 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 −1/d 1




x
y
z
1

 .

Note that in the homogeneous coordinates the translation is also a linear
transformation: 

x+ a1

y + a2

z + a3

1

 =


1 0 0 a1

0 1 0 a2

0 0 1 a3

0 0 0 1




x
y
z
1

 .

But what happen if the center of projection is not a point (0, 0, d)T but
some arbitrary point (d1, d2, d3)T . Then we first need to apply the transla-
tion by −(d1, d2, 0)T to move the center to (0, 0, d3)T while preserving the
x-y plane, apply the projection, and then move everything back translating
it by (d1, d2, 0)T . Similarly, if the plane we project to is not x-y plane, we
move it to the x-y plane by using rotations and translations, and so on.

All these operations are just multiplications by 4 × 4 matrices. That
explains why modern graphic cards have 4× 4 matrix operations embedded
in the processor.

Of course, here we only touched the mathematics behind 3-dimensional
graphics, there is much more. For example, how to determine which parts of
the object are visible and which are hidden, how to make realistic lighting,
shades, etc.

Exercises.

8.1. What vector in R3 has homogeneous coordinates (10, 20, 30, 5)?

3If we multiply homogeneous coordinates of a point in R2 by a non-zero scalar, we do not

change the point. In other words, in homogeneous coordinates a point in R3 is represented by a
line through 0 in R4.
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8.2. Show that a rotation through γ can be represented as a composition of two
shear-and-scale transformations

T1 =

(
1 0

sin γ cos γ

)
, T2 =

(
sec γ − tan γ

0 1

)
.

In what order the transformations should be taken?

8.3. Multiplication of a 2-vector by an arbitrary 2 × 2 matrix usually requires 4
multiplications.

Suppose a 2× 1000 matrix D contains coordinates of 1000 points in R2. How
many multiplications are required to transform these points using 2 arbitrary 2× 2
matrices A and B. Compare 2 possibilities, A(BD) and (AB)D.

8.4. Write 4×4 matrix performing perspective projection to x-y plane with center
(d1, d2, d3)T .

8.5. A transformation T in R3 is a rotation about the line y = x+3 in the x-y plane
through an angle γ. Write a 4× 4 matrix corresponding to this transformation.

You can leave the result as a product of matrices.





Chapter 2

Systems of linear
equations

1. Different faces of linear systems.

There exist several points of view on what a system of linear equations, or in
short a linear system is. The first, näıve one is, that it is simply a collection
of m linear equations with n unknowns x1, x2, . . . , xn,

a1,1x1 + a1,2x2 + . . . + a1,nxn = b1
a2,1x1 + a2,2x2 + . . . + a2,nxn = b2
. . .

am,1x1 + am,2x2 + . . . + am,nxn = bm .

To solve the system is to find all n-tuples of numbers x1, x2, . . . , xn which
satisfy all m equations simultaneously.

If we denote x := (x1, x2, . . . , xn)T ∈ Fn, b = (b1, b2, . . . , bm)T ∈ Fm,
and

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
...

am,1 am,2 . . . am,n

 ,

then the above linear system can be written in the matrix form (as a matrix-
vector equation)

Ax = b.

To solve the above equation is to find all vectors x ∈ Fn satisfying Ax = b.

39



40 2. Systems of linear equations

And finally, recalling the “column by coordinate” rule of the matrix-
vector multiplication, we can write the system as a vector equation

x1a1 + x2a2 + . . .+ xnan = b,

where ak is the kth column of the matrix A, ak = (a1,k, a2,k, . . . , am,k)
T ,

k = 1, 2, . . . , n.

Note, these three examples are essentially just different representations
of the same mathematical object.

Before explaining how to solve a linear system, let us notice that it does
not matter what we call the unknowns, xk, yk or something else. So, all
the information necessary to solve the system is contained in the matrix A,
which is called the coefficient matrix of the system and in the vector (right
side) b. Hence, all the information we need is contained in the following
matrix 

a1,1 a1,2 . . . a1,n b1
a2,1 a2,2 . . . a2,n b2

...
...

...
...

am,1 am,2 . . . am,n bm


which is obtained by attaching the column b to the matrix A. This matrix is
called the augmented matrix of the system. We will usually put the vertical
line separating A and b to distinguish between the augmented matrix and
the coefficient matrix.

2. Solution of a linear system. Echelon and reduced echelon
forms

Linear system are solved by the Gauss–Jordan elimination (which is some-
times called row reduction). By performing operations on rows of the aug-
mented matrix of the system (i.e. on the equations), we reduce it to a simple
form, the so-called echelon form. When the system is in the echelon form,
one can easily write the solution.

2.1. Row operations. There are three types of row operations we use:

1. Row exchange: interchange two rows of the matrix;

2. Scaling: multiply a row by a non-zero scalar a;

3. Row replacement: replace a row # k by its sum with a constant
multiple of a row # j; all other rows remain intact;

It is clear that the operations 1 and 2 do not change the set of solutions
of the system; they essentially do not change the system.
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As for the operation 3, one can easily see that it does not lose solutions.
Namely, let a “new” system be obtained from an “old” one by a row oper-
ation of type 3. Then any solution of the “old” system is a solution of the
“new” one.

To see that we do not gain anything extra, i.e. that any solution of the
“new” system is also a solution of the “old” one, we just notice that row
operation of type 3 are reversible, i.e. the “old’ system also can be obtained
from the “new” one by applying a row operation of type 3 (can you say
which one?)

2.1.1. Row operations and multiplication by elementary matrices. There is
another, more “advanced” explanation why the above row operations are
legal. Namely, every row operation is equivalent to the multiplication of the
matrix from the left by one of the special elementary matrices.

Namely, the multiplication by the matrix

j k

j

k



1
...

...
. . .

...
... 0

1
...

...
. . . . . . . . . 0 . . . . . . . . . 1

... 1
...

...
. . .

...
... 1

...
. . . . . . . . . 1 . . . . . . . . . 0

1

0 . . .

1


just interchanges the rows number j and number k. Multiplication by the
matrix

k



1
...

. . .
... 0

1 0
. . . . . . 0 a 0

0 1

0 . . . 0
0 1


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multiplies the row number k by a. Finally, multiplication by the matrix

j

k



1
...

...
. . .

...
... 0

. . . . . . 1 . . . 0
...

. . .
...

. . . . . . a . . . 1
. . .0

1


adds to the row #k row #j multiplied by a, and leaves all other rows intact.A way to describe

(or to remember)
these elementary
matrices: they are
obtained from I by
applying the
corresponding row
operation to it

To see, that the multiplication by these matrices works as advertised,
one can just see how the multiplications act on vectors (columns).

Note that all these matrices are invertible (compare with reversibility of
row operations). The inverse of the first matrix is the matrix itself. To get
the inverse of the second one, one just replaces a by 1/a. And finally, the
inverse of the third matrix is obtained by replacing a by −a. To see that
the inverses are indeed obtained this way, one again can simply check how
they act on columns.

So, performing a row operation on the augmented matrix of the system
Ax = b is equivalent to the multiplication of the system (from the left) by
a special invertible matrix E. Left multiplying the equality Ax = b by E
we get that any solution of the equation

Ax = b

is also a solution of

EAx = Eb.

Multiplying this equation (from the left) by E−1 we get that any of its
solutions is a solution of the equation

E−1EAx = E−1Eb,

which is the original equation Ax = b. So, a row operation does not change
the solution set of a system.

2.2. Row reduction. The main step of row reduction consists of three
sub-steps:

1. Find the leftmost non-zero column of the matrix;

2. Make sure, by applying row operations of type 1 (row exchange), if
necessary, that the first (the upper) entry of this column is non-zero.
This entry will be called the pivot entry or simply the pivot ;
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3. “Kill” (i.e. make them 0) all non-zero entries below the pivot by
adding (subtracting) an appropriate multiple of the first row from
the rows number 2, 3, . . . ,m.

We apply the main step to a matrix, then we leave the first row alone and
apply the main step to rows 2, . . . ,m, then to rows 3, . . . ,m, etc.

The point to remember is that after we subtract a multiple of a row from
all rows below it (step 3), we leave it alone and do not change it in any way,
not even interchange it with another row.

After applying the main step finitely many times (at most m), we get
what is called the echelon form of the matrix.

2.2.1. An example of row reduction. Let us consider the following linear
system: 

x1 + 2x2 + 3x3 = 1
3x1 + 2x2 + x3 = 7
2x1 + x2 + 2x3 = 1

The augmented matrix of the system is 1 2 3 1
3 2 1 7
2 1 2 1


Subtracting 3·Row#1 from the second row, and subtracting 2·Row#1 from
the third one we get: 1 2 3 1

3 2 1 7
2 1 2 1

 −3R1

−2R1

∼

 1 2 3 1
0 −4 −8 4
0 −3 −4 −1


Multiplying the second row by −1/4 we get 1 2 3 1

0 1 2 −1
0 −3 −4 −1


Adding 3·Row#2 to the third row we obtain 1 2 3 1

0 1 2 −1
0 −3 −4 −1

−3R2 ∼

 1 2 3 1
0 1 2 −1
0 0 2 −4


Now we can use the so called back substitution to solve the system. Namely,
from the last row (equation) we get x3 = −2. Then from the second equation
we get

x2 = −1− 2x3 = −1− 2(−2) = 3,

and finally, from the first row (equation)

x1 = 1− 2x2 − 3x3 = 1− 6 + 6 = 1.
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So, the solution is 
x1 = 1
x2 = 3,
x3 = −2,

or in vector form

x =

 1
3
−2


or x = (1, 3,−2)T . We can check the solution by multiplying Ax, where A
is the coefficient matrix.

Instead of using back substitution, we can do row reduction from bottom
to top, killing all the entries above the main diagonal of the coefficient
matrix: we start by multiplying the last row by 1/2, and the rest is pretty
self-explanatory: 1 2 3 1

0 1 2 −1
0 0 1 −2

−3R3

−2R3 ∼

 1 2 0 7
0 1 0 3
0 0 1 −2

−2R2

∼

 1 0 0 1
0 1 0 3
0 0 1 −2


and we just read the solution x = (1, 3,−2)T off the augmented matrix.

We leave it as an exercise to the reader to formulate the algorithm for
the backward phase of the row reduction.

2.3. Echelon form. A matrix is in echelon form if it satisfies the following
two conditions:

1. All zero rows (i.e. the rows with all entries equal 0), if any, are below
all non-zero entries.

For a non-zero row, let us call the leftmost non-zero entry the leading entry.
Then the second property of the echelon form can be formulated as follows:

2. For any non-zero row its leading entry is strictly to the right of the
leading entry in the previous row.

The leading entry in each row in echelon form is also called pivot entry,Pivots: leading
(leftmost non-zero
entries) in a row.

or simply pivot, because these entries are exactly the pivots we used in the
row reduction.

A particular case of the echelon form is the so-called triangular form.
We got this form in our example above. In this form the coefficient matrix is
square (n×n), all its entries on the main diagonal are non-zero, and all the
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entries below the main diagonal are zero. The right side, i.e. the rightmost
column of the augmented matrix can be arbitrary.

After the backward phase of the row reduction, we get what the so-
called reduced echelon form of the matrix: coefficient matrix equal I, as in
the above example, is a particular case of the reduced echelon form.

The general definition is as follows: we say that a matrix is in the reduced
echelon form, if it is in the echelon form and

3. All pivot entries are equal 1;

4. All entries above the pivots are 0. Note, that all entries below the
pivots are also 0 because of the echelon form.

To get reduced echelon form from echelon form, we work from the bottom
to the top and from the right to the left, using row replacement to kill all
entries above the pivots.

An example of the reduced echelon form is the system with the coefficient
matrix equal I. In this case, one just reads the solution from the reduced
echelon form. In general case, one can also easily read the solution from
the reduced echelon form. For example, let the reduced echelon form of the
system (augmented matrix) be 1 2 0 0 0 1

0 0 1 5 0 2

0 0 0 0 1 3

 ;

here we boxed the pivots. The idea is to move the variables, corresponding
to the columns without pivot (the so-called free variables) to the right side.
Then we can just write the solution.

x1 = 1− 2x2

x2 is free
x3 = 2− 5x4

x4 is free
x5 = 3

or in the vector form

x =


1− 2x2

x2

2− 5x4

x4

3

 =


1
0
2
0
3

+ x2


−2
1
0
0
0

+ x4


0
0
−5
1
0

 , x2, x4 ∈ F.

One can also find the solution from the echelon form by using back sub-
stitution: the idea is to work from bottom to top, moving all free variables
to the right side.
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Exercises.

2.1. Write the systems of equations below in matrix form and as vector equations:

a)

 x1 + 2x2 − x3 = −1
2x1 + 2x2 + x3 = 1
3x1 + 5x2 − 2x3 = −1

b)


x1 − 2x2 − x3 = 1

2x1 − 3x2 + x3 = 6
3x1 − 5x2 = 7
x1 + 5x3 = 9

c)


x1 + 2x2 + 2x4 = 6

3x1 + 5x2 − x3 + 6x4 = 17
2x1 + 4x2 + x3 + 2x4 = 12
2x1 − 7x3 + 11x4 = 7

d)

 x1 − 4x2 − x3 + x4 = 3
2x1 − 8x2 + x3 − 4x4 = 9
−x1 + 4x2 − 2x3 + 5x4 = −6

e)

 x1 + 2x2 − x3 + 3x4 = 2
2x1 + 4x2 − x3 + 6x4 = 5

x2 + 2x4 = 3

f)

 2x1 − 2x2 − x3 + 6x4 −2x5 = 1
x1 − x2 + x3 + 2x4 −x5 = 2

4x1 − 4x2 + 5x3 + 7x4 −x5 = 6

g)


3x1 − x2 + x3 − x4 + 2x5 = 5
x1 − x2 − x3 − 2x4 − x5 = 2

5x1 − 2x2 + x3 − 3x4 + 3x5 = 10
2x1 − x2 − 2x4 + x5 = 5

Solve the systems. Write the answers in the vector form.

2.2. Find all solutions of the vector equation

x1v1 + x2v2 + x3v3 = 0,

where v1 = (1, 1, 0)T , v2 = (0, 1, 1)T and v3 = (1, 0, 1)T . What conclusion can you
make about linear independence (dependence) of the system of vectors v1,v2,v3?

3. Analyzing the pivots.

All questions about existence of a solution and it uniqueness can be answered
by analyzing pivots in the echelon (reduced echelon) form of the augmented
matrix of the system. First of all, let us investigate the question of when
is the equation Ax = b inconsistent, i.e. when it does not have a solution.
The answer follows immediately, if one just thinks about it:
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a system is inconsistent (does not have a solution) if and only
if there is a pivot in the last column of an echelon form of the
augmented matrix, i.e. iff an echelon form of the augmented matrix
has a row

(
0 0 . . . 0 b

)
, b 6= 0 in it.

Indeed, such a row correspond to the equation 0x1 + 0x2 + . . .+ 0xn = b 6= 0
that does not have a solution. If we don’t have such a row, we just make
the reduced echelon form and then read the solution off it.

Now, three more statements. Note, they all deal with the coefficient
matrix, and not with the augmented matrix of the system.

1. A solution (if it exists) is unique iff there are no free variables, that
is if and only if the echelon form of the coefficient matrix has a pivot
in every column;

2. Equation Ax = b is consistent for all right sides b if and only if the
echelon form of the coefficient matrix has a pivot in every row.

3. Equation Ax = b has a unique solution for any right side b if and
only if echelon form of the coefficient matrix A has a pivot in every
column and every row.

The first statement is trivial, because free variables are responsible for
all non-uniqueness. I should only emphasize that this statement does not
say anything about the existence.

The second statement is a tiny bit more complicated. If we have a pivot
in every row of the coefficient matrix, we cannot have the pivot in the last
column of the augmented matrix, so the system is always consistent, no
matter what the right side b is.

Let us show that if we have a zero row in the echelon form of the coeffi-
cient matrix A, then we can pick a right side b such that the system Ax = b
is not consistent. Let Ae echelon form of the coefficient matrix A. Then

Ae = EA,

where E is the product of elementary matrices, corresponding to the row
operations, E = EN . . . E2E1. If Ae has a zero row, then the last row is also
zero. Therefore, if we put be = (0, . . . , 0, 1)T (all entries are 0, except the
last one), then the equation

Aex = be

does not have a solution. Multiplying this equation by E−1 from the left,
and recalling that E−1Ae = A, we get that the equation

Ax = E−1be

does not have a solution.

Finally, statement 3 immediately follows from statements 1 and 2. �
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From the above analysis of pivots we get several very important corol-
laries. The main observation we use is

In echelon form, any row and any column have no more than 1
pivot in it (it can have 0 pivots)

3.1. Corollaries about linear independence and bases. Dimension.
Questions as to when a system of vectors in Fn is a basis, a linearly inde-
pendent or a spanning system, can be easily answered by the row reduction.

Proposition 3.1. Let us have a system of vectors v1,v2, . . . ,vm ∈ Fn, and
let A = [v1,v2, . . . ,vm] be an n × m matrix with columns v1,v2, . . . ,vm.
Then

1. The system v1,v2, . . . ,vm is linearly independent iff echelon form of
A has a pivot in every column;

2. The system v1,v2, . . . ,vm is complete in Fn (spanning, generating)
iff echelon form of A has a pivot in every row;

3. The system v1,v2, . . . ,vm is a basis in Fn iff echelon form of A has
a pivot in every column and in every row.

Proof. The system v1,v2, . . . ,vm ∈ Fn is linearly independent if and only
if the equation

x1v1 + x2v2 + . . .+ xmvm = 0

has the unique (trivial) solution x1 = x2 = . . . = xm = 0, or equivalently,
the equation Ax = 0 has unique solution x = 0. By statement 1 above, it
happens if and only if there is a pivot in every column of the matrix.

Similarly, the system v1,v2, . . . ,vm ∈ Fn is complete in Fn if and only
if the equation

x1v1 + x2v2 + . . .+ xmvm = b

has a solution for any right side b ∈ Fn. By statement 2 above, it happens
if and only if there is a pivot in every row in echelon form of the matrix.

And finally, the system v1,v2, . . . ,vm ∈ Fn is a basis in Fn if and only
if the equation

x1v1 + x2v2 + . . .+ xmvm = b

has unique solution for any right side b ∈ Fn. By statement 3 this happens
if and only if there is a pivot in every column and in every row of echelon
form of A. �

Proposition 3.2. Any linearly independent system of vectors in Fn cannot
have more than n vectors in it.
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Proof. Let a system v1,v2, . . . ,vm ∈ Fn be linearly independent, and let
A = [v1,v2, . . . ,vm] be the n×m matrix with columns v1,v2, . . . ,vm. By
Proposition 3.1 echelon form of A must have a pivot in every column, which
is impossible if m > n (number of pivots cannot be more than number of
rows). �

Proposition 3.3. Any two bases in a vector space V have the same number
of vectors in them.

Proof. Let v1,v2, . . . ,vn and w1,w2, . . . ,wm be two different bases in V .
Without loss of generality we can assume that n ≤ m. Consider an isomor-
phism A : Fn → V defined by

Aek = vk, k = 1, 2, . . . n,

where e1, e2, . . . , en is the standard basis in Rn.

Since A−1 is also an isomorphism, the system

A−1w1, A
−1w2, . . . , A

−1wm

is a basis (see Theorem 6.6 in Chapter 1). So it is linearly independent,
and by Proposition 3.2, m ≤ n. Together with the assumption n ≤ m this
implies that m = n. �

The statement below is a particular case of the above proposition.

Proposition 3.4. Any basis in Fn must have exactly n vectors in it.

Proof. This fact follows immediately from the previous proposition, but
there is also a direct proof. Let v1,v2, . . . ,vm be a basis in Fn and let A be
the n×m matrix with columns v1,v2, . . . ,vm. The fact that the system is
a basis, means that the equation

Ax = b

has a unique solution for any (all possible) right side b. The existence means
that there is a pivot in every row (of a reduced echelon form of the matrix),
hence the number of pivots is exactly n. The uniqueness mean that there is
pivot in every column of the coefficient matrix (its echelon form), so

m = number of columns = number of pivots = n

�

Proposition 3.5. Any spanning (generating) set in Fn must have at least
n vectors.

Proof. Let v1,v2, . . . ,vm be a complete system in Fn, and let A be n×m
matrix with columns v1,v2, . . . ,vm. Statement 2 of Proposition 3.1 implies
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that echelon form of A has a pivot in every row. Since number of pivots
cannot exceed the number of columns, n ≤ m. �

3.2. Corollaries about invertible matrices.

Proposition 3.6. A matrix A is invertible if and only if its echelon form
has pivot in every column and every row.

Proof. As it was discussed in the beginning of the section, the equation
Ax = b has a unique solution for any right side b if and only if the echelon
form of A has pivot in every row and every column. But, we know, see
Theorem 6.8 in Chapter 1, that the matrix (linear transformation) A is
invertible if and only if the equation Ax = b has a unique solution for any
possible right side b.

There is also an alternative proof. We know that a matrix is invertible
if and only if its columns form a basis in (see Corollary 6.9 in Section 6.4,
Chapter 1). Proposition 3.4 above states that it happens if and only if there
is a pivot in every row and every column. �

The above proposition immediately implies the following

Corollary 3.7. An invertible matrix must be square (n× n).

Proposition 3.8. If a square (n×n) matrix is left invertible, or if it is right
invertible, then it is invertible. In other words, to check the invertibility of a
square matrix A it is sufficient to check only one of the conditions AA−1 = I,
A−1A = I.

Note, that this proposition applies only to square matrices!

Proof. We know that matrix A is invertible if and only if the equation
Ax = b has a unique solution for any right side b. This happens if and only
if the echelon form of the matrix A has pivots in every row and in every
column.

If a matrix A is left invertible, the equation Ax = 0 has unique solution
x = 0. Indeed, if B is a left inverse of A (i.e. BA = I), and x satisfies

Ax = 0,

then multiplying this identity by B from the left we get x = 0, so the
solution is unique. Therefore, the echelon form of A has pivots in every
column (no free variables). If the matrix A is square (n × n), the echelon
form also has pivots in every row (n pivots, and a row can have no more
than 1 pivot), so the matrix is invertible.
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If a matrix A is right invertible, and C is its right inverse (AC = I),
then for x = Cb, b ∈ Fn

Ax = ACb = Ib = b.

Therefore, for any right side b the equation Ax = b has a solution x = Cb.
Thus, echelon form of A has a pivot in every row. If A is square, it also has
a pivot in every column, so A is invertible. �

Exercises.

3.1. For what value of b the system 1 2 2
2 4 6
1 2 3

x =

 1
4
b


has a solution. Find the general solution of the system for this value of b.

3.2. Determine, if the vectors
1
1
0
0

 ,


1
0
1
0

 ,


0
0
1
1

 ,


0
1
0
1


are linearly independent or not.

Do these four vectors span R4? (In other words, is it a generating system?)
What about C4?

3.3. Determine, which of the following systems of vectors are bases in R3:

a) (1, 2,−1)T , (1, 0, 2)T , (2, 1, 1)T ;

b) (−1, 3, 2)T , (−3, 1, 3)T , (2, 10, 2)T ;

c) (67, 13,−47)T , (π,−7.84, 0)T , (3, 0, 0)T .

Which of the systems are bases in C3?

3.4. Do the polynomials x3 + 2x, x2 + x + 1, x3 + 5 generate (span) P3? Justify
your answer.

3.5. Can 5 vectors in F4 be linearly independent? Justify your answer.

3.6. Prove or disprove: If the columns of a square (n × n) matrix A are linearly
independent, so are the columns of A2 = AA.

3.7. Prove or disprove: If the columns of a square (n × n) matrix A are linearly
independent, so are the rows of A3 = AAA.

3.8. Show that if the equation Ax = 0 has unique solution (i.e. if echelon form of
A has pivot in every column), then A is left invertible. Hint: elementary matrices
may help.
Note: It was shown in the text that if A is left invertible, then the equation Ax = 0
has unique solution. But here you are asked to prove the converse of this statement,
which was not proved.
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Remark: This can be a very hard problem, for it requires deep understanding
of the subject. However, when you understand what to do, the problem becomes
almost trivial.

3.9. Is the reduced echelon form of a matrix unique? Justify your conclusion.

Namely, suppose that by performing some row operations (not necessarily fol-
lowing any algorithm) we end up with a reduced echelon matrix. Do we always
end up with the same matrix, or can we get different ones? Note that we are only
allowed to perform row operations, the “column operations”’ are forbidden.

Hint: What happens if you start with an invertible matrix? Also, are the pivots
always in the same columns, or can it be different depending on what row operations
you perform? If you can tell what the pivot columns are without reverting to row
operations, then the positions of pivot columns do not depend on them.

4. Finding A−1 by row reduction.

As it was discussed above, an invertible matrix must be square, and its eche-
lon form must have pivots in every row and every column. Therefore reduced
echelon form of an invertible matrix is the identity matrix I. Therefore,

Any invertible matrix is row equivalent (i.e. can be reduced by row
operations) to the identity matrix.

Now let us state a simple algorithm of finding the inverse of an n × n
matrix:

1. Form an augmented n×2n matrix (A | I) by writing the n×n identity
matrix right of A;

2. Performing row operations on the augmented matrix transform A to
the identity matrix I;

3. The matrix I that we added will be automatically transformed to
A−1;

4. If it is impossible to transform A to the identity by row operations,
A is not invertible.

There are several possible explanations of the above algorithm. The
first, a näıve one, is as follows: we know that (for an invertible A) the vector
A−1b is the solution of the equation Ax = b. So to find the column number
k of A−1 we need to find the solution of Ax = ek, where e1, e2, . . . , en is the
standard basis in Rn. The above algorithm just solves the equations

Ax = ek, k = 1, 2, . . . , n

simultaneously!

Let us also present another, more “advanced” explanation. As we dis-
cussed above, every row operation can be realized as a left multiplication
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by an elementary matrix. Let E1, E2, . . . , EN be the elementary matrices
corresponding to the row operation we performed, and let E = EN · · ·E2E1

be their product.1 We know that the row operations transform A to iden-
tity, i.e. EA = I, so E = A−1. But the same row operations transform the
augmented matrix (A | I) to (EA |E) = (I |A−1). �

This “advanced” explanation using elementary matrices implies an im-
portant proposition that will be often used later.

Theorem 4.1. Any invertible matrix can be represented as a product of
elementary matrices.

Proof. As we discussed in the previous paragraph, A−1 = EN · · ·E2E1, so

A = (A−1)−1 = E−1
1 E−1

2 · · ·E−1
N .

�

An Example. Suppose we want to find the inverse of the matrix 1 4 −2
−2 −7 7

3 11 −6

 .

Augmenting the identity matrix to it and performing row reduction we get 1 4 −2 1 0 0
−2 −7 7 0 1 0

3 11 −6 0 0 1

+2R1

−3R1

∼

 1 4 −2 1 0 0
0 1 3 2 1 0
0 −1 0 −3 0 1


+R2

∼

 1 4 −2 1 0 0
0 1 3 2 1 0
0 0 3 −1 1 1

×3
∼

 3 12 −6 3 0 0
0 1 3 2 1 0
0 0 3 −1 1 1

+2R3

−R3 ∼

Here in the last row operation we multiplied the first row by 3 to avoid
fractions in the backward phase of row reduction. Continuing with the row
reduction we get 3 12 0 1 2 2

0 1 0 3 0 −1
0 0 3 −1 1 1

−12R2

∼

 3 0 0 −35 2 14
0 1 0 3 0 −1
0 0 3 −1 1 1


Dividing the first and the last row by 3 we get the inverse matrix −35/3 2/3 14/3

3 0 −1
−1/3 1/3 1/3


1Although it does not matter here, but please notice, that if the row operation E1 was

performed first, E1 must be the rightmost term in the product
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Exercises.

4.1. Find the inverse of the matrices 1 2 1
3 7 3
2 3 4

 ,

 1 −1 2
1 1 −2
1 1 4

 .

Show all steps

5. Dimension. Finite-dimensional spaces.

Definition. The dimension dimV of a vector space V is the number of
vectors in a basis.

For a vector space consisting only of zero vector 0 we put dimV = 0. If
V does not have a (finite) basis, we put dimV =∞.

If dimV is finite, we call the space V finite-dimensional ; otherwise we
call it infinite-dimensional.

Proposition 3.3 asserts that the dimension is well defined, i.e. that it
does not depend on the choice of a basis.

Proposition 2.8 from Chapter 1 states that any finite spanning system
in a vector space V contains a basis. This immediately implies the following

Proposition 5.1. A vector space V is finite-dimensional if and only if it
has a finite spanning system.

Suppose, that we have a system of vectors in a finite-dimensional vector
space, and we want to check if it is a basis (or if it is linearly independent,
or if it is complete)? Probably the simplest way is to use an isomorphism
A : V → Rn, n = dimE to move the problem to Rn, where all such questions
can be answered by row reduction (studying pivots).

Note, that if dimV = n, then there always exists an isomorphism A :
V → Rn. Indeed, if dimV = n then there exists a basis v1,v2, . . . ,vn ∈ V ,
and one can define an isomorphism A : V → Rn by

Avk = ek, k = 1, 2, . . . , n.

As an example, let us give the following two corollaries of the above
Propositions 3.2, 3.5:

Proposition 5.2. Any linearly independent system in a finite-dimensional
vector space V cannot have more than dimV vectors in it.

Proof. Let v1,v2, . . . ,vm ∈ V be a linearly independent system, and let
A : V → Rn be an isomorphism. Then Av1, Av2, . . . , Avm is a linearly
independent system in Rn, and by Proposition 3.2 m ≤ n. �
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Proposition 5.3. Any generating system in a finite-dimensional vector
space V must have at least dimV vectors in it.

Proof. Let v1,v2, . . . ,vm ∈ V be a complete system in V , and let A : V →
Rn be an isomorphism. Then Av1, Av2, . . . , Avm is a complete system in
Rn, and by Proposition 3.5 m ≥ n. �

5.1. Completing a linearly independent system to a basis. The fol-
lowing statement will play an important role later.

Proposition 5.4 (Completion to a basis). A linearly independent system
of vectors in a finite-dimensional space can be completed to a basis, i.e. if
v1,v2, . . . ,vr are linearly independent vectors in a finite-dimensional vector
space V then one can find vectors vr+1,vr+2 . . . ,vn such that the system of
vectors v1,v2, . . . ,vn is a basis in V .

Proof. Let n = dimV and let r < n (if r = n then the system v1,v2, . . . ,vr
is already a basis, and the case r > n is impossible). Take any vector not
belonging to span{v1,v2, . . . ,vr} and call it vr+1 (one can always do that
because the system v1,v2, . . . ,vr is not generating). By Exercise 2.5 from
Chapter 1 the system v1,v2, . . . ,vr,vr+1 is linearly independent. Repeat
the procedure with the new system to get vector vr+2, and so on.

We will stop the process when we get a generating system. Note, that
the process cannot continue infinitely, because a linearly independent system
of vectors in V cannot have more than n = dimV vectors. �

Exercises.

5.1. True or false:

a) Every vector space that is generated by a finite set has a basis;

b) Every vector space has a (finite) basis;

c) A vector space cannot have more than one basis;

d) If a vector space has a finite basis, then the number of vectors in every
basis is the same.

e) The dimension of Pn is n;

f) The dimension on Mm×n is m+ n;

g) If vectors v1,v2, . . . ,vn generate (span) the vector space V , then every
vector in V can be written as a linear combination of vector v1,v2, . . . ,vn
in only one way;

h) Every subspace of a finite-dimensional space is finite-dimensional;

i) If V is a vector space having dimension n, then V has exactly one subspace
of dimension 0 and exactly one subspace of dimension n.

5.2. Prove that if V is a vector space having dimension n, then a system of vectors
v1,v2, . . . ,vn in V is linearly independent if and only if it spans V .
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5.3. Prove that a linearly independent system of vectors v1,v2, . . . ,vn in a vector
space V is a basis if and only if n = dimV .

5.4. (An old problem revisited: now this problem should be easy) Is it possible that
vectors v1,v2,v3 are linearly dependent, but the vectors w1 = v1+v2, w2 = v2+v3

and w3 = v3 + v1 are linearly independent? Hint: What dimension can the
subspace span(v1,v2,v3) have?

5.5. Let vectors u,v,w be a basis in V . Show that u + v + w, v + w, w is also a
basis in V .

5.6. Consider in the space R5 vectors v1 = (2,−1, 1, 5,−3)T , v2 = (3,−2, 0, 0, 0)T ,
v3 = (1, 1, 50,−921, 0)T .

a) Prove that these vectors are linearly independent.

b) Complete this system of vectors to a basis.

If you do part b) first you can do everything without any computations.

6. General solution of a linear system.

In this short section we discuss the structure of the general solution (i.e. of
the solution set) of a linear system.

We call a system Ax = b homogeneous if the right side b = 0, i.e. a
homogeneous system is a system of form Ax = 0.

With each system
Ax = b

we can associate a homogeneous system just by putting b = 0.

Theorem 6.1 (General solution of a linear equation). Let a vector x1 satisfy
the equation Ax = b, and let H be the set of all solutions of the associated
homogeneous system

Ax = 0.

Then the set
{x = x1 + xh : xh ∈ H}

is the set of all solutions of the equation Ax = b.

In other words, this theorem can be stated as

General solution
of Ax = b

=
A particular solu-
tion of Ax = b

+
General solution
of Ax = 0

.

Proof. Fix a vector x1 satisfying Ax1 = b. Let a vector xh satisfy Ax
h

= 0.
Then for x = x1 + xh we have

Ax = A(x1 + xh) = Ax1 +Axh = b + 0 = b,

so any x of form
x = x1 + xh, xh ∈ H
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is a solution of Ax = b.

Now let x satisfy Ax = b. Then for xh := x− x1 we get

Axh = A(x− x1) = Ax−Ax1 = b− b = 0,

so xh ∈ H. Therefore any solution x of Ax = b can be represented as
x = x1 + xh with some xh ∈ H. �

The power of this theorem is in its generality. It applies to all linear
equations, we do not have to assume here that vector spaces are finite-
dimensional. You will meet this theorem in differential equations, integral
equations, partial differential equations, etc. Besides showing the struc-
ture of the solution set, this theorem allows one to separate investigation
of uniqueness from the study of existence. Namely, to study uniqueness,
we only need to analyze uniqueness of the homogeneous equation Ax = 0,
which always has a solution.

There is an immediate application in this course: this theorem allows us
to check a solution of a system Ax = b. For example, consider a system

2 3 1 4 −9
1 1 1 1 −3
1 1 1 2 −5
2 2 2 3 −8

x =


17
6
8
14

 .

Performing row reduction one can find the solution of this system

(6.1) x =


3
1
0
2
0

+ x3


−2
1
1
0
0

+ x5


2
−1
0
2
1

 , x3, x5 ∈ F.

The parameters x3, x5 can be denoted here by any other letters, t and s,
for example; we are keeping notation x3 and x5 here only to remind us that
the parameters came from the corresponding free variables.

Now, let us suppose, that we are just given this solution, and we want
to check whether or not it is correct. Of course, we can repeat the row
operations, but this is too time consuming. Moreover, if the solution was
obtained by some non-standard method, it can look differently from what
we get from the row reduction. For example, the formula

(6.2) x =


3
1
0
2
0

+ s


−2
1
1
0
0

+ t


0
0
1
2
1

 , s, t ∈ F
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gives the same set as (6.1) (can you say why?); here we just replaced the last
vector in (6.1) by its sum with the second one. So, this formula is different
from the solution we got from the row reduction, but it is nevertheless
correct.

The simplest way to check that (6.1) and (6.2) give us correct solutions,
is to check that the first vector (3, 1, 0, 2, 0)T satisfies the equation Ax = b,
and that the other two (the ones with the parameters x3 and x5 or s and t in
front of them) should satisfy the associated homogeneous equation Ax = 0.

If this checks out, we will be assured that any vector x defined by (6.1)
or (6.2) is indeed a solution.

Note, that this method of checking the solution does not guarantee that
(6.1) (or (6.2)) gives us all the solutions. For example, if we just somehow
miss out the term with x3, the above method of checking will still work fine.

So, how can we guarantee, that we did not miss any free variable, and
there should not be extra term in (6.1)?

What comes to mind, is to count the pivots again. In this example, if
one does row operations, the number of pivots is 3. So indeed, there should
be 2 free variables, and it looks like we did not miss anything in (6.1).

To be able to prove this, we will need new notions of fundamental sub-
spaces and of rank of a matrix. I should also mention that in this particular
example, one does not have to perform all row operations to check that there
are only 2 free variables, and that formulas (6.1) and (6.2) both give correct
general solutions.

Exercises.

6.1. True or false

a) Any system of linear equations has at least one solution;

b) Any system of linear equations has at most one solution;

c) Any homogeneous system of linear equations has at least one solution;

d) Any system of n linear equations in n unknowns has at least one solution;

e) Any system of n linear equations in n unknowns has at most one solution;

f) If the homogeneous system corresponding to a given system of a linear
equations has a solution, then the given system has a solution;

g) If the coefficient matrix of a homogeneous system of n linear equations in
n unknowns is invertible, then the system has no non-zero solution;

h) The solution set of any system of m equations in n unknowns is a subspace
in Rn;

i) The solution set of any homogeneous system of m equations in n unknowns
is a subspace in Rn.
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6.2. Find a 2 × 3 system (2 equations with 3 unknowns) such that its general
solution has a form  1

1
0

+ s

 1
2
1

 , s ∈ R.

7. Fundamental subspaces of a matrix. Rank.

As we discussed above in Section 7 of Chapter 1, with any linear transfor-
mation A : V → W we can associate two subspaces, namely, its kernel, or
null space

KerA = NullA := {v ∈ V : Av = 0} ⊂ V,
and its range

RanA = {w ∈W : w = Av for some v ∈ V } ⊂W.
In other words, the kernel KerA is the solution set of the homogeneous
equation Ax = 0, and the range RanA is exactly the set of all right sides
b ∈W for which the equation Ax = b has a solution.

If A is an m × n matrix, i.e. a mapping from Fn to Fm, then it follows
from the “column by coordinate” rule of the matrix multiplication that any
vector w ∈ RanA can be represented as a linear combination of columns of
A. This explains the name column space (notation ColA), which is often
used instead of RanA.

If A is a matrix, then in addition to RanA and KerA one can also
consider the range and kernel for the transposed matrix AT . Often the term
row space is used for RanAT and the term left null space is used for KerAT

(but usually no special notation is introduced).

The four subspaces RanA, KerA, RanAT , KerAT are called the funda-
mental subspaces of the matrix A. In this section we will study important
relations between the dimensions of the four fundamental subspaces.

We will need the following definition, which is one of the fundamental
notions of Linear Algebra

Definition. Given a linear transformation (matrix) A its rank, rankA, is
the dimension of the range of A

rankA := dim RanA.

7.1. Computing fundamental subspaces and rank. To compute the
fundamental subspaces and rank of a matrix, one needs to do echelon re-
duction. Namely, let A be the matrix, and Ae be its echelon form

1. The pivot columns of the original matrix A (i.e. the columns where
after row operations we will have pivots in the echelon form) give us
a basis (one of many possible) in RanA.
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2. The pivot rows of the echelon from Ae give us a basis in the row
space. Of course, it is possible just to transpose the matrix, and
then do row operations. But if we already have the echelon form of
A, say by computing RanA, then we get RanAT for free.

3. To find a basis in the null space KerA one needs to solve the homo-
geneous equation Ax = 0: the details will be seen from the example
below.

Example. Consider a matrix
1 1 2 2 1
2 2 1 1 1
3 3 3 3 2
1 1 −1 −1 0

 .

Performing row operations we get the echelon form
1 1 2 2 1

0 0 −3 −3 −1

0 0 0 0 0
0 0 0 0 0


(the pivots are boxed here). So, the columns 1 and 3 of the original matrix,
i.e. the columns 

1
2
3
1

 ,


2
1
3
−1


give us a basis in RanA. We also get a basis for the row space RanAT for
free: the first and second row of the echelon form of A, i.e. the vectors

1
1
2
2
1

 ,


0
0
−3
−3
−1


(we put the vectors vertically here. The question of whether to put vectors
here vertically as columns, or horizontally as rows is is really a matter of
convention. Our reason for putting them vertically is that although we call
RanAT the row space we define it as a column space of AT )

To compute the basis in the null space KerA we need to solve the equa-
tion Ax = 0. Compute the reduced echelon form of A, which in this example
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is 
1 1 0 0 1/3

0 0 1 1 1/3
0 0 0 0 0
0 0 0 0 0

 .

Note, that when solving the homogeneous equation Ax = 0, it is not neces-
sary to write the whole augmented matrix, it is sufficient to work with the
coefficient matrix. Indeed, in this case the last column of the augmented
matrix is the column of zeroes, which does not change under row opera-
tions. So, we can just keep this column in mind, without actually writing
it. Keeping this last zero column in mind, we can read the solution off the
reduced echelon form above:

x1 = −x2 − 1
3x5,

x2 is free,
x3 = −x4 − 1

3x5

x4 is free,
x5 is free,

or, in the vector form

(7.1) x =


−x2 − 1

3x5

x2

−x4 − 1
3x5

x4

x5

 = x2


−1
1
0
0
0

+ x4


0
0
−1
1
0

+ x5


−1/3

0
−1/3

0
1


The vectors at each free variable, i.e. in our case the vectors

−1
1
0
0
0

 ,


0
0
−1
1
0

 ,


−1/3

0
−1/3

0
1


form a basis in KerA.

Unfortunately, there is no shortcut for finding a basis in KerAT , one
must solve the equation ATx = 0. The knowledge of the echelon form of A
does not help here.

7.2. Explanation of the computing bases in the fundamental sub-
spaces. So, why do the above methods indeed give us bases in the funda-
mental subspaces?
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7.2.1. The null space KerA. The case of the null space KerA is probably
the simplest one: since we solved the equation Ax = 0, i.e. found all the
solutions, then any vector in KerA is a linear combination of the vectors we
obtained. Thus, the vectors we obtained form a spanning system in KerA.
To see that the system is linearly independent, let us multiply each vector
by the corresponding free variable and add everything, see (7.1). Then for
each free variable xk, the entry number k of the resulting vector is exactly
xk, see (7.1) again, so the only way this vector (the linear combination) can
be 0 is when all free variables are 0.

7.2.2. The column space RanA. Let us now explain why the method for
finding a basis in the column space RanA works. First of all, notice that
the pivot columns of the reduced echelon form Are of A form a basis in
RanAre (not in the column space of the original matrix, but of its reduced
echelon form!). Since row operations are just left multiplications by invert-
ible matrices, they do not change linear independence. Therefore, the pivot
columns of the original matrix A are linearly independent.

Let us now show that the pivot columns of A span the column space
of A. Let v1,v2, . . . ,vr be the pivot columns of A, and let v be an arbi-
trary column of A. We want to show that v can be represented as a linear
combination of the pivot columns v1,v2, . . . ,vr,

v = α1v1 + α2v2 + . . .+ αrvr.

The reduced echelon form Are is obtained from A by the left multiplication

Are = EA,

where E is a product of elementary matrices, so E is an invertible matrix.
The vectors Ev1, Ev2, . . . , Evr are the pivot columns of Are, and the column
v of A is transformed to the column Ev of Are. Since the pivot columns
of Are form a basis in RanAre, vector Ev can be represented as a linear
combination

Ev = α1Ev1 + α2Ev2 + . . .+ αrEvr.

Multiplying this equality by E−1 from the left we get the representation

v = α1v1 + α2v2 + . . .+ αrvr,

so indeed the pivot columns of A span RanA.

7.2.3. The row space RanAT . It is easy to see that the pivot rows of the
echelon form Ae of A are linearly independent. Indeed, let w1,w2, . . . ,wr

be the transposed (since we agreed always to put vectors vertically) pivot
rows of Ae. Suppose

α1w1 + α2w2 + . . .+ αrwr = 0.
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Consider the first non-zero entry of w1. Since for all other vectors
w2,w3, . . . ,wr the corresponding entries equal 0 (by the definition of eche-
lon form), we can conclude that α1 = 0. So we can just ignore the first term
in the sum.

Consider now the first non-zero entry of w2. The corresponding entries
of the vectors w3, . . . ,wr are 0, so α2 = 0. Repeating this procedure, we
get that αk = 0 ∀k = 1, 2, . . . , r.

To see that vectors w1,w2, . . . ,wr span the row space, one can notice
that row operations do not change the row space. This can be obtained
directly from analyzing row operations, but we present here a more formal
way to demonstrate this fact.

For a transformation A and a set X let us denote by A(X) the set of all
elements y which can represented as y = A(x), x ∈ X,

A(X) := {y = A(x) : x ∈ X} .

If A is an m×n matrix, and Ae is its echelon form, Ae is obtained from
A be left multiplication

Ae = EA,

where E is an m ×m invertible matrix (the product of the corresponding
elementary matrices). Then

RanATe = Ran(ATET ) = AT (RanET ) = AT (Rm) = RanAT ,

so indeed RanAT = RanATe .

7.3. The Rank Theorem. Dimensions of fundamental subspaces.
There are many applications in which one needs to find a basis in column
space or in the null space of a matrix. For example, as it was shown above,
solving a homogeneous equation Ax = 0 amounts to finding a basis in
the null space KerA. Finding a basis in the column space means simply
extracting a basis from a spanning set, by removing unnecessary vectors
(columns).

However, the most important application of the above methods of com-
puting bases of fundamental subspaces is the relations between their dimen-
sions.

Theorem 7.1 (The Rank Theorem). For a matrix A

rankA = rankAT .

This theorem is often stated as follows:

The column rank of a matrix coincides with its row rank.
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The proof of this theorem is trivial, since dimensions of both RanA and
RanAT are equal to the number of pivots in the echelon form of A.

The following theorem is gives us important relations between dimen-
sions of the fundamental spaces. It is often also called the Rank Theorem

Theorem 7.2. Let A be an m×n matrix, i.e. a linear transformation from
Fn to Fm. Then

1. dim KerA+ dim RanA = dim KerA+ rankA = n (dimension of the
domain of A);

2. dim KerAT + dim RanAT = dim KerAT + rankAT =
dim KerAT + rankA = m (dimension of the target space of A);

Proof. The proof, modulo the above algorithms of finding bases in the
fundamental subspaces, is almost trivial. The first statement is simply the
fact that the number of free variables (dim KerA) plus the number of basic
variables (i.e. the number of pivots, i.e. rankA) adds up to the number of
columns (i.e. to n).

The second statement, if one takes into account that rankA = rankAT

is simply the first statement applied to AT . �

As an application of the above theorem, let us recall the example from
Section 6. There we considered a system

2 3 1 4 −9
1 1 1 1 −3
1 1 1 2 −5
2 2 2 3 −8

x =


17
6
8
14

 ,

and we claimed that its general solution given by

x =


3
1
0
2
0

+ x3


−2
1
1
0
0

+ x5


2
−1
0
2
1

 , x3, x5 ∈ F,

or by

x =


3
1
0
2
0

+ s


−2
1
1
0
0

+ t


0
0
1
2
1

 , s, t ∈ F.

We checked in Section 6 that a vector x given by either formula is indeed
a solution of the equation. But, how can we guarantee that any of the
formulas describe all solutions?
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First of all, we know that in either formula, the last 2 vectors (the ones
multiplied by the parameters) belong to KerA. It is easy to see that in
either case both vectors are linearly independent (two vectors are linearly
dependent if and only if one is a multiple of the other).

Now, let us count dimensions: interchanging the first and the second
rows and performing first round of row operations

−2R1

−R1

−2R1


1 1 1 1 −3
2 3 1 4 −9
1 1 1 2 −5
2 2 2 3 −8

 ∼


1 1 1 1 −3
0 1 −1 2 −3
0 0 0 1 −2
0 0 0 1 −2


we see that there are three pivots already, so rankA ≥ 3. (Actually, we
already can see that the rank is 3, but it is enough just to have the estimate
here). By Theorem 7.2, rankA+ dim KerA = 5, hence dim KerA ≤ 2, and
therefore there cannot be more than 2 linearly independent vectors in KerA.
Therefore, last 2 vectors in either formula form a basis in KerA, so either
formula give all solutions of the equation.

An important corollary of the rank theorem, is the following theorem
connecting existence and uniqueness for linear equations.

Theorem 7.3. Let A be an m× n matrix. Then the equation

Ax = b

has a solution for every b ∈ Rm if and only if the dual equation

ATx = 0

has a unique (only the trivial) solution. (Note, that in the second equation
we have AT , not A).

Proof. The proof follows immediately from Theorem 7.2 by counting the
dimensions. We leave the details as an exercise to the reader. �

There is a very nice geometric interpretation of the second rank the-
orem (Theorem 7.2). Namely, statement 1 of the theorem says, that if a
transformation A : Fn → Fm has trivial kernel (KerA = {0}), then the
dimensions of the domain Fn and of the range RanA coincide. If the ker-
nel is non-trivial, then the transformation “kills” dim KerA dimensions, so
dim RanA = n− dim KerA.

7.4. Completion of a linearly independent system to a basis. As
Proposition 5.4 from Section 5 above asserts, any linearly independent sys-
tem can be completed to a basis, i.e. given inearly independent vectors
v1,v2, . . . ,vr in a finite-dimensional vector space V , one can find vectors
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vr+1,vr+2 . . . ,vn such that the system of vectors v1,v2, . . . ,vn is a basis in
V .

Theoretically, the proof of this proposition give us an algorithm of finding
the vectors vr+1,vr+2 . . . ,vn, but this algorithm does not look too practical.

Ideas of this section give us a more practical way to perform the com-
pletion to a basis.

First of all, notice that if an m×n matrix is in an echelon form, then its
non-zero rows (which are clearly linearly independent) can be easily com-
pleted to a basis in the whole space Fn; one just needs to add some rows in
appropriate places, so the resulting matrix is still in the echelon form and
has pivots in every column.

Then, the non-zero rows of the new matrix form a basis, and we can
order it any way we want, because property of being basis does not depend
on the ordering.

Suppose now that we have linearly independent vectors v1,v2, . . . ,vr,
vk ∈ Fn. Consider the matrix A with rows vT1 ,v

T
2 , . . . ,v

T
r and perform row

operations to get the echelon form Ae. As we discussed above, the rows of
Ae can be easily completed to a basis in Rn. And it turns out that the same
vectors that complete rows of Ae to a basis complete to a basis the original
vectors v1,v2, . . . ,vr.

To see that, let vectors vr+1, . . . ,vn complete the rows of Ae to a basis in
Fn. Then, if we add to a matrix Ae rows vTr+1, . . . ,v

T
n , we get an invertible

matrix. Let call this matrix Ãe, and let Ã be the matrix obtained from A

by adding rows vTr+1, . . . ,v
T
n . The matrix Ãe can be obtained from Ã by

row operations, so

Ãe = EÃ,

where E is the product of the corresponding elementary matrices. Then

Ã = E−1 and Ã is invertible as a product of invertible matrices.

But that means that the rows of Ã form a basis in Fn, which is exactly
what we need.

Remark. The method of completion to a basis described above may be not
the simplest one, but one of its principal advantages is that it works for
vector spaces over an arbitrary field.

Exercises.

7.1. True or false:

a) The rank of a matrix is equal to the number of its non-zero columns;

b) The m× n zero matrix is the only m× n matrix having rank 0;

c) Elementary row operations preserve rank;
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d) Elementary column operations do not necessarily preserve rank;

e) The rank of a matrix is equal to the maximum number of linearly inde-
pendent columns in the matrix;

f) The rank of a matrix is equal to the maximum number of linearly inde-
pendent rows in the matrix;

g) The rank of an n× n matrix is at most n;

h) An n× n matrix having rank n is invertible.

7.2. A 54 × 37 matrix has rank 31. What are dimensions of all 4 fundamental
subspaces?

7.3. Compute rank and find bases of all four fundamental subspaces for the matrices 1 1 0
0 1 1
1 1 0

 ,


1 2 3 1 1
1 4 0 1 2
0 2 −3 0 1
1 0 0 0 0

 .

7.4. Prove that if A : X → Y and V is a subspace ofX then dimAV ≤ rankA. (AV
here means the subspace V transformed by the transformation A, i.e. any vector in
AV can be represented as Av, v ∈ V ). Deduce from here that rank(AB) ≤ rankA.

Remark: Here one can use the fact that if V ⊂ W then dimV ≤ dimW . Do you
understand why is it true?

7.5. Prove that if A : X → Y and V is a subspace of X then dimAV ≤ dimV .
Deduce from here that rank(AB) ≤ rankB.

7.6. Prove that if the product AB of two n×n matrices is invertible, then both A
and B are invertible. Even if you know about determinants, do not use them, we
did not cover them yet. Hint: use previous 2 problems.

7.7. Prove that if Ax = 0 has unique solution, then the equation ATx = b has a
solution for every right side b.
Hint: count pivots

7.8. Write a matrix with the required property, or explain why no such matrix
exists

a) Column space contains (1, 0, 0)T , (0, 0, 1)T , row space contains (1, 1)T ,
(1, 2)T ;

b) Column space is spanned by (1, 1, 1)T , nullspace is spanned by (1, 2, 3)T ;

c) Column space is R4, row space is R3.

Hint: Check first if the dimensions add up.

7.9. If A has the same four fundamental subspaces as B, does A = B?

7.10. Complete the rows of a matrix
e3 3 4 0 −π 6 −2
0 0 2 −1 πe 1 1
0 0 0 0 3 −3 2
0 0 0 0 0 0 1


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to a basis in R7.

7.11. For a matrix 
1 2 −1 2 3
2 2 1 5 5
3 6 −3 0 24
−1 −4 4 −7 11


find bases in its column and row spaces.

7.12. For the matrix in the previous problem, complete the basis in the row space
to a basis in R5

7.13. For the matrix

A =

(
1 i
i −1

)
compute RanA and KerA. What can you say about relation between these sub-
spaces?

7.14. Is it possible that for a real matrix A that RanA = KerAT ? Is it possible
for a complex A?

7.15. Complete the vectors (1, 2,−1, 2, 3)T , (2, 2, 1, 5, 5)T , (−1,−4, 4, 7,−11)T to
a basis in R5.

8. Representation of a linear transformation in arbitrary
bases. Change of coordinates formula.

The material we have learned about linear transformations and their matri-
ces can be easily extended to transformations in abstract vector spaces with
finite bases. In this section we will distinguish between a linear transforma-
tion T and its matrix, the reason being that we consider different bases, so
a linear transformation can have different matrix representation.

8.1. Coordinate vector. Let V be a vector space with a basis B :=
{b1,b2, . . . ,bn}. Any vector v ∈ V admits a unique representation as a
linear combination

v = x1b1 + x2b2 + . . .+ xnbn =
n∑
k=1

xkbk.

The numbers x1, x2, . . . , xn are called the coordinates of the vector v in
the basis B. It is convenient to join these coordinates into the so-called
coordinate vector of v relative to the basis B, which is the column vector

[v]B :=


x1

x2
...
xn

 ∈ Fn.
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Note that the mapping

v 7→ [v]B
is an isomorphism between V and Fn. It transforms the basis b1,b2, . . . ,bn
to the standard basis e1, e2, . . . , en in Fn.

8.2. Matrix of a linear transformation. Let T : V → W be a linear
transformation, and letA = {a1,a2, . . . ,an}, B := {b1,b2, . . . ,bm} be bases
in V and W respectively.

A matrix of the transformation T in (or with respect to) the bases A
and B is an m × n matrix, denoted by [T ]BA , which relates the coordinate
vectors [Tv]B and [v]A ,

[Tv]B = [T ]BA [v]A ;

notice the balance of symbols A and B here: this is the reason we put the
first basis A into the second position.

The matrix [T ]BA is easy to find: its kth column is just the coordinate
vector [Tak]B (compare this with finding the matrix of a linear transforma-
tion from Fn to Fm).

As in the case of standard bases, composition of linear transformations
is equivalent to multiplication of their matrices: one only has to be a bit
more careful about bases. Namely, let T1 : X → Y and T2 : Y → Z be linear
transformation, and let A,B and C be bases in X, Y and Z respectively.
Then for the composition T = T2T1,

T : X → Z, Tx := T2(T1(x))

we have

(8.1) [T ]CA = [T2T1]CA = [T2]CB [T1]BA

(notice again the balance of indices here).

The proof here goes exactly as in the case of Fn spaces with standard
bases, so we do not repeat it here. Another possibility is to transfer every-
thing to the spaces Fn via the coordinate isomorphisms v 7→ [v]B . Then one
does not need any proof, everything follows from the results about matrix
multiplication.

8.3. Change of coordinate matrix. Let us have two bases A =
{a1,a2, . . . ,an} and B = {b1,b2, . . . ,bn} in a vector space V . Consider
the identity transformation I = IV and its matrix [I]BA in these bases. By
the definition

[v]B = [I]BA [v]A , ∀v ∈ V,
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i.e. for any vector v ∈ V the matrix [I]BA transforms its coordinates in the
basis A into coordinates in the basis B. The matrix [I]BA is often called the
change of coordinates (from the basis A to the basis B) matrix.

The matrix [I]BA is easy to compute: according to the general rule of
finding the matrix of a linear transformation, its kth column is the coordi-
nate representation [ak]B of kth element of the basis A

Note that

[I]AB = ([I]BA)−1,

(follows immediately from the multiplication of matrices rule (8.1)), so any
change of coordinate matrix is always invertible.

8.3.1. An example: change of coordinates from the standard basis. Let our
space V be Fn, and let us have a basis B = {b1,b2, . . . ,bn} there. We
also have the standard basis S = {e1, e2, . . . , en} there. The change of
coordinates matrix [I]SB is easy to compute:

[I]SB = [b1,b2, . . . ,bn] =: B,

i.e. it is just the matrix B whose kth column is the vector (column) vk. And
in the other direction

[I]BS = ([I]SB)−1 = B−1.

For example, consider a basis

B =

{(
1
2

)
,

(
2
1

)}
in F2, and let S denote the standard basis there. Then

[I]SB =

(
1 2
2 1

)
=: B

and

[I]BS = [I]−1
SB = B−1 =

1

3

(
−1 2

2 −1

)
(we know how to compute inverses, and it is also easy to check that the
above matrix is indeed the inverse of B)

8.3.2. An example: going through the standard basis. In the space of poly-
nomials of degree at most 1 we have bases

A = {1, 1 + x}, and B = {1 + 2x, 1− 2x},
and we want to find the change of coordinate matrix [I]BA .

Of course, we can always take vectors from the basis A and try to de-
compose them in the basis B; it involves solving linear systems, and we know
how to do that.
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However, I think the following way is simpler. In P1 we also have the
standard basis S = {1, x}, and for this basis

[I]SA =

(
1 1
0 1

)
=: A, [I]SB =

(
1 1
2 −2

)
=: B,

and taking the inverses

[I]AS = A−1 =

(
1 −1
0 1

)
, [I]BS = B−1 =

1

4

(
2 1
2 −1

)
.

Then

[I]BA = [I]BS [I]SA = B−1A =
1

4

(
2 1
2 −1

)(
1 1
0 1

)
and Notice the balance

of indices here.[I]AB = [I]AS [I]SB = A−1B =

(
1 −1
0 1

)(
1 1
2 −2

)
8.4. Matrix of a transformation and change of coordinates. Let

T : V →W be a linear transformation, and let A, Ã be two bases in V and

let B, B̃ be two bases in W . Suppose we know the matrix [T ]BA , and we

would like to find the matrix representation with respect to new bases Ã,

B̃, i.e. the matrix [T ]
B̃Ã

. The rule is very simple:

to get the matrix in the “new” bases one has to surround the
matrix in the “old” bases by change of coordinates matrices.

I did not mention here what change of coordinate matrix should go where,
because we don’t have any choice if we follow the balance of indices rule.
Namely, matrix representation of a linear transformation changes according
to the formula Notice the balance

of indices.[T ]
B̃Ã

= [I]
B̃B

[T ]BA [I]
AÃ

The proof can be done just by analyzing what each of the matrices does.

8.5. Case of one basis: similar matrices. Let V be a vector space and
let A = {a1,a2, . . . ,an} be a basis in V . Consider a linear transformation
T : V → V and let [T ]AA be its matrix in this basis (we use the same basis
for “inputs” and “outputs”)

The case when we use the same basis for “inputs” and “outputs” is
very important (because in this case we can multiply a matrix by itself), so
let us study this case a bit more carefully. Notice, that very often in this [T ]A is often used in-

stead of [T ]AA . It is
shorter, but two in-
dex notation is bet-
ter adapted to the
balance of indices
rule.

case the shorter notation [T ]A is used instead of [T ]AA . However, the two
index notation [T ]AA is better adapted to the balance of indices rule, so I
recommend using it (or at least always keep it in mind) when doing change
of coordinates.
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Let B = {b1,b2, . . . ,bn} be another basis in V . By the change of
coordinate rule above

[T ]BB = [I]BA [T ]AA [I]AB
Recalling that

[I]BA = [I]−1
AB

and denoting Q := [I]AB , we can rewrite the above formula as

[T ]BB = Q−1[T ]AAQ.

This gives a motivation for the following definition

Definition 8.1. We say that a matrix A is similar to a matrix B if there
exists an invertible matrix Q such that A = Q−1BQ.

Since an invertible matrix must be square, it follows from counting di-
mensions, that similar matrices A and B have to be square and of the same
size. If A is similar to B, i.e. if A = Q−1BQ, then

B = QAQ−1 = (Q−1)−1A(Q−1)

(since Q−1 is invertible), therefore B is similar to A. So, we can just say
that A and B are similar.

The above reasoning shows, that it does not matter where to put Q
and where Q−1: one can use the formula A = QBQ−1 in the definition of
similarity.

The above discussion shows, that one can treat similar matrices as dif-
ferent matrix representation of the same linear operator (transformation).

Exercises.

8.1. True or false

a) Every change of coordinate matrix is square;

b) Every change of coordinate matrix is invertible;

c) The matrices A and B are called similar if B = QTAQ for some matrix Q;

d) The matrices A and B are called similar if B = Q−1AQ for some matrix
Q;

e) Similar matrices do not need to be square.

8.2. Consider the system of vectors

(1, 2, 1, 1)T , (0, 1, 3, 1)T , (0, 3, 2, 0)T , (0, 1, 0, 0)T .

a) Prove that it is a basis in F4. Try to do minimal amount of computations.

b) Find the change of coordinate matrix that changes the coordinates in this
basis to the standard coordinates in F4 (i.e. to the coordinates in the stan-
dard basis e1, . . . , e4).
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8.3. Find the change of coordinates matrix that changes the coordinates in the
basis 1, 1 + t in P1 to the coordinates in the basis 1− t, 2t.
8.4. Let T be the linear operator in F2 defined (in the standard coordinates) by

T

(
x
y

)
=

(
3x+ y
x− 2y

)
Find the matrix of T in the standard basis and in the basis

(1, 1)T , (1, 2)T .

8.5. Prove, that if A and B are similar matrices then traceA = traceB. Hint:
recall how trace(XY ) and trace(Y X) are related.

8.6. Are the matrices (
1 3
2 2

)
and

(
0 2
4 2

)
similar? Justify.





Chapter 3

Determinants

1. Introduction.

The reader probably already met determinants in calculus or algebra, at
least the determinants of 2× 2 and 3× 3 matrices. For a 2× 2 matrix(

a b
c d

)
the determinant is simply ad− bc; the determinant of a 3× 3 matrix can be
found by the “Star of David” rule.

In this chapter we would like to introduce determinants for n×n matri-
ces. I don’t want just to give a formal definition. First I want to give some
motivation, and then derive some properties the determinant should have.
Then if we want to have these properties, we do not have any choice, and
arrive to several equivalent definitions of the determinant.

It is more convenient to start not with the determinant of a matrix, but
with determinant of a system of vectors. There is no real difference here,
since we always can join vectors together (say as columns) to form a matrix.

Let us have n vectors v1,v2, . . . ,vn in Rn (notice that the number of
vectors coincides with dimension), and we want to find the n-dimensional
volume of the parallelepiped determined by these vectors.

The parallelepiped determined by the vectors v1,v2, . . . ,vn can be de-
fined as the collection of all vectors v ∈ Rn that can be represented as

v = t1v1 + t2v2 + . . .+ tnvn, 0 ≤ tk ≤ 1 ∀k = 1, 2, . . . , n.

It can be easily visualized when n = 2 (parallelogram) and n = 3 (paral-
lelepiped). So, what is the n-dimensional volume?

75
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If n = 2 it is area; if n = 3 it is indeed the volume. In dimension 1 is it
just the length.

Finally, let us introduce some notation. For a system of vectors (col-
umns) v1,v2, . . . ,vn we will denote its determinant (that we are going to
construct) as D(v1,v2, . . . ,vn). If we join these vectors in a matrix A (col-
umn number k of A is vk), then we will use the notation detA,

detA = D(v1,v2, . . . ,vn)

Also, for a matrix

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
...

an,1 an,2 . . . an,n


its determinant is often is denoted by∣∣∣∣∣∣∣∣∣

a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
...

an,1 an,2 . . . an,n

∣∣∣∣∣∣∣∣∣ .

2. What properties determinant should have.

We know, that for dimensions 2 and 3 “volume” of a parallelepiped is de-
termined by the base times height rule: if we pick one vector, then height
is the distance from this vector to the subspace spanned by the remaining
vectors, and the base is the (n−1)-dimensional volume of the parallelepiped
determined by the remaining vectors.

Now let us generalize this idea to higher dimensions. For a moment
we do not care about how exactly to determine height and base. We will
show, that if we assume that the base and the height satisfy some natural
properties, then we do not have any choice, and the volume (determinant)
is uniquely defined.

2.1. Linearity in each argument. First of all, if we multiply vector v1

by a positive number a, then the height (i.e. the distance to the linear span
L(v2, . . . ,vn)) is multiplied by a. If we admit negative heights (and negative
volumes), then this property holds for all scalars a, and so the determinant
D(v1,v2, . . . ,vn) of the system v1,v2, . . . ,vn should satisfy

D(αv1,v2, . . . ,vn) = αD(v1,v2, . . . ,vn).
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Of course, there is nothing special about vector v1, so for any index k

(2.1) D(v1, . . . , αvk
k
, . . . ,vn) = αD(v1, . . . ,vk

k
, . . . ,vn)

To get the next property, let us notice that if we add 2 vectors, then the
“height” of the result should be equal the sum of the “heights” of summands,
i.e. that

(2.2) D(v1, . . . ,uk + vk︸ ︷︷ ︸
k

, . . . ,vn) =

D(v1, . . . ,uk
k
, . . . ,vn) +D(v1, . . . ,vk

k
, . . . ,vn)

In other words, the above two properties say that the determinant of n
vectors is linear in each argument (vector), meaning that if we fix n − 1
vectors and interpret the remaining vector as a variable (argument), we get
a linear function.

Remark. We already know that linearity is a very nice property, that helps
in many situations. So, admitting negative heights (and therefore negative
volumes) is a very small price to pay to get linearity, since we can always
put on the absolute value afterwards.

In fact, by admitting negative heights, we did not sacrifice anything! To
the contrary, we even gained something, because the sign of the determinant
contains some information about the system of vectors (orientation).

2.2. Preservation under “column replacement”. The next property
also seems natural. Namely, if we take a vector, say vj , and add to it a
multiple of another vector vk, the “height” does not change, so

(2.3) D(v1, . . . ,vj + αvk︸ ︷︷ ︸
j

, . . . ,vk
k
, . . . ,vn)

= D(v1, . . . ,vj
j

, . . . ,vk
k
, . . . ,vn)

In other words, if we apply the column operation of the third type, the
determinant does not change.

Remark. Although it is not essential here, let us notice that the second
part of linearity (property (2.2)) is not independent: it can be deduced from
properties (2.1) and (2.3).

We leave the proof as an exercise for the reader.

2.3. Antisymmetry. The next property the determinant should have, is Functions of several
variables that
change sign when
one interchanges
any two arguments
are called
antisymmetric.

that if we interchange 2 vectors, the determinant changes sign:

(2.4) D(v1, . . . ,vk
j
, . . . ,vj

k

, . . . ,vn) = −D(v1, . . . ,vj
j

, . . . ,vk
k
, . . . ,vn).
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At first sight this property does not look natural, but it can be deduced
from the previous ones. Namely, applying property (2.3) three times, and
then using (2.1) we get

D(v1, . . . ,vj
j

, . . . ,vk
k
, . . . ,vn) =

= D(v1, . . . ,vj
j

, . . . ,vk − vj︸ ︷︷ ︸
k

, . . . ,vn)

= D(v1, . . . ,vj + (vk − vj)︸ ︷︷ ︸
j

, . . . ,vk − vj︸ ︷︷ ︸
k

, . . . ,vn)

= D(v1, . . . ,vk
j
, . . . ,vk − vj︸ ︷︷ ︸

k

, . . . ,vn)

= D(v1, . . . ,vk
j
, . . . , (vk − vj)− vk︸ ︷︷ ︸

k

, . . . ,vn)

= D(v1, . . . ,vk
j
, . . . ,−vj

k

, . . . ,vn)

= −D(v1, . . . ,vk
j
, . . . ,vj

k

, . . . ,vn).

2.4. Normalization. The last property is the easiest one. For the stan-
dard basis e1, e2, . . . , en in Rn the corresponding parallelepiped is the n-
dimensional unit cube, so

(2.5) D(e1, e2, . . . , en) = 1.

In matrix notation this can be written as

det(I) = 1

3. Constructing the determinant.

The plan of the game is now as follows: using the properties that as we
decided in Section 2 the determinant should have, we derive other properties
of the determinant, some of them highly non-trivial. We will show how to
use these properties to compute the determinant using our old friend—row
reduction.

Later, in Section 4, we will show that the determinant, i.e. a function
with the desired properties exists and unique. After all we have to be sure
that the object we are computing and studying exists.

While our initial geometric motivation for determinant and its properties
came from considering vectors in the real vector space Rn, so they relate only
to matrices with real entries, all the constructions below use only algebraic
operations (addition, multiplication, division) and are applicable to matrices
with complex entries, and even with entries in an arbitrary field.
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So in what follows we are constructing determinant not just for real
matrices, but for complex matrices as well (and also for matrices with entries
in an arbitrary field). The nice geometric motivation for the properties
works only in the real case, but after we decided on the properties of the
determinant (see properties 1–3 below) everything works in the general case.

3.1. Basic properties. We will use the following basic properties of the
determinant:

1. Determinant is linear in each column, i.e. in vector notation for every
index k

D(v1, . . . , αuk + βvk︸ ︷︷ ︸
k

, . . . ,vn) =

αD(v1, . . . ,uk
k
, . . . ,vn) + βD(v1, . . . ,vk

k
, . . . ,vn)

for all scalars α, β.

2. Determinant is antisymmetric, i.e. if one interchanges two columns,
the determinant changes sign.

3. Normalization property: det I = 1.

All these properties were discussed above in Section 2. The first property
is just the (2.1) and (2.2) combined. The second one is (2.4), and the last one
is the normalization property (2.5). Note, that we did not use property (2.3):
it can be deduced from the above three. These three properties completely
define determinant!

3.2. Properties of determinant deduced from the basic properties.

Proposition 3.1. For a square matrix A the following statements hold:

1. If A has a zero column, then detA = 0.

2. If A has two equal columns, then detA = 0;

3. If one column of A is a multiple of another, then detA = 0;

4. If columns of A are linearly dependent, i.e. if the matrix is not in-
vertible, then detA = 0.

Proof. Statement 1 follows immediately from linearity. If we multiply the
zero column by zero, we do not change the matrix and its determinant. But
by the property 1 above, we should get 0.

The fact that determinant is antisymmetric, implies statement 2. In-
deed, if we interchange two equal columns, we change nothing, so the deter-
minant remains the same. On the other hand, interchanging two columns
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changes sign of determinant, so

detA = −detA,

which is possible only if detA = 0.

Statement 3 is immediate corollary of statement 2 and linearity.

To prove the last statement, let us first suppose that the first vector v1

is a linear combination of the other vectors,

v1 = α2v2 + α3v3 + . . .+ αnvn =
n∑
k=2

αkvk.

Then by linearity we have (in vector notation)

D(v1,v2, . . . ,vn) = D

(( n∑
k=2

αkvk
)
,v2,v3, . . . ,vn

)

=

n∑
k=2

αkD(vk,v2,v3, . . . ,vn)

and each determinant in the sum is zero because of two equal columns.

Let us now consider general case, i.e. let us assume that the system
v1,v2, . . . ,vn is linearly dependent. Then one of the vectors, say vk can be
represented as a linear combination of the others. Interchanging this vector
with v1 we arrive to the situation we just treated, so

D(v1, . . . ,vk
k
, . . . ,vn) = −D(vk, . . . ,v1

k
, . . . ,vn) = −0 = 0,

so the determinant in this case is also 0. �

The next proposition generalizes property (2.3). As we already have
said above, this property can be deduced from the three “basic” properties
of the determinant, we are using in this section.

Proposition 3.2. The determinant does not change if we add to a col-Note, that adding to
a column a multiple
of itself is prohibited
here. We can only
add multiples of the
other columns.

umn a linear combination of the other columns (leaving the other columns
intact). In particular, the determinant is preserved under “column replace-
ment” (column operation of third type).

Proof. Fix a vector vk, and let u be a linear combination of the other
vectors,

u =
∑
j 6=k

αjvj .

Then by linearity

D(v1, . . . ,vk + u︸ ︷︷ ︸
k

, . . . ,vn) = D(v1, . . . ,vk
k
, . . . ,vn) +D(v1, . . . ,u

k
, . . . ,vn),
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and by Proposition 3.1 the last term is zero. �

3.3. Determinants of diagonal and triangular matrices. Now we are
ready to compute determinant for some important special classes of matrices.
The first class is the so-called diagonal matrices. Let us recall that a square
matrix A = {aj,k}nj,j=1 is called diagonal if all entries off the main diagonal
are zero, i.e. if aj,k = 0 for all j 6= k. We will often use the notation
diag{a1, a2, . . . , an} for the diagonal matrix

a1 0 . . . 0
0 a2 . . . 0
...

...
. . . 0

0 0 . . . an

 .

Since a diagonal matrix diag{a1, a2, . . . , an} can be obtained from the
identity matrix I by multiplying column number k by ak,

Determinant of a diagonal matrix equal the product of the diago-
nal entries,

det(diag{a1, a2, . . . , an}) = a1a2 . . . an.

The next important class is the class of so-called triangular matrices. A
square matrix A = {aj,k}nj,j=1 is called upper triangular if all entries below
the main diagonal are 0, i.e. if aj,k = 0 for all k < j. A square matrix is
called lower triangular if all entries above the main are 0, i.e if aj,k = 0 for
all j < k. We call a matrix triangular, if it is either lower or upper triangular
matrix.

It is easy to see that

Determinant of a triangular matrix equals to the product of the
diagonal entries,

detA = a1,1a2,2 . . . an,n.

Indeed, if a triangular matrix has zero on the main diagonal, it is not
invertible (this can easily be checked by column operations) and therefore
both sides equal zero. If all diagonal entries are non-zero, then using column
replacement (column operations of third type) one can transform the matrix
into a diagonal one with the same diagonal entries: For upper triangular
matrix one should first subtract appropriate multiples of the first column
from the columns number 2, 3, . . . , n, “killing” all entries in the first row,
then subtract appropriate multiples of the second column from columns
number 3, . . . , n, and so on.
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To treat the case of lower triangular matrices one has to do “column
reduction” from the left to the right, i.e. first subtract appropriate multiples
of the last column from columns number n− 1, . . . , 2, 1, and so on.

3.4. Computing the determinant. Now we know how to compute de-
terminants, using their properties: one just needs to do column reduction
(i.e. row reduction for AT ) keeping track of column operations changing
the determinant. Fortunately, the most often used operation—row replace-
ment, i.e. operation of third type does not change the determinant. So we
only need to keep track of interchanging of columns and of multiplication of
column by a scalar.

If an echelon form of AT does not have pivots in every column (and
row), then A is not invertible, so detA = 0. If A is invertible, we arrive at
a triangular matrix, and detA is the product of diagonal entries times the
correction from column interchanges and multiplications.

The above algorithm implies that detA can be zero only if a matrix A
is not invertible. Combining this with the last statement of Proposition 3.1
we get

Proposition 3.3. detA = 0 if and only if A is not invertible. An equivalent
statement: detA 6= 0 if and only if A is invertible.

Note, that although we now know how to compute determinants, the
determinant is still not defined. One can ask: why don’t we define it as
the result we get from the above algorithm? The problem is that formally
this result is not well defined: that means we did not prove that different
sequences of column operations yield the same answer.

3.5. Determinants of a transpose and of a product. Determinants
of elementary matrices. In this section we prove two important theorems.

Theorem 3.4 (Determinant of a transpose). For a square matrix A,

detA = det(AT ).

This theorem implies that for all statement about columns we discussed
above, the corresponding statements about rows are also true. In particular,
determinants behave under row operations the same way they behave under
column operations. So, we can use row operations to compute determinants.

Theorem 3.5 (Determinant of a product). For n× n matrices A and B

det(AB) = (detA)(detB)

In other words

Determinant of a product equals product of determinants.
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To prove both theorems we need the following lemma.

Lemma 3.6. For a square matrix A and an elementary matrix E (of the
same size)

det(AE) = (detA)(detE)

Proof. The proof can be done just by direct checking: determinants of
special matrices are easy to compute; right multiplication by an elemen-
tary matrix is a column operation, and effect of column operations on the
determinant is well known.

This can look like a lucky coincidence, that the determinants of elemen-
tary matrices agree with the corresponding column operations, but it is not
a coincidence at all.

Namely, for a column operation the corresponding elementary matrix
can be obtained from the identity matrix I by this column operation. So, its
determinant is 1 (determinant of I) times the effect of the column operation.

And that is all! It may be hard to realize at first, but the above para-
graph is a complete and rigorous proof of the lemma! �

Applying N times Lemma 3.6 we get the following corollary.

Corollary 3.7. For any matrix A and any sequence of elementary matrices
E1, E2, . . . , EN (all matrices are n× n)

det(AE1E2 . . . EN ) = (detA)(detE1)(detE2) . . . (detEN )

Lemma 3.8. Any invertible matrix is a product of elementary matrices.

Proof. We know that any invertible matrix is row equivalent to the identity
matrix, which is its reduced echelon form. So

I = ENEN−1 . . . E2E1A,

and therefore any invertible matrix can be represented as a product of ele-
mentary matrices,

A = E−1
1 E−1

2 . . . E−1
N−1E

−1
N I = E−1

1 E−1
2 . . . E−1

N−1E
−1
N

(the inverse of an elementary matrix is an elementary matrix). �

Proof of Theorem 3.4. First of all, it can be easily checked, that for an
elementary matrix E we have detE = det(ET ). Notice, that it is sufficient to
prove the theorem only for invertible matrices A, since if A is not invertible
then AT is also not invertible, and both determinants are zero.

By Lemma 3.8 matrix A can be represented as a product of elementary
matrices,

A = E1E2 . . . EN ,
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and by Corollary 3.7 the determinant of A is the product of determinants
of the elementary matrices. Since taking the transpose just transposes
each elementary matrix and reverses their order, Corollary 3.7 implies that
detA = detAT . �

Proof of Theorem 3.5. Let us first suppose that the matrix B is invert-
ible. Then Lemma 3.8 implies that B can be represented as a product of
elementary matrices

B = E1E2 . . . EN ,

and so by Corollary 3.7

det(AB) = (detA)[(detE1)(detE2) . . . (detEN )] = (detA)(detB).

If B is not invertible, then the product AB is also not invertible, and
the theorem just says that 0 = 0.

To check that the product AB = C is not invertible, let us assume that
it is invertible. Then multiplying the identity AB = C by C−1 from the left,
we get C−1AB = I, so C−1A is a left inverse of B. So B is left invertible,
and since it is square, it is invertible. We got a contradiction. �

3.6. Summary of properties of determinant. First of all, let us say
once more, that the determinant is defined only for square matrices! Since
we now know that detA = det(AT ), the statements that we knew about
columns are true for rows too.

1. Determinant is linear in each row (column) when the other rows
(columns) are fixed.

2. If one interchanges two rows (columns) of a matrix A, the determi-
nant changes sign.

3. For a triangular (in particular, for a diagonal) matrix its determinant
is the product of the diagonal entries. In particular, det I = 1.

4. If a matrix A has a zero row (or column), detA = 0.

5. If a matrix A has two equal rows (columns), detA = 0.

6. If one of the rows (columns) of A is a linear combination of the other
rows (columns), i.e. if the matrix is not invertible, then detA = 0;

More generally,

7. detA = 0 if and only if A is not invertible, or equivalently

8. detA 6= 0 if and only if A is invertible.

9. detA does not change if we add to a row (column) a linear combi-
nation of the other rows (columns). In particular, the determinant
is preserved under the row (column) replacement, i.e. under the row
(column) operation of the third kind.
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10. detAT = detA.

11. det(AB) = (detA)(detB).
And finally,

12. If A is an n× n matrix, then det(aA) = an detA.

The last property follows from the linearity of the determinant, if we
recall that to multiply a matrix A by a we have to multiply each row by a,
and that each multiplication multiplies the determinant by a.

Exercises.

3.1. If A is an n× n matrix, how are the determinants detA and det(5A) related?
Remark: det(5A) = 5 detA only in the trivial case of 1× 1 matrices

3.2. How are the determinants detA and detB related if

a)

A =

 a1 a2 a3

b1 b2 b3
c1 c2 c3

 , B =

 2a1 3a2 5a3

2b1 3b2 5b3
2c1 3c2 5c3

 ;

b)

A =

 a1 a2 a3

b1 b2 b3
c1 c2 c3

 , B =

 3a1 4a2 + 5a1 5a3

3b1 4b2 + 5b1 5b3
3c1 4c2 + 5c1 5c3

 .

3.3. Using column or row operations compute the determinants∣∣∣∣∣∣
0 1 2
−1 0 −3

2 3 0

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣

1 0 −2 3
−3 1 1 2

0 4 −1 1
2 3 0 1

∣∣∣∣∣∣∣∣ ,
∣∣∣∣ 1 x

1 y

∣∣∣∣ .
3.4. A square (n×n) matrix is called skew-symmetric (or antisymmetric) if AT =
−A. Prove that if A is skew-symmetric and n is odd, then detA = 0. Is this true
for even n?

3.5. A square matrix is called nilpotent if Ak = 0 for some positive integer k. Show
that for a nilpotent matrix A detA = 0.

3.6. Prove that if the matrices A and B are similar, than detA = detB.

3.7. A real square matrix Q is called orthogonal if QTQ = I. Prove that if Q is an
orthogonal matrix then detQ = ±1.

3.8. Show that ∣∣∣∣∣∣
1 x x2

1 y y2

1 z z2

∣∣∣∣∣∣ = (z − x)(z − y)(y − x).

This is a particular case of the so-called Vandermonde determinant.
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3.9. Let points A, B and C in the plane R2 have coordinates (x1, y1), (x2, y2) and
(x3, y3) respectively. Show that the area of triangle ABC is the absolute value of

1

2

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ .
Hint: use row operations and geometric interpretation of 2×2 determinants (area).

3.10. Let A be a square matrix. Show that block triangular matrices(
I ∗
0 A

)
,

(
A ∗
0 I

)
,

(
I 0
∗ A

)
,

(
A 0
∗ I

)
all have determinant equal to detA. Here ∗ can be anything.

The following problems illustrate the power of block matrix notation.

3.11. Use the previous problem to show that if A and C are square matrices, then

det

(
A B
0 C

)
= detA detC.

Hint:

(
A B
0 C

)
=

(
I B
0 C

)(
A 0
0 I

)
.

3.12. Let A be m× n and B be n×m matrices. Prove that

det

(
0 A
−B I

)
= det(AB).

Hint: While it is possible to transform the matrix by row operations to a form
where the determinant is easy to compute, the easiest way is to right multiply the

matrix by

(
I 0
B I

)
.

4. Formal definition. Existence and uniqueness of the
determinant.

In this section we arrive to the formal definition of the determinant. We
show that a function, satisfying the basic properties 1, 2, 3 from Section 3
exists, and moreover, such function is unique, i.e. we do not have any choice
in constructing the determinant.

Consider an n × n matrix A = {aj,k}nj,k=1, and let v1,v2, . . . ,vn be its
columns, i.e.

vk =


a1,k

a2,k
...

an,k

 = a1,ke1 + a2,ke2 + . . .+ an,ken =
n∑
j=1

aj,kej .
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Using linearity of the determinant we expand it in the first column v1:

(4.1) D(v1,v2, . . . ,vn) =

D(
n∑
j=1

aj,1ej ,v2, . . . ,vn) =
n∑
j=1

aj,1D(ej ,v2, . . . ,vn).

Then we expand it in the second column, then in the third, and so on. We
get

D(v1,v2, . . . ,vn) =
n∑

j1=1

n∑
j2=1

. . .
n∑

jn=1

aj1,1aj2,2 . . . ajn,nD(ej1 .ej2 , . . . ejn).

Notice, that we have to use a different index of summation for each column:
we call them j1, j2, . . . , jn; the index j1 here is the same as the index j in
(4.1).

It is a huge sum, it contains nn terms. Fortunately, some of the terms are
zero. Namely, if any 2 of the indices j1, j2, . . . , jn coincide, the determinant
D(ej1 .ej2 , . . . ejn) is zero, because there are two equal columns here.

So, let us rewrite the sum, omitting all zero terms. The most convenient
way to do that is using the notion of a permutation. Informally, a per-
mutation of an ordered set {1, 2, . . . , n} is a rearrangement of its elements.
A convenient formal way to represent such a rearrangement is by using a
function

σ : {1, 2, . . . , n} → {1, 2, . . . , n},
where σ(1), σ(2), . . . , σ(n) gives the new order of the set 1, 2, . . . , n. In
other words, the permutation σ rearranges the ordered set 1, 2, . . . , n into
σ(1), σ(2), . . . , σ(n).

Such function σ has to be one-to-one (different values for different ar-
guments) and onto (assumes all possible values from the target space). The
functions which are one-to-one and onto are called bijections, and they give
one-to-one correspondence between the domain and the target space.1

Although it is not directly relevant here, let us notice, that it is well-
known in combinatorics, that the number of different permutations of the set
{1, 2, . . . , n} is exactly n!. The set of all permutations of the set {1, 2, . . . , n}
will be denoted Perm(n).

1 There is another canonical way to represent permutation by a bijection σ, namely in this

representation σ(k) gives new position of the element number k. In this representation σ rearranges
σ(1), σ(2), . . . , σ(n) into 1, 2, . . . , n.

While in the first representation it is easy to write the function if you know the rearrangement

of the set 1, 2, . . . , n, the second one is more adapted to the composition of permutations: it
coincides with the composition of functions. Namely if we first perform the permutation that

correspond to a function σ and then one that correspond to τ , the resulting permutation will

correspond to τ ◦ σ.
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Using the notion of a permutation, we can rewrite the determinant as

D(v1,v2, . . . ,vn) =∑
σ∈Perm(n)

aσ(1),1aσ(2),2 . . . aσ(n),nD(eσ(1), eσ(2), . . . , eσ(n)).

The matrix with columns eσ(1), eσ(2), . . . , eσ(n) can be obtained from the
identity matrix by finitely many column interchanges, so the determinant

D(eσ(1), eσ(2), . . . , eσ(n))

is 1 or −1 depending on the number of column interchanges.

To formalize that, we (informally) define the sign (denoted signσ) of
a permutation σ to be 1 if an even number of interchanges is necessary to
rearrange the n-tuple 1, 2, . . . , n into σ(1), σ(2), . . . , σ(n), and sign(σ) = −1
if the number of interchanges is odd.

It is a well-known fact from the combinatorics, that the sign of permuta-
tion is well defined, i.e. that although there are infinitely many ways to get
the n-tuple σ(1), σ(2), . . . , σ(n) from 1, 2, . . . , n, the number of interchanges
is either always odd or always even.

One of the ways to show that is to introduce an alternative definition.
Let K = K(σ) be the number of disorders of σ, i.e. the number of pairs
(j, k), j, k ∈ {1, 2, . . . , n}, j < k such that σ(j) > σ(k), and see if the
number is even or odd. We call the permutation σ odd if K is odd and even
if K is even. Then define signσ := (−1)K(σ); note that this way signσ is
well defined.

We want to show that signσ = (−1)K(σ) can indeed be computed by
rearranging the n-tuple 1, 2, . . . , n into σ(1), σ(2), . . . , σ(n) and counting the
number of interchanges, as was described above.

If σ(k) = k ∀k, then the number of disorders K(σ) is 0, so sign of such
identity permutation is 1. Note also, that any elementary transpose, which
interchange two neighbors, changes the sign of a permutation, because it
changes (increases or decreases) the number of disorders exactly by 1. So,
to get from a permutation to another one always needs an even number of
elementary transposes if the permutations have the same sign, and an odd
number if the signs are different.

Finally, any interchange of two entries can be achieved by an odd num-
ber of elementary transposes. This implies that sign changes under an in-
terchange of two entries. So, to get from 1, 2, . . . , n to an even permutation
(positive sign) one always need even number of interchanges, and odd num-
ber of interchanges is needed to get an odd permutation (negative sign).
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So, if we want determinant to satisfy basic properties 1–3 from Section
3, we must define it as

(4.2) detA =
∑

σ∈Perm(n)

aσ(1),1aσ(2),2 . . . aσ(n),n sign(σ),

where the sum is taken over all permutations of the set {1, 2, . . . , n}.
If we define the determinant this way, it is easy to check that it satisfies

the basic properties 1–3 from Section 3. Indeed, it is linear in each column,
because for each column every term (product) in the sum contains exactly
one entry from this column.

Interchanging two columns of A just adds an extra interchange to the
permutation, so right side in (4.2) changes sign. Finally, for the identity
matrix I, the right side of (4.2) is 1 (it has one non-zero term).

Exercises.

4.1. Suppose the permutation σ takes (1, 2, 3, 4, 5) to (5, 4, 1, 2, 3).

a) Find sign of σ;

b) What does σ2 := σ ◦ σ do to (1, 2, 3, 4, 5)?

c) What does the inverse permutation σ−1 do to (1, 2, 3, 4, 5)?

d) What is the sign of σ−1?

4.2. Let P be a permutation matrix, i.e. an n× n matrix consisting of zeroes and
ones and such that there is exactly one 1 in every row and every column.

a) Can you describe the corresponding linear transformation? That will ex-
plain the name.

b) Show that P is invertible. Can you describe P−1?

c) Show that for some N > 0

PN := PP . . . P︸ ︷︷ ︸
N times

= I.

Use the fact that there are only finitely many permutations.

4.3. Why is there an even number of permutations of (1, 2, . . . , 9) and why are
exactly half of them odd permutations? Hint: This problem can be hard to solve
in terms of permutations, but there is a very simple solution using determinants.

4.4. If σ is an odd permutation, explain why σ2 is even but σ−1 is odd.

4.5. How many multiplications and additions is required to compute the determi-
nant using formal definition (4.2) of the determinant of an n × n matrix? Do not
count the operations needed to compute signσ.
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5. Cofactor expansion.

For an n × n matrix A = {aj,k}nj,k=1 let Aj,k denotes the (n − 1) × (n − 1)
matrix obtained from A by crossing out row number j and column number
k.

Theorem 5.1 (Cofactor expansion of determinant). Let A be an n × n
matrix. For each j, 1 ≤ j ≤ n, determinant of A can be expanded in the
row number j as

detA =

aj,1(−1)j+1 detAj,1 + aj,2(−1)j+2 detAj,2 + . . .+ aj,n(−1)j+n detAj,n

=

n∑
k=1

aj,k(−1)j+k detAj,k.

Similarly, for each k, 1 ≤ k ≤ n, the determinant can be expanded in the
column number k,

detA =

n∑
j=1

aj,k(−1)j+k detAj,k.

Proof. Let us first prove the formula for the expansion in row number 1.
The formula for expansion in row number k then can be obtained from
it by interchanging rows number 1 and k. Since detA = detAT , column
expansion follows automatically.

Let us first consider a special case, when the first row has one non-
zero term a1,1. Performing column operations on columns 2, 3, . . . , n we
transform A to the lower triangular form. The determinant of A then can
be computed as

the product of diagonal
entries of the triangular
matrix

× correcting factor from
the column operations

.

But the product of all diagonal entries except the first one (i.e. without
a1,1) times the correcting factor is exactly detA1,1, so in this particular case
detA = a1,1 detA1,1.

Let us now consider the case when all entries in the first row except a1,2

are zeroes. This case can be reduced to the previous one by interchanging
columns number 1 and 2, and therefore in this case detA = (−1)a1,2 detA1,2.

The case when a1,3 is the only non-zero entry in the first row, can be
reduced to the previous one by interchanging rows 2 and 3, so in this case
detA = a1,3 detA1,3.
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Repeating this procedure we get that in the case when a1,k is the only

non-zero entry in the first row detA = (−1)1+ka1,k detA1,k.
2

In the general case, linearity of the determinant in each row implies that

detA = detA(1) + detA(2) + . . .+ detA(n) =
n∑
k=1

detA(k)

where the matrix A(k) is obtained from A by replacing all entries in the first
row except a1,k by 0. As we just discussed above

detA(k) = (−1)1+ka1,k detA1,k,

so

detA =
n∑
k=1

(−1)1+ka1,k detA1,k.

To get the cofactor expansion in the second row, we can interchange
the first and second rows and apply the above formula. The row exchange
changes the sign, so we get

detA = −
n∑
k=1

(−1)1+ka2,k detA2,k =
n∑
k=1

(−1)2+ka2,k detA2,k.

Exchanging rows 3 and 2 and expanding in the second row we get formula

detA =
n∑
k=1

(−1)3+ka3,k detA3,k,

and so on.

To expand the determinant detA in a column one need to apply the row
expansion formula for AT . �

Definition. The numbers

Cj,k = (−1)j+k detAj,k

are called cofactors.

2In the case when a1,k is the only non-zero entry in the first row it may be tempting to
exchange columns number 1 and number k, to reduce the problem to the case a1,1 6= 0. However,

when we exchange columns 1 and k we change the order of other columns: if we just cross out
column number k, then column number 1 will be the first of the remaining columns. But, if

we exchange columns 1 and k, and then cross out column k (which is now the first one), then

the column 1 will be now column number k − 1. To avoid the complications of keeping track of
the order of columns, we can, as we did above, exchange columns number k and k − 1, reducing

everything to the situation we treated on the previous step. Such an operation does not change

the order for the rest of the columns.
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Using this notation, the formula for expansion of the determinant in the
row number j can be rewritten as

detA = aj,1Cj,1 + aj,2Cj,2 + . . .+ aj,nCj,n =

n∑
k=1

aj,kCj,k.

Similarly, expansion in the column number k can be written as

detA = a1,kC1,k + a2,kC2,k + . . .+ an,kCn,k =

n∑
j=1

aj,kCj,k

Remark. Very often the cofactor expansion formula is used as the definitionVery often the
cofactor expansion
formula is used as
the definition of
determinant.

of determinant. It is not difficult to show that the quantity given by this
formula satisfies the basic properties of the determinant: the normalization
property is trivial, the proof of antisymmetry is easy. However, the proof of
linearity is a bit tedious (although not too difficult).

Remark. Although it looks very nice, the cofactor expansion formula is not
suitable for computing determinant of matrices bigger than 3× 3.

As one can count it requires more than n! multiplications (to be precise it
requires

∑n
k=2 n!/k! multiplications), and n! grows very rapidly. For exam-

ple, cofactor expansion of a 20×20 matrix require more than 20! ≈ 2.4 ·1018

multiplications. It would take a computer performing a billion multiplica-
tions per second over 77 years to perform 20! multiplications; performing
the multiplications required for the cofactor expansion of the determinant
of a 20× 20 matrix will require more than 132 years.3

On the other hand, computing the determinant of an n×n matrix using
row reduction requires (n3 + 2n− 3)/3 multiplications (and about the same
number of additions). It would take a computer performing a million oper-
ations per second (very slow, by today’s standards) a fraction of a second
to compute the determinant of a 100× 100 matrix by row reduction.

It can only be practical to apply the cofactor expansion formula in higher
dimensions if a row (or a column) has a lot of zero entries.

However, the cofactor expansion formula is of great theoretical impor-
tance, as the next section shows.

5.1. Cofactor formula for the inverse matrix. The matrix C =
{Cj,k}nj,k=1 whose entries are cofactors of a given matrix A is called the
cofactor matrix of A.

Theorem 5.2. Let A be an invertible matrix and let C be its cofactor matrix.
Then

A−1 =
1

detA
CT .

3The reader can check the numbers sung, for example, WolframAlpha
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Proof. Let us find the product ACT . The diagonal entry number j is
obtained by multiplying jth row of A by jth column of A (i.e. jth row of
C), so

(ACT )j,j = aj,1Cj,1 + aj,2Cj,2 + . . .+ aj,nCj,n = detA,

by the cofactor expansion formula.

To get the off diagonal terms we need to multiply kth row of A by jth
column of CT , j 6= k, to get

ak,1Cj,1 + ak,2Cj,2 + . . .+ ak,nCj,n.

It follows from the cofactor expansions formula (expanding in jth row) that
this is the determinant of the matrix obtained from A by replacing row
number j by the row number k (and leaving all other rows as they were).
But the rows j and k of this matrix coincide, so the determinant is 0. So, all
off-diagonal entries of ACT are zeroes (and all diagonal ones equal detA),
thus

ACT = (detA) I.

That means that the matrix 1
detA CT is a right inverse of A, and since A is

square, it is the inverse. �

Recalling that for an invertible matrix A the equation Ax = b has a
unique solution

x = A−1b =
1

detA
CTb,

we get the following corollary of the above theorem.

Corollary 5.3 (Cramer’s rule). For an invertible matrix A the entry number
k of the solution of the equation Ax = b is given by the formula

xk =
detBk
detA

,

where the matrix Bk is obtained from A by replacing column number k of A
by the vector b.

5.2. Some applications of the cofactor formula for the inverse.

Example (Inverting 2 × 2 matrices). The cofactor formula really shines
when one needs to invert a 2× 2 matrix

A =

(
a b
c d

)
.

The cofactors are just entries (1× 1 matrices), the cofactor matrix is(
d −c
−b a

)
,
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so the inverse matrix A−1 is given by the formula

A−1 =
1

detA

(
d −b
−c a

)
.

While the cofactor formula for the inverse does not look practical for
dimensions higher than 3, it has a great theoretical value, as the examples
below illustrate.

Example (Matrix with integer inverse). Suppose that we want to construct
a matrix A with integer entries, such that its inverse also has integer entries
(inverting such a matrix would make a nice homework problem: no messing
with fractions). If detA = 1 and its entries are integer, the cofactor formula
for inverses implies that A−1 also have integer entries.

Note, that it is easy to construct an integer matrix A with detA = 1:
one should start with a triangular matrix with 1 on the main diagonal, and
then apply several row or column replacements (operations of the third type)
to make the matrix look generic.

Example (Inverse of a polynomial matrix). Another example is to consider
a polynomial matrix A(x), i.e. a matrix whose entries are not numbers but
polynomials aj,k(x) of the variable x. If detA(x) ≡ 1, then the inverse
matrix A−1(x) is also a polynomial matrix.

If detA(x) = p(x) 6≡ 0, it follows from the cofactor expansion that p(x)
is a polynomial, so A−1(x) has rational entries: moreover, p(x) is a multiple
of each denominator.

Exercises.

5.1. Evaluate the determinants using any method

∣∣∣∣∣∣
0 1 1
1 2 −5
6 −4 3

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣

1 −2 3 −12
−5 12 −14 19
−9 22 −20 31
−4 9 −14 15

∣∣∣∣∣∣∣∣ .
5.2. Use row (column) expansion to evaluate the determinants. Note, that you
don’t need to use the first row (column): picking row (column) with many zeroes
will simplify your calculations.

∣∣∣∣∣∣
1 2 0
1 1 5
1 −3 0

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣

4 −6 −4 4
2 1 0 0
0 −3 1 3
−2 2 −3 −5

∣∣∣∣∣∣∣∣ .
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5.3. For the n× n matrix

A =



0 0 0 . . . 0 a0

−1 0 0 . . . 0 a1

0 −1 0 . . . 0 a2

...
...

...
. . .

...
...

0 0 0 . . . 0 an−2

0 0 0 . . . −1 an−1


compute det(A + tI), where I is n × n identity matrix. You should get a nice ex-
pression involving a0, a1, . . . , an−1 and t. Row expansion and induction is probably
the best way to go.

5.4. Using cofactor formula compute inverses of the matrices(
1 2
3 4

)
,

(
19 −17
3 −2

)
,

(
1 0
3 5

)
,

 1 1 0
2 1 2
0 1 1

 .

5.5. Let Dn be the determinant of the n× n tridiagonal matrix

1 −1 0
1 1 −1

1
. . .

. . .

. . . 1 −1
0 1 1

 .

Using cofactor expansion show that Dn = Dn−1 + Dn−2. This yields that the
sequence Dn is the Fibonacci sequence 1, 2, 3, 5, 8, 13, 21, . . .

5.6. Vandermonde determinant revisited. Our goal is to prove the formula∣∣∣∣∣∣∣∣∣
1 c0 c20 . . . cn0
1 c1 c21 . . . cn1
...

...
...

...
1 cn c2n . . . cnn

∣∣∣∣∣∣∣∣∣ =
∏

0≤j<k≤n

(ck − cj)

for the (n+ 1)× (n+ 1) Vandermonde determinant.

We will apply induction. To do this

a) Check that the formula holds for n = 1, n = 2.

b) Call the variable cn in the last row x, and show that the determinant is a
polynomial of degree n, A0 +A1x+A2x

2 + . . .+Anx
n, with the coefficients

Ak depending on c0, c1, . . . , cn−1.

c) Show that the polynomial has zeroes at x = c0, c1, . . . , cn−1, so it can be
represented as An · (x− c0)(x− c1) . . . (x− cn−1), where An as above.

d) Assuming that the formula for the Vandermonde determinant is true for
n− 1, compute An and prove the formula for n.

5.7. How many multiplication is needed to compute the determinant of an n × n
matrix using the cofactor expansion? Prove the formula.
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6. Minors and rank.

For a matrix A let us consider its k×k submatrix, obtained by taking k rows
and k columns. The determinant of this matrix is called a minor of order
k. Note, that an m×n matrix has

(
m
k

)
·
(
n
k

)
different k×k submatrices, and

so it has
(
m
k

)
·
(
n
k

)
minors of order k.

Theorem 6.1. For a non-zero matrix A its rank equals to the maximal
integer k such that there exists a non-zero minor of order k.

Proof. Let us first show, that if k > rankA then all minors of order k are 0.
Indeed, since the dimension of the column space RanA is rankA < k, any
k columns of A are linearly dependent. Therefore, for any k × k submatrix
of A its columns are linearly dependent, and so all minors of order k are 0.

To complete the proof we need to show that there exists a non-zero
minor of order k = rankA. There can be many such minors, but probably
the easiest way to get such a minor is to take pivot rows and pivot columns
(i.e. rows and columns of the original matrix, containing a pivot). This
k×k submatrix has the same pivots as the original matrix, so it is invertible
(pivot in every column and every row) and its determinant is non-zero. �

This theorem does not look very useful, because it is much easier to
perform row reduction than to compute all minors. However, it is of great
theoretical importance, as the following corollary shows.

Corollary 6.2. Let A = A(x) be an m×n polynomial matrix (i.e. a matrix
whose entries are polynomials of x). Then rankA(x) is constant everywhere,
except maybe finitely many points, where the rank is smaller.

Proof. Let r be the largest integer such that rankA(x) = r for some x. To
show that such r exists, we first try r = min{m,n}. If there exists x such
that rankA(x) = r, we have found r. If not, we replace r by r − 1 and try
again. After finitely many steps we either stop or hit 0. So, r exists.

Let x0 be a point such that rankA(x0) = r, and letM be a minor of order
k such that M(x0) 6= 0. Since M(x) is the determinant of a k×k polynomial
matrix, M(x) is a polynomial. Since M(x0) 6= 0, it is not identically zero,
so it can be zero only at finitely many points. So, everywhere except maybe
finitely many points rankA(x) ≥ r. But by the definition of r, rankA(x) ≤ r
for all x. �

7. Review exercises for Chapter 3.

7.1. True or false
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a) Determinant is only defined for square matrices.

b) If two rows or columns of A are identical, then detA = 0.

c) If B is the matrix obtained from A by interchanging two rows (or columns),
then detB = detA.

d) If B is the matrix obtained from A by multiplying a row (column) of A by
a scalar α, then detB = detA.

e) If B is the matrix obtained from A by adding a multiple of a row to some
other row, then detB = detA.

f) The determinant of a triangular matrix is the product of its diagonal en-
tries.

g) det(AT ) = −det(A).

h) det(AB) = det(A) det(B).

i) A matrix A is invertible if and only if detA 6= 0.

j) If A is an invertible matrix, then det(A−1) = 1/ det(A).

7.2. Let A be an n× n matrix. How are det(3A), det(−A) and det(A2) related to
detA.

7.3. If the entries of both A and A−1 are integers, is it possible that detA = 3?
Hint: what is det(A) det(A−1)?

7.4. Let v1,v2 be vectors in R2 and let A be the 2×2 matrix with columns v1,v2.
Prove that |detA| is the area of the parallelogram with two sides given by the
vectors v1,v2.

Consider first the case when v1 = (x1, 0)T . To treat general case v1 = (x1, y1)T

left multiply A by a rotation matrix that transforms vector v1 into (x̃1, 0)T . Hint:
what is the determinant of a rotation matrix?

The following problem illustrates relation between the sign of the determinant
and the so-called orientation of a system of vectors.

7.5. Let v1, v2 be vectors in R2. Show that D(v1,v2) > 0 if and only if there
exists a rotation Tα such that the vector Tαv1 is parallel to e1 (and looking in the
same direction), and Tαv2 is in the upper half-plane x2 > 0 (the same half-plane
as e2).

Hint: What is the determinant of a rotation matrix?





Chapter 4

Introduction to
spectral theory
(eigenvalues and
eigenvectors)

Spectral theory is the main tool that helps us to understand the structure
of a linear operator. In this chapter we consider only operators acting from
a vector space to itself (or, equivalently, n × n matrices). If we have such
a linear transformation A : V → V , we can multiply it by itself, take any
power of it, or any polynomial.

The main idea of spectral theory is to split the operator into simple
blocks and analyze each block separately.

To explain the main idea, let us consider difference equations. Many
processes can be described by the equations of the following type

xn+1 = Axn, n = 0, 1, 2, . . . ,

where A : V → V is a linear transformation, and xn is the state of the
system at the time n. Given the initial state x0 we would like to know the
state xn at the time n, analyze the long time behavior of xn, etc. 1

1The difference equations are discrete time analogues of the differential equation x′(t) =

Ax(t). To solve the differential equation, one needs to compute etA :=
∑∞
k=0 t

kAn/k!, and

spectral theory also helps in doing this.

99
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At the first glance the problem looks trivial: the solution xn is given by
the formula xn = Anx0. But what if n is huge: thousands, millions? Or
what if we want to analyze the behavior of xn as n→∞?

Here the idea of eigenvalues and eigenvectors comes in. Suppose that
Ax0 = λx0, where λ is some scalar. Then A2x0 = λ2x0, A

3x0 = λ3x0, . . . ,
Anx0 = λnx0, so the behavior of the solution is very well understood

In this section we will consider only operators in finite-dimensional spac-
es. Spectral theory in infinitely many dimensions is significantly more com-
plicated, and most of the results presented here fail in infinite-dimensional
setting.

1. Main definitions

1.1. Eigenvalues, eigenvectors, spectrum. A scalar λ is called an
eigenvalue of an operator A : V → V if there exists a non-zero vector
v ∈ V such that

Av = λv.

The vector v is called the eigenvector of A (corresponding to the eigenvalue
λ).

If we know that λ is an eigenvalue, the eigenvectors are easy to find: one
just has to solve the equation Ax = λx, or, equivalently

(A− λI)x = 0.

So, finding all eigenvectors, corresponding to an eigenvalue λ is simply find-
ing the nullspace of A − λI. The nullspace Ker(A − λI), i.e. the set of all
eigenvectors and 0 vector, is called the eigenspace.

The set of all eigenvalues of an operator A is called spectrum of A, and
is usually denoted σ(A).

1.2. Finding eigenvalues: characteristic polynomials. A scalar λ is
an eigenvalue if and only if the nullspace Ker(A− λI) is non-trivial (so the
equation (A− λI)x = 0 has a non-trivial solution).

Let A act on Fn (i.e. A : Fn → Fn). Since the matrix of A is square,
A − λI has a non-trivial nullspace if and only if it is not invertible. We
know that a square matrix is not invertible if and only if its determinant is
0. Therefore

λ ∈ σ(A), i.e. λ is an eigenvalue of A ⇐⇒ det(A− λI) = 0

If A is an n × n matrix, the determinant det(A − λI) is a polynomial of
degree n of the variable λ. This polynomial is called the characteristic
polynomial of A. So, to find all eigenvalues of A one just needs to compute
the characteristic polynomial and find all its roots.
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This method of finding the spectrum of an operator is not very practical
in higher dimensions. Finding roots of a polynomial of high degree can
be a very difficult problem, and it is impossible to solve the equation of
degree higher than 4 in radicals. So, in higher dimensions different numerical
methods of finding eigenvalues and eigenvectors are used.

1.3. Finding characteristic polynomial and eigenvalues of an ab-
stract operator. So we know how to find the spectrum of a matrix. But
how do we find eigenvalues of an operator acting in an abstract vector space?
The recipe is simple:

Take an arbitrary basis, and compute eigenvalues of the matrix of
the operator in this basis.

But how do we know that the result does not depend on a choice of the
basis?

There can be several possible explanations. One is based on the notion
of similar matrices. Let us recall that square matrices A and B are called
similar if there exist an invertible matrix S such that

A = SBS−1.

Note, that determinants of similar matrices coincide. Indeed

detA = det(SBS−1) = detS detB detS−1 = detB

because detS−1 = 1/detS. Note that if A = SBS−1 then

A− λI = SBS−1 − λSIS−1 = S(BS−1 − λIS−1) = S(B − λI)S−1,

so the matrices A− λI and B − λI are similar. Therefore

det(A− λI) = det(B − λI),

i.e.

characteristic polynomials of similar matrices coincide.

If T : V → V is a linear transformation, and A and B are two bases in
V , then

[T ]AA = [I]AB [T ]BB [I]BA
and since [I]BA = ([I]AB)−1 the matrices [T ]AA and [T ]BB are similar.

In other words, matrices of a linear transformation in different bases are
similar.

Therefore, we can define the characteristic polynomial of an operator
as the characteristic polynomial of its matrix in some basis. As we have
discussed above, the result does not depend on the choice of the basis, so
characteristic polynomial of an operator is well defined.
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1.4. Complex vs real spaces. The fundamental theorem of algebra as-
serts that any polynomial (of degree at least 1) has a complex root. That
implies that an operator in a finite-dimensional complex vector space has at
least one eigenvalue, so its spectrum is non-empty.

On the other hand it is easy to construct a linear transformation in a
real vector space without real eigenvalues, the rotation Rα, α 6= πn in R2

being one of examples. Since it is usually assumed that eigenvalues should
belong to the field of scalars (if an operator acts in a vector space over a field
F the eigenvalues should be in F), such operators have empty spectrum.

Thus, the complex case (i.e. operators acting in complex vector spaces)
seems to be the most natural setting for the spectral theory. Since R ⊂ C,
we can always treat a real n × n matrix as an operator in Cn to allow
complex eigenvalues. Treating real matrices as operators in Cn is typical in
the spectral theory, and we will follow this agreement. Finding eigenvalues
of a matrix (unless otherwise specified) will always mean finding all complex
eigenvalues and not restricting oneself only to real ones.

Note that an operator in an abstract real vector space also can be in-
terpreted as an operator in a complex space. A näıve approach would be
to fix a basis (recall that all spaces in this chapter are finite-dimensional),
and then work with coordinates in this basis allowing complex coordinates:
that will be essentially move from operators in Rn to operators Cn described
above.

This construction describes what is known as the complexification of a
real vector space, and the result does not depend on the choice of a basis. A
“high brow” abstract construction of the complexification, explaining why
the result does not depend on the choice of a basis is described below in
Section 8.2 of Chapter 5.

1.5. Multiplicities of eigenvalues. Let us remind the reader, that if p is
a polynomial, and λ is its root (i.e. p(λ) = 0) then z − λ divides p(z), i.e. p
can be represented as p(z) = (z − λ)q(z), where q is some polynomial. If
q(λ) = 0, then q also can be divided by z − λ, so (z − λ)2 divides p and so
on.

The largest positive integer k such that (z − λ)k divides p(z) is called
the multiplicity of the root λ.

If λ is an eigenvalue of an operator (matrix) A, then it is a root of the
characteristic polynomial p(z) = det(A − zI). The multiplicity of this root
is called the (algebraic) multiplicity of the eigenvalue λ.

Any polynomial p(z) =
∑n

k=0 akz
k of degree n has exactly n complex

roots, counting multiplicity. The words counting multiplicities mean that if
a root has multiplicity d we have to list (count) it d times. In other words,
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p can be represented as

p(z) = an(z − λ1)(z − λ2) . . . (z − λn).

where λ1, λ2, . . . , λn are its complex roots, counting multiplicities.

There is another notion of multiplicity of an eigenvalue: the dimension of
the eigenspace Ker(A−λI) is called geometric multiplicity of the eigenvalue
λ.

Geometric multiplicity is not as widely used as algebraic multiplicity.
So, when people say simply “multiplicity” they usually mean algebraic mul-
tiplicity.

Let us mention, that algebraic and geometric multiplicities of an eigen-
value can differ.

Proposition 1.1. Geometric multiplicity of an eigenvalue cannot exceed its
algebraic multiplicity.

Proof. See Exercise 1.9 below. �

1.6. Trace and determinant.

Theorem 1.2. Let A be n×n matrix, and let λ1, λ2, . . . , λn be its (complex)
eigenvalues (counting multiplicities). Then

1. traceA = λ1 + λ2 + . . .+ λn.

2. detA = λ1λ2 . . . λn.

Proof. See Exercises 1.10, 1.11 below. �

1.7. Eigenvalues of a triangular matrix. Computing eigenvalues is
equivalent to finding roots of a characteristic polynomial of a matrix (or
using some numerical method), which can be quite time consuming. How-
ever, there is one particular case, when we can just read eigenvalues off the
matrix. Namely

eigenvalues of a triangular matrix (counting multiplicities) are ex-
actly the diagonal entries a1,1, a2,2, . . . , an,n

By triangular here we mean either upper or lower triangular matrix.
Since a diagonal matrix is a particular case of a triangular matrix (it is both
upper and lower triangular

the eigenvalues of a diagonal matrix are its diagonal entries

The proof of the statement about triangular matrices is trivial: we need
to subtract λ from the diagonal entries of A, and use the fact that deter-
minant of a triangular matrix is the product of its diagonal entries. We get
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the characteristic polynomial

det(A− λI) = (a1,1 − λ)(a2,2 − λ) . . . (an,n − λ)

and its roots are exactly a1,1, a2,2, . . . , an,n.

Exercises.

1.1. True or false:

a) Every linear operator in an n-dimensional vector space has n distinct eigen-
values;

b) If a matrix has one eigenvector, it has infinitely many eigenvectors;

c) There exists a square real matrix with no real eigenvalues;

d) There exists a square matrix with no (complex) eigenvectors;

e) Similar matrices always have the same eigenvalues;

f) Similar matrices always have the same eigenvectors;

g) The sum of two eigenvectors of a matrix A is always an eigenvector;

h) The sum of two eigenvectors of a matrix A corresponding to the same
eigenvalue λ is always an eigenvector.

1.2. Find characteristic polynomials, eigenvalues and eigenvectors of the following
matrices: (

4 −5
2 −3

)
,

(
2 1
−1 4

)
,

 1 3 3
−3 −5 −3

3 3 1

 .

1.3. Compute eigenvalues and eigenvectors of the rotation matrix(
cosα − sinα
sinα cosα

)
.

Note, that the eigenvalues (and eigenvectors) do not need to be real.

1.4. Compute characteristic polynomials and eigenvalues of the following matrices:
1 2 5 67
0 2 3 6
0 0 −2 5
0 0 0 3

 ,


2 1 0 2
0 π 43 2
0 0 16 1
0 0 0 54

 ,


4 0 0 0
1 3 0 0
2 4 e 0
3 3 1 1

 ,


4 0 0 0
1 0 0 0
2 4 0 0
3 3 1 1

 .

Do not expand the characteristic polynomials, leave them as products.

1.5. Prove that eigenvalues (counting multiplicities) of a triangular matrix coincide
with its diagonal entries

1.6. An operator A is called nilpotent if Ak = 0 for some k. Prove that if A is
nilpotent, then σ(A) = {0} (i.e. that 0 is the only eigenvalue of A).
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1.7. Show that characteristic polynomial of a block triangular matrix(
A ∗
0 B

)
,

where A and B are square matrices, coincides with det(A− λI) det(B − λI). (Use
Exercise 3.11 from Chapter 3).

1.8. Let v1,v2, . . . ,vn be a basis in a vector space V . Assume also that the first k
vectors v1,v2, . . . ,vk of the basis are eigenvectors of an operator A, corresponding
to an eigenvalue λ (i.e. that Avj = λvj , j = 1, 2, . . . , k). Show that in this basis
the matrix of the operator A has block triangular form(

λIk ∗
0 B

)
,

where Ik is k × k identity matrix and B is some (n− k)× (n− k) matrix.

1.9. Use the two previous exercises to prove that geometric multiplicity of an
eigenvalue cannot exceed its algebraic multiplicity.

1.10. Prove that determinant of a matrix A is the product of its eigenvalues (count-
ing multiplicities).

Hint: first show that det(A − λI) = (λ1 − λ)(λ2 − λ) . . . (λn − λ), where
λ1, λ2, . . . , λn are eigenvalues (counting multiplicities). Then compare the free
terms (terms without λ) or plug in λ = 0 to get the conclusion.

1.11. Prove that the trace of a matrix equals the sum of eigenvalues in three steps.
First, compute the coefficient of λn−1 in the right side of the equality

det(A− λI) = (λ1 − λ)(λ2 − λ) . . . (λn − λ).

Then show that det(A− λI) can be represented as

det(A− λI) = (a1,1 − λ)(a2,2 − λ) . . . (an,n − λ) + q(λ)

where q(λ) is polynomial of degree at most n − 2. And finally, comparing the
coefficients of λn−1 get the conclusion.

2. Diagonalization.

One of the application of the spectral theory is the diagonalization of oper-
ators, which means given an operator to find a basis in which the matrix of
the operator is diagonal. Such basis does not always exists, i.e not all opera-
tors can be diagonalized (are diagonalizable). Importance of diagonalizable
operators comes from the fact that the powers, and more general function
of diagonal matrices are easy to compute, so if we diagonalize an operator
we can easily compute functions of it.

We will explain how to compute functions of diagonalizable operators in
this section. We also give a necessary and sufficient condition for an operator
to be diagonalizable, as well as some simple sufficient conditions.
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Note also that for operators in Fn (matrices) the diagonalizability of A
means that it can be represented as A = SDS−1, where D is a diagonal
matrix (and S, of course, is invertible); we will explain this shortly.

Unless otherwise specified, all results in this section hold for both com-
plex and real vector spaces (and even for spaces over arbitrary fields).

2.1. Preliminaries. Suppose an operator A in a vector space V is such
that V has a basis B = b1,b2, . . . ,bn of eigenvectors of A, with λ1, λ2, . . . , λn
being the corresponding eigenvalues. Then the matrix of A in this basis is
the diagonal matrix with λ1, λ2, . . . , λn on the diagonal

[A]BB = diag{λ1, λ2, . . . , λn} =


λ1

λ2
0

. . .

0 λn

 .(2.1)

On the other hand, if the matrix of an operator A in a basis B =
b1,b2, . . . ,bn is given by (2.1) then trivially Abk = λkbk, i.e λk are eigen-
values and bk are corresponding eigenvectors.

Note that the above reasoning hods for both complex and real vector
spaces (and even for vector spaces over arbitrary fields)

Applying the above reasoning to operators in Fn (matrices) we immedi-
ately get the following theorem. Note, that while in this book F is either C
or R, this theorem hods for an arbitrary field F.

Theorem 2.1. A matrix A (with values in F) admits a representation A =
SDS−1, where D is a diagonal matrix and S is an invertible one (both with
entries in F) if and only if there exists a basis in Fn of eigenvectors of A.

Moreover, in this case diagonal entries of D are the eigenvalues and the
columns of S are the corresponding eigenvectors (column number k corre-
sponds to kth diagonal entry of D).

Proof. Let D = diag{λ1, λ2, . . . , λn}, and let b1,b2, . . . ,bn be the columns
of S (note that since S is invertible its columns form a basis in Fn). Then
the identity A = SDS−1 means that D = [A]B,B .

Indeed, S = [I]S,B is the change of the coordinates matrix from B to

the standard basis S, so we get from A = SDS−1 that D = S−1AS =
[I]B,SA[I]S,B ], which means exactly that D = [A]B,B .

And as we just discussed above, [A]B,B = D = diag{λ1, λ2, . . . , λn} if

and only if λk are the eigenvalues and bk are the corresponding eigenvectors
of A. �
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Remark. Note if a matrix admits the representation A = SDS−1 with a di-
agonal matrix D, then a simple direct calculation shows that the columns of
S are eigenvectors of A and diagonal entries of D are corresponding eigen-
values. This gives an alternative proof of the corresponding statement in
Theorem 2.1.

As we discussed above, a diagonalizable operator A : V → V has exactly
n = dimV eigenvalues (counting multiplicities). Any operator in a complex
vector space V has n eigenvalues (counting multiplicities); an operator in a
real space, on the other hand, could have no real eigenvalues.

We will, as it is customary in the spectral theory, treat real matrices as
operators in the complex space Cn, thus allowing complex eigenvalues and
eigenvectors. Unless otherwise specified we will mean by the diagonalization
of a matrix its complex diagonalization, i.e. a representation A = SDS−1

where matrices S and D can have complex entries.

The question when a real matrix admits a real diagonalization (A =
SDS−1 with real matrices S and D) is in fact a very simple one, see Theorem
2.9 below.

2.2. Some motivations: functions of operators. Let the matrix of an
operator A in a basis B = b1,b2, . . . ,bn is a diagonal one given by (2.1).
Then it is easy to find an Nth power of the operator A. Namely, the matrix
of AN in the basis B is

[AN ]BB = diag{λN1 , λN2 , . . . , λNn } =


λN1

λN2
0

. . .

0 λNn

 .

Moreover, functions of the operator are also very easy to compute: for ex-

ample the operator (matrix) exponent etA is defined as etA = I+tA+
t2A2

2!
+

t3A3

3!
+ . . . =

∞∑
k=0

tkAk

k!
, and its matrix in the basis B is

[etA]BB = diag{eλ1t, eλ2t, . . . , eλnt} =


eλ1t

eλ2t
0

. . .

0 eλnt

 .

Let now A be an operator in Fn. To find the matrices of the operators
AN and etA in the standard basis S, we need to recall that the change of
coordinate matrix [I]SB is the matrix with columns b1,b2, . . . ,bn. Let us
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call this matrix S, then according to the change of coordinates formula we
have

A = [A]SS = S


λ1

λ2
0

. . .

0 λn

S−1 = SDS−1,

where we use D for the diagonal matrix in the middle.

Similarly

AN = SDNS−1 = S


λN1

λN2
0

. . .

0 λNn

S−1 ,

and similarly for etA.

Another way of thinking about powers (or other functions) of diagonaliz-
able operators is to see that if operator A can be represented as A = SDS−1,
then

AN = (SDS−1)(SDS−1) . . . (SDS−1)︸ ︷︷ ︸
N times

= SDNS−1

and it is easy to compute the Nth power of a diagonal matrix.

2.3. The case of n distinct eigenvalues. We now present very simple
sufficient condition for an operator to be diagonalizable, see Corollary 2.3
below.

Theorem 2.2. Let λ1, λ2, . . . , λr be distinct eigenvalues of A, and let
v1,v2, . . . ,vr be the corresponding eigenvectors. Then vectors v1,v2, . . . ,vr
are linearly independent.

Proof. We will use induction on r. The case r = 1 is trivial, because by
the definition an eigenvector is non-zero, and a system consisting of one
non-zero vector is linearly independent.

Suppose that the statement of the theorem is true for r − 1. Suppose
there exists a non-trivial linear combination

(2.2) c1v1 + c2v2 + . . .+ crvr =

r∑
k=1

ckvk = 0.

Applying A − λrI to (2.2) and using the fact that (A − λrI)vr = 0 we
get

r−1∑
k=1

ck(λk − λr)vk = 0.
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By the induction hypothesis vectors v1,v2, . . . ,vr−1 are linearly indepen-
dent, so ck(λk − λr) = 0 for k = 1, 2, . . . , r − 1. Since λk 6= λr we can
conclude that ck = 0 for k < r. Then it follows from (2.2) that cr = 0,
i.e. we have the trivial linear combination. �

Corollary 2.3. If an operator A : V → V has exactly n = dimV distinct While very simple,
this is a very impor-
tant statement, and
it will be used a lot!
Please remember it.

eigenvalues, then it is diagonalizable.

Proof. For each eigenvalue λk let vk be a corresponding eigenvector (just
pick one eigenvector for each eigenvalue). By Theorem 2.2 the system
v1,v2, . . . ,vn is linearly independent, and since it consists of exactly n =
dimV vectors it is a basis. �

2.4. Bases of subspaces (AKA direct sums of subspaces). To de-
scribe diagonalizable operators we need to introduce some new definitions.

Let V1, V2, . . . , Vp be subspaces of a vector space V . We say that the
system of subspaces is a basis in V if any vector v ∈ V admits a unique
representation as a sum

(2.3) v = v1 + v2 + . . .+ vp =

p∑
k=1

vk, vk ∈ Vk.

We also say, that a system of subspaces V1, V2, . . . , Vp is linearly independent
if the equation

v1 + v2 + . . .+ vp = 0, vk ∈ Vk
has only trivial solution (vk = 0 ∀k = 1, 2, . . . , p).

Another way to phrase that is to say that a system of subspaces
V1, V2, . . . , Vp is linearly independent if and only if any system of non-zero
vectors vk, where vk ∈ Vk, is linearly independent.

We say that the system of subspaces V1, V2, . . . , Vp is generating (or
complete, or spanning) if any vector v ∈ V admits representation as (2.3)
(not necessarily unique).

Remark 2.4. From the above definition one can immediately see that The-
orem 2.2 in fact states that the system of eigenspaces Ek of an operator
A

Ek := Ker(A− λkI), λk ∈ σ(A),

is linearly independent.

Remark 2.5. It is easy to see that similarly to the bases of vectors, a
system of subspaces V1, V2, . . . , Vp is a basis if and only if it is generating
and linearly independent. We leave the proof of this fact as an exercise for
the reader.
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There is a simple example of a basis of subspaces. Let V be a vector
space with a basis v1,v2, . . . ,vn. Split the set of indices 1, 2, . . . , n into
p subsets Λ1,Λ2, . . . ,Λp, and define subspaces Vk := span{vj : j ∈ Λk}.
Clearly the subspaces Vk form a basis of V .

The following theorem shows that in the finite-dimensional case it is
essentially the only possible example of a basis of subspaces.

Theorem 2.6. Let V1, V2, . . . , Vp be a basis of subspaces, and let us have
in each subspace Vk a basis (of vectors) Bk2. Then the union ∪kBk of these
bases is a basis in V .

To prove the theorem we need the following lemma

Lemma 2.7. Let V1, V2, . . . , Vp be a linearly independent family of subspac-
es, and let us have in each subspace Vk a linearly independent system Bk of
vectors 3 Then the union B := ∪kBk is a linearly independent system.

Proof. The proof of the lemma is almost trivial, if one thinks a bit about
it. The main difficulty in writing the proof is a choice of a appropriate
notation. Instead of using two indices (one for the number k and the other
for the number of a vector in Bk, let us use “flat” notation.

Namely, let n be the number of vectors in B := ∪kBk. Let us order the
set B, for example as follows: first list all vectors from B1, then all vectors
in B2, etc, listing all vectors from Bp last.

This way, we index all vectors in B by integers 1, 2, . . . , n, and the set of
indices {1, 2, . . . , n} splits into the sets Λ1,Λ2, . . . ,Λp such that the set Bk
consists of vectors bj : j ∈ Λk.

Suppose we have a non-trivial linear combination

(2.4) c1b1 + c2b2 + . . .+ cnbn =

n∑
j=1

cjbj = 0.

Denote

vk =
∑
j∈Λk

cjbj .

Then (2.4) can be rewritten as

v1 + v2 + . . .+ vp = 0.

2We do not list the vectors in Bk, one just should keep in mind that each Bk consists of
finitely many vectors in Vk

3Again, here we do not name each vector in Bk individually, we just keep in mind that each

set Bk consists of finitely many vectors.



2. Diagonalization. 111

Since vk ∈ Vk and the system of subspaces Vk is linearly independent, vk = 0
∀k. Than means that for every k∑

j∈Λk

cjbj = 0,

and since the system of vectors bj : j ∈ Λk (i.e. the system Bk) are linearly
independent, we have cj = 0 for all j ∈ Λk. Since it is true for all Λk, we
can conclude that cj = 0 for all j. �

Proof of Theorem 2.6. To prove the theorem we will use the same nota-
tion as in the proof of Lemma 2.7, i.e. the system Bk consists of vectors bj ,
j ∈ Λk.

Lemma 2.7 asserts that the system of vectors bj , j = 1, 2, . . . , n is lin-
early independent, so it only remains to show that the system is complete.

Since the system of subspaces V1, V2, . . . , Vp is a basis, any vector v ∈ V
can be represented as

v = v1 + v2 + . . .+ vp =

p∑
k=1

vk, vk ∈ Vk.

Since the vectors bj , j ∈ Λk form a basis in Vk, the vectors vk can be
represented as

vk =
∑
j∈Λk

cjbj ,

and therefore v =
∑n

j=1 cjbj . �

2.5. Criterion of diagonalizability. First of all let us recall a simple
necessary condition. Since the eigenvalues (counting multiplicities) of a di-
agonal matrix D = diag{λ1, λ2, . . . , λn} are exactly λ1, λ2, . . . , λn, we see
that if an operator A : V → V is diagonalizable, it has exactly n = dimV
eigenvalues (counting multiplicities).

Theorem below holds for both real and complex vector spaces (and even
for spaces over genera fields).

Theorem 2.8. Let an operator A : V → V has exactly n = dimV eigen-
values (counting multiplicities)4. Then A is diagonalizable if and only if
for each eigenvalue λ the dimension of the eigenspace Ker(A− λI) (i.e. the
geometric multiplicity of λ) coincides with the algebraic multiplicity of λ.

Proof. First of all let us note, that for a diagonal matrix, the algebraic
and geometric multiplicities of eigenvalues coincide, and therefore the same
holds for the diagonalizable operators.

4Since any operator in a complex vector space has exactly n eigenvalues (counting multiplic-
ities), this assumption is moot in the complex case.
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Let us now prove the other implication. Let λ1, λ2, . . . , λp be eigenval-
ues of A, and let Ek := Ker(A − λkI) be the corresponding eigenspaces.
According to Remark 2.4, the subspaces Ek, k = 1, 2, . . . , p are linearly
independent.

Let Bk be a basis in Ek. By Lemma 2.7 the system B = ∪kBk is a
linearly independent system of vectors.

We know that each Bk consists of dimEk(= multiplicity of λk) vectors.
So the number of vectors in B equal to the sum of multiplicities of eigen-
values λk. But the sum of multiplicities of the eigenvalues is the number of
eigenvalues counting multiplicities, which is exactly n = dimV . So, we have
a linearly independent system of n = dimV eigenvectors, which means it is
a basis. �

2.6. Real factorization. The theorem below is, in fact, already proven (iT
is essentially Theorem 2.8 for real spaces). We state it here to summarize
the situation with real diagonalization of real matrices.

Theorem 2.9. A real n× n matrix A admits a real factorization (i.e. rep-
resentation A = SDS−1 where S and D are real matrices, D is diagonal
and S is invertible) if and only if it admits complex factorization and all
eigenvalues of A are real.

2.7. Some example.

2.7.1. Real eigenvalues. Consider the matrix

A =

(
1 2
8 1

)
.

Its characteristic polynomial is equal to∣∣∣∣ 1− λ 2
8 1− λ

∣∣∣∣ = (1− λ)2 − 16

and its roots (eigenvalues) are λ = 5 and λ = −3. For the eigenvalue λ = 5

A− 5I =

(
1− 5 2

8 1− 5

)
=

(
−4 2
8 −4

)
A basis in its nullspace consists of one vector (1, 2)T , so this is the corre-
sponding eigenvector.

Similarly, for λ = −3

A− λI = A+ 3I =

(
4 2
8 4

)
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and the eigenspace Ker(A + 3I) is spanned by the vector (1,−2)T . The
matrix A can be diagonalized as

A =

(
1 2
8 1

)
=

(
1 1
2 −2

)(
5 0
0 −3

)(
1 1
2 −2

)−1

2.7.2. Complex eigenvalues. Consider the matrix

A =

(
1 2
−2 1

)
.

Its characteristic polynomial is∣∣∣∣ 1− λ 2
−2 1− λ

∣∣∣∣ = (1− λ)2 + 22

and the eigenvalues (roots of the characteristic polynomial are λ = 1 ± 2i.
For λ = 1 + 2i

A− λI =

(
−2i 2
−2 −2i

)
This matrix has rank 1, so the eigenspace Ker(A − λT ) is spanned by one
vector, for example by (1, i)T .

Since the matrix A is real, we do not need to compute an eigenvector
for λ = 1− 2i: we can get it for free by taking the complex conjugate of the
above eigenvector, see Exercise 2.2 below. So, for λ = 1−2i a corresponding
eigenvector is (1,−i)T , and so the matrix A can be diagonalized as

A =

(
1 1
i −i

)(
1 + 2i 0

0 1− 2i

)(
1 1
i −i

)−1

.

2.7.3. A non-diagonalizable matrix. Consider the matrix

A =

(
1 1
0 1

)
.

Its characteristic polynomial is∣∣∣∣ 1− λ 1
0 1− λ

∣∣∣∣ = (1− λ)2,

so A has an eigenvalue 1 of multiplicity 2. But, it is easy to see that
dim Ker(A − I) = 1 (1 pivot, so 2 − 1 = 1 free variable). Therefore, the
geometric multiplicity of the eigenvalue 1 is different from its algebraic mul-
tiplicity, so A is not diagonalizable.

There is also an explanation which does not use Theorem 2.8. Namely,
we got that the eigenspace Ker(A− 1I) is one dimensional (spanned by the
vector (1, 0)T ). If A were diagonalizable, it would have a diagonal form
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(
1 0
0 1

)
in some basis,5 and so the dimension of the eigenspace wold be 2.

Therefore A cannot be diagonalized.

Exercises.

2.1. Let A be n× n matrix. True or false:

a) AT has the same eigenvalues as A.

b) AT has the same eigenvectors as A.

c) If A is is diagonalizable, then so is AT .

Justify your conclusions.

2.2. Let A be a square matrix with real entries, and let λ be its complex eigenvalue.
Suppose v = (v1, v2, . . . , vn)T is a corresponding eigenvector, Av = λv. Prove that
the λ is an eigenvalue of A and Av = λv. Here v is the complex conjugate of the
vector v, v := (v1, v2, . . . , vn)T .

2.3. Let

A =

(
4 3
1 2

)
.

Find A2004 by diagonalizing A.

2.4. Construct a matrix A with eigenvalues 1 and 3 and corresponding eigenvectors
(1, 2)T and (1, 1)T . Is such a matrix unique?

2.5. Diagonalize the following matrices, if possible:

a)

(
4 −2
1 1

)
.

b)

(
−1 −1

6 4

)
.

c)

 −2 2 6
5 1 −6
−5 2 9

 (λ = 2 is one of the eigenvalues)

2.6. Consider the matrix

A =

 2 6 −6
0 5 −2
0 0 4

 .

a) Find its eigenvalues. Is it possible to find the eigenvalues without comput-
ing?

b) Is this matrix diagonalizable? Find out without computing anything.

c) If the matrix is diagonalizable, diagonalize it.

5Note, that the only linear transformation having matrix

(
1 0

0 1

)
in some basis is the

identity transformation I. Since A is definitely not the identity, we can immediately conclude

that A cannot be diagonalized, so counting dimension of the eigenspace is not necessary.
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2.7. Diagonalize the matrix  2 0 6
0 2 4
0 0 4

 .

2.8. Find all square roots of the matrix

A =

(
5 2
−3 0

)
i.e. find all matrices B such that B2 = A. Hint: Finding a square root of a
diagonal matrix is easy. You can leave your answer as a product.

2.9. Let us recall that the famous Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

is defined as follows: we put ϕ0 = 0, ϕ1 = 1 and define

ϕn+2 = ϕn+1 + ϕn.

We want to find a formula for ϕn. To do this

a) Find a 2× 2 matrix A such that(
ϕn+2

ϕn+1

)
= A

(
ϕn+1

ϕn

)
Hint: Combine the trivial equation ϕn+1 = ϕn+1 with the Fibonacci
relation ϕn+2 = ϕn+1 + ϕn.

b) Diagonalize A and find a formula for An.

c) Noticing that(
ϕn+1

ϕn

)
= An

(
ϕ1

ϕ0

)
= An

(
1
0

)
find a formula for ϕn. (You will need to compute an inverse and perform
multiplication here).

d) Show that the vector (ϕn+1/ϕn, 1)T converges to an eigenvector of A.
What do you think, is it a coincidence?

2.10. Let A be a 5 × 5 matrix with 3 eigenvalues (not counting multiplicities).
Suppose we know that one eigenspace is three-dimensional. Can you say if A is
diagonalizable?

2.11. Give an example of a 3× 3 matrix which cannot be diagonalized. After you
constructed the matrix, can you make it “generic”, so no special structure of the
matrix could be seen?

2.12. Let a non-zero matrix A satisfy A5 = 0. Prove that A cannot be diagonalized.
More generally, any non-zero nilpotent matrix, i.e. a non-zero matrix satisfying
AN = 0 for some N cannot be diagonalized.

2.13. Eigenvalues of a transposition:
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a) Consider the transformation T in the space M2×2 of 2×2 matrices, T (A) =
AT . Find all its eigenvalues and eigenvectors. Is it possible to diagonalize
this transformation? Hint: While it is possible to write a matrix of this
linear transformation in some basis, compute characteristic polynomial,
and so on, it is easier to find eigenvalues and eigenvectors directly from the
definition.

b) Can you do the same problem but in the space of n× n matrices?

2.14. Prove that two subspaces V1 and V2 are linearly independent if and only if
V1 ∩ V2 = {0}.



Chapter 5

Inner product spaces

Theory of inner product spaces is developed only for real and complex spaces,
so F in this Chapter is always R or C; the results usually do not generalize
to spaces over arbitrary fields.

Most of the results and calculations in this chapter hold (and the results
have the same statements) in both real and complex cases. In rare situations
when there is a difference between real and complex case, we state explicitly
which case is considered: otherwise everything holds for both cases.

Finally, when the results and calculations hold for both complex and
real cases, we use formulas for the complex case; in the real case they give
correct, although sometimes a bit more complicated, formulas.

1. Inner product in Rn and Cn. Inner product spaces.

1.1. Inner product and norm in Rn. In dimensions 2 and 3, we defined
the length of a vector x (i.e. the distance from its endpoint to the origin) by
the Pythagorean rule, for example in R3 the length of the vector is defined
as

‖x‖ =
√
x2

1 + x2
2 + x2

3.

It is natural to generalize this formula for all n, to define the norm of the
vector x ∈ Rn as

‖x‖ =
√
x2

1 + x2
2 + . . .+ x2

n.

The word norm is used as a fancy replacement for the word length.

117
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The dot product in R3 was defined as x · y = x1y2 + x2y2 + x3y3, where
x = (x1, x2, x3)T and y = (y1, y2, y3)T .

Similarly, in Rn one can define the inner product (x,y) of two vectorsWhile the notation
x · y and term “dot
product” is often
used for the inner
product, for reasons
which will be clear
later, we prefer the
notation (x,y)

x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T by

(x,y) := x1y1 + x2y2 + . . .+ xnyn = yTx,

so ‖x‖ =
√

(x,x).

Note, that yTx = xTy, and we use the notation yTx only to be consis-
tent.

1.2. Inner product and norm in Cn. Let us now define norm and inner
product for Cn. As we have seen before, the complex space Cn is the most
natural space from the point of view of spectral theory: even if one starts
from a matrix with real coefficients (or operator on a real vectors space),
the eigenvalues can be complex, and one needs to work in a complex space.

For a complex number z = x+ iy, we have |z|2 = x2 +y2 = zz. If z ∈ Cn
is given by

z =


z1

z2
...
zn

 =


x1 + iy1

x2 + iy2
...

xn + iyn

 ,

it is natural to define its norm ‖z‖ by

‖z‖2 =
n∑
k=1

(x2
k + y2

k) =
n∑
k=1

|zk|2.

Let us try to define an inner product on Cn such that ‖z‖2 = (z, z). One of
the choices is to define (z,w) by

(z,w) = z1w1 + z2w2 + . . .+ znwn =

n∑
k=1

zkwk,

and that will be our definition of the standard inner product in Cn.

To simplify the notation, let us introduce a new notion. For a matrix

A let us define its Hermitian adjoint, or simply adjoint A∗ by A∗ = A
T

,
meaning that we take the transpose of the matrix, and then take the complex
conjugate of each entry. Note, that for a real matrix A, A∗ = AT .

Using the notion of A∗, one can write the standard inner product in Cn
as

(z,w) = w∗z.
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Remark. It is easy to see that one can define a different inner product in Cn such
that ‖z‖2 = (z, z), namely the inner product given by

(z,w)1 = z1w1 + z2w2 + . . .+ znwn = z∗w.

We did not specify what properties we want the inner product to satisfy, but z∗w
and w∗z are the only reasonable choices giving ‖z‖2 = (z, z).

Note, that the above two choices of the inner product are essentially equivalent:
the only difference between them is notational, because (z,w)1 = (w, z).

While the second choice of the inner product looks more natural, the first one,
(z,w) = w∗z is more widely used, so we will use it as well.

1.3. Inner product spaces. The inner product we defined for Rn and Cn
satisfies the following properties:

1. (Conjugate) symmetry: (x,y) = (y,x); note, that for a real space,
this property is just symmetry, (x,y) = (y,x);

2. Linearity: (αx + βy, z) = α(x, z) + β(y, z) for all vector x,y, z and
all scalars α, β;

3. Non-negativity: (x,x) ≥ 0 ∀x;

4. Non-degeneracy: (x,x) = 0 if and only if x = 0.

Let V be a (complex or real) vector space. An inner product on V is a
function, that assign to each pair of vectors x, y a scalar, denoted by (x,y)
such that the above properties 1–4 are satisfied.

Note that for a real space V we assume that (x,y) is always real, and
for a complex space the inner product (x,y) can be complex.

A space V together with an inner product on it is called an inner product
space. Given an inner product space, one defines the norm on it by

‖x‖ =
√

(x,x).

1.3.1. Examples.

Example 1.1. Let V be Rn or Cn. We already have an inner product
(x,y) = y∗x =

∑n
k=1 xkyk defined above.

This inner product is called the standard inner product in Rn or Cn

We will use symbol F to denote both C and R. When we have some
statement about the space Fn, it means the statement is true for both Rn
and Cn.

Example 1.2. Let V be the space Pn of polynomials of degree at most n.
Define the inner product by

(f, g) =

∫ 1

−1
f(t)g(t)dt.
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It is easy to check, that the above properties 1–4 are satisfied.

This definition works both for complex and real cases. In the real case
we only allow polynomials with real coefficients, and we do not need the
complex conjugate here.

Let us recall, that for a square matrix A, its trace is defined as the sum
of the diagonal entries,

traceA :=

n∑
k=1

ak,k.

Example 1.3. For the space Mm×n of m × n matrices let us define the
so-called Frobenius inner product by

(A,B) = trace(B∗A).

Again, it is easy to check that the properties 1–4 are satisfied, i.e. that we
indeed defined an inner product.

Note, that

trace(B∗A) =
∑
j,k

Aj,kBj,k,

so this inner product coincides with the standard inner product in Cmn.

1.4. Properties of inner product. The statements we get in this section
are true for any abstract inner product space, not only for Fn. To prove them
we use only properties 1–4 of the inner product.

First of all let us notice, that properties 1 and 2 imply that

2′. (x, αy + βz) = α(x,y) + β(x, z).

Indeed,

(x, αy + βz) = (αy + βz,x) = α(y,x) + β(z,x) =

= α(y,x) + β (z,x) = α(x,y) + β(x, z)

Note also that property 2 implies that for all vectors x

(0,x) = (x,0) = 0.

Lemma 1.4. Let x be a vector in an inner product space V . Then x = 0 if
and only if

(1.1) (x,y) = 0 ∀y ∈ V.

Proof. Since (0,y) = 0 we only need to show that (1.1) implies x = 0.
Putting y = x in (1.1) we get (x,x) = 0, so x = 0. �

Applying the above lemma to the difference x− y we get the following
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Corollary 1.5. Let x,y be vectors in an inner product space V . The equality
x = y holds if and only if

(x, z) = (y, z) ∀z ∈ V.

The following corollary is very simple, but will be used a lot

Corollary 1.6. Suppose two operators A,B : X → Y satisfy

(Ax,y) = (Bx,y) ∀x ∈ X, ∀y ∈ Y.
Then A = B.

Proof. By the previous corollary (fix x and take all possible y’s) we get
Ax = Bx. Since this is true for all x ∈ X, the transformations A and B
coincide. �

The following property relates the norm and the inner product.

Theorem 1.7 (Cauchy–Schwarz inequality).

|(x,y)| ≤ ‖x‖ · ‖y‖.

Proof. The proof we are going to present, is not the shortest one, but it
shows where the main ideas came from.

Let us consider the real case first. If y = 0, the statement is trivial, so
we can assume that y 6= 0. By the properties of an inner product, for all
scalar t

0 ≤ ‖x− ty‖2 = (x− ty,x− ty) = ‖x‖2 − 2t(x,y) + t2‖y‖2.

In particular, this inequality should hold for t = (x,y)
‖y‖2

1, and for this point

the inequality becomes

0 ≤ ‖x‖2 − 2
(x,y)2

‖y‖2 +
(x,y)2

‖y‖2 = ‖x‖2 − (x,y)2

‖y‖2 ,

which is exactly the inequality we need to prove.

There are several possible ways to treat the complex case. One is to
replace x by αx, where α is a complex constant, |α| = 1 such that (αx,y)
is real, and then repeat the proof for the real case.

The other possibility is again to consider

0 ≤ ‖x− ty‖2 = (x− ty,x− ty) = (x,x− ty)− t(y,x− ty)

= ‖x‖2 − t(y,x)− t(x,y) + |t|2‖y‖2.

1That is the point where the above quadratic polynomial has a minimum: it can be computed,
for example by taking the derivative in t and equating it to 0
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Substituting t = (x,y)
‖y‖2 = (y,x)

‖y‖2 into this inequality, we get

0 ≤ ‖x‖2 − |(x,y)|2
‖y‖2

which is the inequality we need.

Note, that the above paragraph is in fact a complete formal proof of the
theorem. The reasoning before that was only to explain why do we need to
pick this particular value of t. �

An immediate Corollary of the Cauchy–Schwarz Inequality is the follow-
ing lemma.

Lemma 1.8 (Triangle inequality). For any vectors x, y in an inner product
space

‖x + y‖ ≤ ‖x‖+ ‖y‖.

Proof.

‖x + y‖2 = (x + y,x + y) = ‖x‖2 + ‖y‖2 + (x,y) + (y,x)

≤ ‖x‖2 + ‖y‖2 + 2|(x,y)|
≤ ‖x‖2 + ‖y‖2 + 2‖x‖ · ‖y‖ = (‖x‖+ ‖y‖)2.

�

The following polarization identities allow one to reconstruct the inner
product from the norm:

Lemma 1.9 (Polarization identities). For x,y ∈ V

(x,y) =
1

4

(
‖x + y‖2 − ‖x− y‖2

)
if V is a real inner product space, and

(x,y) =
1

4

∑
α=±1,±i

α‖x + αy‖2

if V is a complex inner product space.

The lemma is proved by direct computation. We leave the proof as an
exercise for the reader.

Another important property of the norm in an inner product space can
be also checked by direct calculation.

Lemma 1.10 (Parallelogram Identity). For any vectors u,v

‖u + v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).
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In 2-dimensional space this lemma relates sides of a parallelogram with
its diagonals, which explains the name. It is a well-known fact from planar
geometry.

1.5. Norm. Normed spaces. We have proved before that the norm ‖v‖
satisfies the following properties:

1. Homogeneity: ‖αv‖ = |α| · ‖v‖ for all vectors v and all scalars α.

2. Triangle inequality: ‖u + v‖ ≤ ‖u‖+ ‖v‖.
3. Non-negativity: ‖v‖ ≥ 0 for all vectors v.

4. Non-degeneracy: ‖v‖ = 0 if and only if v = 0.

Suppose in a vector space V we assigned to each vector v a number ‖v‖
such that above properties 1–4 are satisfied. Then we say that the function
v 7→ ‖v‖ is a norm. A vector space V equipped with a norm is called a
normed space.

Any inner product space is a normed space, because the norm ‖v‖ =√
(v,v) satisfies the above properties 1–4. However, there are many other

normed spaces. For example, given p, 1 ≤ p < ∞ one can define the norm
‖ · ‖p on Rn or Cn by

‖x‖p = (|x1|p + |x2|p + . . .+ |xn|p)1/p =

(
n∑
k=1

|xk|p
)1/p

.

One can also define the norm ‖ · ‖∞ (p =∞) by

‖x‖∞ = max{|xk| : k = 1, 2, . . . , n}.
The norm ‖ · ‖p for p = 2 coincides with the regular norm obtained from
the inner product.

To check that ‖ · ‖p is indeed a norm one has to check that it satisfies
all the above properties 1–4. Properties 1, 3 and 4 are very easy to check,
we leave it as an exercise for the reader. The triangle inequality (property
2) is easy to check for p = 1 and p =∞ (and we proved it for p = 2).

For all other p the triangle inequality is true, but the proof is not so
simple, and we will not present it here. The triangle inequality for ‖ · ‖p
even has special name: its called Minkowski inequality, after the German
mathematician H. Minkowski.

Note, that the norm ‖ · ‖p for p 6= 2 cannot be obtained from an inner
product. It is easy to see that this norm is not obtained from the standard
inner product in Rn (Cn). But we claim more! We claim that it is impossible
to introduce an inner product which gives rise to the norm ‖ · ‖p, p 6= 2.

This statement is actually quite easy to prove. By Lemma 1.10 any norm
obtained from an inner product must satisfy the Parallelogram Identity. It
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is easy to see that the Parallelogram Identity fails for the norm ‖ · ‖p, p 6= 2,
and one can easily find a counterexample in R2, which then gives rise to a
counterexample in all other spaces.

In fact, the Parallelogram Identity, as the theorem below asserts, com-
pletely characterizes norms obtained from an inner product.

Theorem 1.11. A norm in a normed space is obtained from some inner
product if and only if it satisfies the Parallelogram Identity

‖u + v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2) ∀u,v ∈ V.

Lemma 1.10 asserts that a norm obtained from an inner product satisfies
the Parallelogram Identity.

The converse implication is more complicated. If we are given a norm,
and this norm came from an inner product, then we do not have any choice;
this inner product must be given by the polarization identities, see Lemma
1.9. But, we need to show that (x,y) which we got from the polarization
identities is indeed an inner product, i.e. that it satisfies all the properties.

It is indeed possible to verify that if the norm satisfies the parallelogram
identity then the inner product (x,y) obtained from the polarization iden-
tities is indeed an inner product (i.e. satisfies all the properties of an inner
product). However, the proof is a bit too involved, so we do not present it
here.

Exercises.

1.1. Compute

(3 + 2i)(5− 3i),
2− 3i

1− 2i
, Re

(
2− 3i

1− 2i

)
, (1 + 2i)3, Im((1 + 2i)3).

1.2. For vectors x = (1, 2i, 1 + i)T and y = (i, 2− i, 3)T compute

a) (x,y), ‖x‖2, ‖y‖2, ‖y‖;
b) (3x, 2iy), (2x, ix + 2y);

c) ‖x + 2y‖.
Remark: After you have done part a), you can do parts b) and c) without actually
computing all vectors involved, just by using the properties of inner product.

1.3. Let ‖u‖ = 2, ‖v‖ = 3, (u,v) = 2 + i. Compute

‖u + v‖2, ‖u− v‖2, (u + v,u− iv), (u + 3iv, 4iu).

1.4. Prove that for vectors in a inner product space

‖x± y‖2 = ‖x‖2 + ‖y‖2 ± 2 Re(x,y)

Recall that Re z = 1
2 (z + z)

1.5. Explain why each of the following is not an inner product on a given vector
space:
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a) (x,y) = x1y1 − x2y2 on R2;

b) (A,B) = trace(A+B) on the space of real 2× 2 matrices’

c) (f, g) =
∫ 1

0
f ′(t)g(t)dt on the space of polynomials; f ′(t) denotes derivative.

1.6 (Equality in Cauchy–Schwarz inequality). Prove that

|(x,y)| = ‖x‖ · ‖y‖
if and only if one of the vectors is a multiple of the other. Hint: Analyze the proof
of the Cauchy–Schwarz inequality.

1.7. Prove the parallelogram identity for an inner product space V ,

‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

1.8. Let v1,v2, . . . ,vn be a spanning set (in particular, a basis) in an inner product
space V . Prove that

a) If (x,v) = 0 for all v ∈ V , then x = 0;

b) If (x,vk) = 0 ∀k, then x = 0;

c) If (x,vk) = (y,vk) ∀k, then x = y.

1.9. Consider the space R2 with the norm ‖ · ‖p, introduced in Section 1.5. For
p = 1, 2,∞, draw the “unit ball” Bp in the norm ‖ · ‖p

Bp := {x ∈ R2 : ‖x‖p ≤ 1}.
Can you guess what the balls Bp for other p look like?

2. Orthogonality. Orthogonal and orthonormal bases.

Definition 2.1. Two vectors u and v are called orthogonal (also perpen-
dicular) if (u,v) = 0. We will write u ⊥ v to say that the vectors are
orthogonal.

Note, that for orthogonal vectors u and v we have the following, so-called
Pythagorean identity:

‖u + v‖2 = ‖u‖2 + ‖v‖2 if u ⊥ v.

The proof is straightforward computation,

‖u + v‖2 = (u + v,u + v) = (u,u) + (v,v) + (u,v) + (v,u) = ‖u‖2 + ‖v‖2

((u,v) = (v,u) = 0 because of orthogonality).

Definition 2.2. We say that a vector v is orthogonal to a subspace E if v
is orthogonal to all vectors w in E.

We say that subspaces E and F are orthogonal if all vectors in E are
orthogonal to F , i.e. all vectors in E are orthogonal to all vectors in F

The following lemma shows how to check that a vector is orthogonal to
a subspace.
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Lemma 2.3. Let E be spanned by vectors v1,v2, . . . ,vr. Then v ⊥ E if
and only if

v ⊥ vk, ∀k = 1, 2, . . . , r.

Proof. By the definition, if v ⊥ E then v is orthogonal to all vectors in E.
In particular, v ⊥ vk, k = 1, 2, . . . , r.

On the other hand, let v ⊥ vk, k = 1, 2, . . . , r. Since the vectors vk span
E, any vector w ∈ E can be represented as a linear combination

∑r
k=1 αkvk.

Then

(v,w) =
r∑

k=1

αk(v,vk) = 0,

so v ⊥ w. �

Definition 2.4. A system of vectors v1,v2, . . . ,vn is called orthogonal if
any two vectors are orthogonal to each other (i.e. if (vj ,vk) = 0 for j 6= k).

If, in addition ‖vk‖ = 1 for all k, we call the system orthonormal.

Lemma 2.5 (Generalized Pythagorean identity). Let v1,v2, . . . ,vn be an
orthogonal system. Then∥∥∥∥∥

n∑
k=1

αkvk

∥∥∥∥∥
2

=
n∑
k=1

|αk|2‖vk‖2

This formula looks particularly simple for orthonormal systems, where
‖vk‖ = 1.

Proof of the Lemma.∥∥∥∥∥
n∑
k=1

αkvk

∥∥∥∥∥
2

=
( n∑
k=1

αkvk,
n∑
j=1

αjvj

)
=

n∑
k=1

n∑
j=1

αkαj(vk,vj).

Because of orthogonality (vk,vj) = 0 if j 6= k. Therefore we only need to
sum the terms with j = k, which gives exactly

n∑
k=1

|αk|2(vk,vk) =

n∑
k=1

|αk|2‖vk‖2.

�

Corollary 2.6. Any orthogonal system v1,v2, . . . ,vn of non-zero vectors is
linearly independent.

Proof. Suppose for some α1, α2, . . . , αn we have
∑n

k=1 αkvk = 0. Then by
the Generalized Pythagorean identity (Lemma 2.5)

0 = ‖0‖2 =

n∑
k=1

|αk|2‖vk‖2.
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Since ‖vk‖ 6= 0 (vk 6= 0) we conclude that

αk = 0 ∀k,
so only the trivial linear combination gives 0. �

Remark. In what follows we will usually mean by an orthogonal system an
orthogonal system of non-zero vectors. Since the zero vector 0 is orthogonal
to everything, it always can be added to any orthogonal system, but it is
really not interesting to consider orthogonal systems with zero vectors.

2.1. Orthogonal and orthonormal bases.

Definition 2.7. An orthogonal (orthonormal) system v1,v2, . . . ,vn which
is also a basis is called an orthogonal (orthonormal) basis.

It is clear that in dimV = n then any orthogonal system of n non-zero
vectors is an orthogonal basis.

As we studied before, to find coordinates of a vector in a basis one
needs to solve a linear system. However, for an orthogonal basis finding
coordinates of a vector is much easier. Namely, suppose v1,v2, . . . ,vn is an
orthogonal basis, and let

x = α1v1 + α2v2 + . . .+ αnvn =

n∑
j=1

αjvj .

Taking inner product of both sides of the equation with v1 we get

(x,v1) =
n∑
j=1

αj(vj ,v1) = α1(v1,v1) = α1‖v1‖2

(all inner products (vj ,v1) = 0 if j 6= 1), so

α1 =
(x,v1)

‖v1‖2
.

Similarly, multiplying both sides by vk we get

(x,vk) =

n∑
j=1

αj(vj ,vk) = αk(vk,vk) = αk‖vk‖2

so

(2.1) αk =
(x,vk)

‖vk‖2
.

Therefore,

to find coordinates of a vector in an orthogonal basis one does not
need to solve a linear system, the coordinates are determined by
the formula (2.1).
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This formula is especially simple for orthonormal bases, when ‖vk‖ = 1.

Namely, if v1,v2, . . . ,vn is an orthonormal basis, any vector v can be
represented as

(2.2) v =
n∑
k=1

(v,vk)vk.

This formula is sometimes called (a baby version of) the abstract orthogonal
Fourier decomposition. The classical (non-abstract) Fourier decomposition
deals with a concrete orthonormal system (sines and cosines or complex
exponentials). We call this formula a baby version because the real Fourier
decomposition deals with infinite orthonormal systems.

Remark 2.8. The importance of orthonormal bases is that if we fix an
orthonormal basis in an inner product space V , we can work with coordinates
in this basis the same way we work with vectors in Fn. Namely, as it wasThis is a very impor-

tant remark allowing
one to translate any
statement about the
standard inner prod-
uct space Fn to an
inner product space
with an orthonormal
basis v1,v2, . . . ,vn

discussed in the very beginning of the book, see Remark 2.4 in Chapter
1, if we have a vector space V (over a field F) with a basis v1,v2, . . . ,vn,
then we can perform the standard vector operations (vector addition and
multiplication by a scalar) by working with the columns of coordinates in
the basis v1,v2, . . . ,vn in absolutely the same way we work with vectors in
the standard coordinate space Fn.

Exercise 2.3 below shows that if we have an orthonormal basis in an
inner product space V , we can compute the inner product of 2 vectors in
V by taking columns of their coordinates in this orthonormal basis and
computing the standard inner product (in Cn or Rn) of these columns.

As it will be shown below in Section 3 any finite-dimensional inner prod-
uct space has an orthonormal basis. Thus, the standard inner product spaces
Cn (or Rn in the case of real spaces) are essentially the only examples of a
finite-dimensional inner product spaces.

Exercises.

2.1. Find all vectors in R4 orthogonal to vectors (1, 1, 1, 1)T and (1, 2, 3, 4)T .

2.2. Let A be a real m× n matrix. Describe (RanAT )⊥, (RanA)⊥

2.3. Let v1,v2, . . . ,vn be an orthonormal basis in V .

a) Prove that for any x =
∑n
k=1 αkvk, y =

∑n
k=1 βkvk

(x,y) =

n∑
k=1

αkβk.

b) Deduce from this the Parseval’s identity

(x,y) =

n∑
k=1

(x,vk)(y,vk)
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c) Assume now that v1,v2, . . . ,vn is only an orthogonal basis, not an or-
thonormal one. Can you write down Parseval’s identity in this case?

This problem shows that if we have an orthonormal basis, we can use the
coordinates in this basis absolutely the same way we use the standard coordinates
in Cn (or Rn).

The problem below shows that we can define an inner product by declaring a
basis to be an orthonormal one.

2.4. Let V be a vector space and let v1,v2, . . . ,vn be a basis in V . For x =∑n
k=1 αkvk, y =

∑n
k=1 βkvk define 〈x,y〉 :=

∑n
k=1 αkβ̄k.

Prove that 〈x,y〉 defines an inner product in V .

2.5. Let A be a real m×n matrix. Describe the set of all vectors in Fm orthogonal
to to RanA.

3. Orthogonal projection and Gram-Schmidt
orthogonalization

Recalling the definition of orthogonal projection from the classical planar
(2-dimensional) geometry, one can introduce the following definition. Let E
be a subspace of an inner product space V .

Definition 3.1. For a vector v its orthogonal projection PEv onto the
subspace E is a vector w such that

1. w ∈ E ;

2. v −w ⊥ E.

We will use notation w = PEv for the orthogonal projection.

After introducing an object, it is natural to ask:

1. Does the object exist?

2. Is the object unique?

3. How does one find it?

We will show first that the projection is unique. Then we present a
method of finding the projection, proving its existence.

The following theorem shows why the orthogonal projection is important
and also proves that it is unique.

Theorem 3.2. The orthogonal projection w = PEv minimizes the distance
from v to E, i.e. for all x ∈ E

‖v −w‖ ≤ ‖v − x‖.
Moreover, if for some x ∈ E

‖v −w‖ = ‖v − x‖,
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then x = w.

Proof. Let y = w − x. Then

v − x = v −w + w − x = v −w + y.

Since v −w ⊥ E we have y ⊥ v −w and so by Pythagorean Theorem

‖v − x‖2 = ‖v −w‖2 + ‖y‖2 ≥ ‖v −w‖2.
Note that equality happens only if y = 0 i.e. if x = w. �

The following proposition shows how to find an orthogonal projection if
we know an orthogonal basis in E.

Proposition 3.3. Let v1,v2, . . . ,vr be an orthogonal basis in E. Then the
orthogonal projection PEv of a vector v is given by the formula

P
E

v =
r∑

k=1

αkvk, where αk =
(v,vk)

‖vk‖2
.

In other words

(3.1) P
E

v =

r∑
k=1

(v,vk)

‖vk‖2
vk.

Note that the formula for αk coincides with (2.1), i.e. this formula applied
to an orthogonal system (not a basis) gives us a projection onto its span.

Remark 3.4. It is easy to see now from formula (3.1) that the orthogonal
projection P

E
is a linear transformation.

One can also see linearity of P
E

directly, from the definition and unique-
ness of the orthogonal projection. Indeed, it is easy to check that for any x
and y the vector αx + βy− (αP

E
x− βP

E
y) is orthogonal to any vector in

E, so by the definition P
E

(αx + βy) = αP
E

x + βP
E

y.

Remark 3.5. Recalling the definition of inner product in Cn and Rn one
can get from the above formula (3.1) the matrix of the orthogonal projection
P
E

onto E in Cn (Rn) is given by

(3.2) P
E

=
r∑

k=1

1

‖vk‖2
vkv

∗
k

where columns v1,v2, . . . ,vr form an orthogonal basis in E.

Proof of Proposition 3.3. Let

w :=

r∑
k=1

αkvk, where αk =
(v,vk)

‖vk‖2
.
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We want to show that v − w ⊥ E. By Lemma 2.3 it is sufficient to show
that v −w ⊥ vk, k = 1, 2, . . . , n. Computing the inner product we get for
k = 1, 2, . . . , r

(v −w,vk) = (v,vk)− (w,vk) = (v,vk)−
r∑
j=1

αj(vj ,vk)

= (v,vk)− αk(vk,vk) = (v,vk)−
(v,vk)

‖vk‖2
‖vk‖2 = 0.

�

So, if we know an orthogonal basis in E we can find the orthogonal
projection onto E. In particular, since any system consisting of one vector
is an orthogonal system, we know how to perform orthogonal projection
onto one-dimensional spaces.

But how do we find an orthogonal projection if we are only given a basis
in E? Fortunately, there exists a simple algorithm allowing one to get an
orthogonal basis from a basis.

3.1. Gram-Schmidt orthogonalization algorithm. Suppose we have
a linearly independent system x1,x2, . . . ,xn. The Gram-Schmidt method
constructs from this system an orthogonal system v1,v2, . . . ,vn such that

span{x1,x2, . . . ,xn} = span{v1,v2, . . . ,vn}.

Moreover, for all r ≤ n we get

span{x1,x2, . . . ,xr} = span{v1,v2, . . . ,vr}

Now let us describe the algorithm.

Step 1. Put v1 := x1. Denote by E1 := span{x1} = span{v1}.
Step 2. Define v2 by

v2 = x2 − PE1x2 = x2 −
(x2,v1)

‖v1‖2
v1.

Define E2 = span{v1,v2}. Note that span{x1,x2} = E2.

Step 3. Define v3 by

v3 := x3 − PE2x3 = x3 −
(x3,v1)

‖v1‖2
v1 −

(x3,v2)

‖v2‖2
v2

Put E3 := span{v1,v2,v3}. Note that span{x1,x2,x3} = E3. Note also
that x3 /∈ E2 so v3 6= 0.

. . .
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Step r + 1. Suppose that we already made r steps of the process, con-
structing an orthogonal system (consisting of non-zero vectors) v1,v2, . . . ,vr
such that Er := span{v1,v2, . . . ,vr} = span{x1,x2, . . . ,xr}. Define

vr+1 := xr+1 − PErxr+1 = xr+1 −
r∑

k=1

(xr+1,vk)

‖vk‖2
vk

Note,that xr+1 /∈ Er so vr+1 6= 0.

. . .

Continuing this algorithm we get an orthogonal system v1,v2, . . . ,vn.

3.2. An example. Suppose we are given vectors

x1 = (1, 1, 1)T , x2 = (0, 1, 2)T , x3 = (1, 0, 2)T ,

and we want to orthogonalize it by Gram-Schmidt. On the first step define

v1 = x1 = (1, 1, 1)T .

On the second step we get

v2 = x2 − PE1x2 = x2 −
(x2,v1)

‖v1‖2
v1.

Computing

(x2,v1) =
( 0

1
2

 ,

 1
1
1

) = 3, ‖v1‖2 = 3,

we get

v2 =

 0
1
2

− 3

3

 1
1
1

 =

 −1
0
1

 .

Finally, define

v3 = x3 − PE2x3 = x3 −
(x3,v1)

‖v1‖2
v1 −

(x3,v2)

‖v2‖2
v2.

Computing

( 1
0
2

 ,

 1
1
1

) = 3,
( 1

0
2

 ,

 −1
0
1

) = 1, ‖v1‖2 = 3, ‖v2‖2 = 2

(‖v1‖2 was already computed before) we get

v3 =

 1
0
2

− 3

3

 1
1
1

− 1

2

 −1
0
1

 =

 1
2
−1

1
2


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Remark. Since the multiplication by a scalar does not change the orthog-
onality, one can multiply vectors vk obtained by Gram-Schmidt by any
non-zero numbers.

In particular, in many theoretical constructions one normalizes vectors
vk by dividing them by their respective norms ‖vk‖. Then the resulting
system will be orthonormal, and the formulas will look simpler.

On the other hand, when performing the computations one may want
to avoid fractional entries by multiplying a vector by the least common
denominator of its entries. Thus one may want to replace the vector v3

from the above example by (1,−2, 1)T .

3.3. Orthogonal complement. Decomposition V = E ⊕ E⊥.

Definition. For a subspace E its orthogonal complement E⊥ is the set of
all vectors orthogonal to E,

E⊥ := {x : x ⊥ E}.

If x,y ⊥ E then for any linear combination αx + βy ⊥ E (can you see
why?). Therefore E⊥ is a subspace.

By the definition of orthogonal projection any vector in an inner product
space V admits a unique representation

v = v1 + v2, v1 ∈ E, v2 ⊥ E (eqv. v2 ∈ E⊥)

(where clearly v1 = P
E

v).

This statement is often symbolically written as V = E ⊕ E⊥, which
mean exactly that any vector admits the unique decomposition above.

The following proposition gives an important property of the orthogonal
complement.

Proposition 3.6. For a subspace E

(E⊥)⊥ = E.

The proof is left as an exercise, see Exercise 3.12 below.

Exercises.

3.1. Apply Gram–Schmidt orthogonalization to the system of vectors (1, 2,−2)T ,
(1,−1, 4)T , (2, 1, 1)T .

3.2. Apply Gram–Schmidt orthogonalization to the system of vectors (1, 2, 3)T ,
(1, 3, 1)T . Write the matrix of the orthogonal projection onto 2-dimensional sub-
space spanned by these vectors.



134 5. Inner product spaces

3.3. Complete an orthogonal system obtained in the previous problem to an or-
thogonal basis in R3, i.e. add to the system some vectors (how many?) to get an
orthogonal basis.

Can you describe how to complete an orthogonal system to an orthogonal basis
in general situation of Rn or Cn?

3.4. Find the distance from a vector (2, 3, 1)T to the subspace spanned by the
vectors (1, 2, 3)T , (1, 3, 1)T . Note, that I am only asking to find the distance to the
subspace, not the orthogonal projection.

3.5. Find the orthogonal projection of a vector (1, 1, 1, 1)T onto the subspace
spanned by the vectors v1 = (1, 3, 1, 1)T and v2 = (2,−1, 1, 0)T (note that v1 ⊥ v2).

3.6. Find the distance from a vector (1, 2, 3, 4) to the subspace spanned by the
vectors v1 = (1,−1, 1, 0)T and v2 = (1, 2, 1, 1)T (note that v1 ⊥ v2). Can you find
the distance without actually computing the projection? That would simplify the
calculations.

3.7. True or false: if E is a subspace of V , then dimE+dim(E⊥) = dimV ? Justify.

3.8. Let P be the orthogonal projection onto a subspace E of an inner product space
V , dimV = n, dimE = r. Find the eigenvalues and the eigenvectors (eigenspaces).
Find the algebraic and geometric multiplicities of each eigenvalue.

3.9. (Using eigenvalues to compute determinants).

a) Find the matrix of the orthogonal projection onto the one-dimensional
subspace in Rn spanned by the vector (1, 1, . . . , 1)T ;

b) Let A be the n×n matrix with all entries equal 1. Compute its eigenvalues
and their multiplicities (use the previous problem);

c) Compute eigenvalues (and multiplicities) of the matrix A − I, i.e. of the
matrix with zeroes on the main diagonal and ones everywhere else;

d) Compute det(A− I).

3.10 (Legendre’s polynomials:). Let an inner product on the space of polynomials

be defined by (f, g) =
∫ 1

−1
f(t)g(t)dt. Apply Gram-Schmidt orthogonalization to

the system 1, t, t2, t3.

Legendre’s polynomials are particular case of the so-called orthogonal polyno-
mials, which play an important role in many branches of mathematics.

3.11. Let P = PE be the matrix of an orthogonal projection onto a subspace E.
Show that

a) The matrix P is self-adjoint, meaning that P ∗ = P .

b) P 2 = P .

Remark: The above 2 properties completely characterize orthogonal projection,
i.e. any matrix P satisfying these properties is the matrix of some orthogonal pro-
jection. We will discuss this some time later.
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3.12. Show that for a subspace E we have (E⊥)⊥ = E. Hint: It is easy to see
that E is orthogonal to E⊥ (why?). To show that any vector x orthogonal to E⊥

belongs to E use the decomposition V = E ⊕ E⊥ from Section 3.3 above.

3.13. Suppose P is the orthogonal projection onto a subspace E, and Q is the
orthogonal projection onto the orthogonal complement E⊥.

a) What are P +Q and PQ?

b) Show that P −Q is its own inverse.
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4. Least square solution. Formula for the orthogonal
projection

As it was discussed before in Chapter 2, the equation

Ax = b

has a solution if and only if b ∈ RanA. But what do we do to solve an
equation that does not have a solution?

This seems to be a silly question, because if there is no solution, then
there is no solution. But, situations when we want to solve an equation that
does not have a solution can appear naturally, for example, if we obtained
the equation from an experiment. If we do not have any errors, the right side
b belongs to the column space RanA, and equation is consistent. But, in
real life it is impossible to avoid errors in measurements, so it is possible that
an equation that in theory should be consistent, does not have a solution.
So, what can one do in this situation?

4.1. Least square solution. The simplest idea is to write down the error

‖Ax− b‖
and try to find x minimizing it. If we can find x such that the error is 0,
the system is consistent and we have exact solution. Otherwise, we get the
so-called least square solution.

The term least square arises from the fact that minimizing ‖Ax− b‖ is
equivalent to minimizing

‖Ax− b‖2 =
m∑
k=1

|(Ax)k − bk|2 =
m∑
k=1

∣∣∣ n∑
j=1

Ak,jxj − bk
∣∣∣2

i.e. to minimizing the sum of squares of linear functions.

There are several ways to find the least square solution. If we are in
Rn, and everything is real, we can forget about absolute values. Then we
can just take partial derivatives with respect to xj and find the where all of
them are 0, which gives us the minimum.

4.1.1. Geometric approach. However, there is a simpler way of finding the
minimum. Namely, if we take all possible vectors x, then Ax gives us all
possible vectors in RanA, so minimum of ‖Ax− b‖ is exactly the distance
from b to RanA. Therefore the value of ‖Ax− b‖ is minimal if and only if
Ax = PRanAb, where PRanA stands for the orthogonal projection onto the
column space RanA.

So, to find the least square solution we simply need to solve the equation

Ax = PRanAb.
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If we know an orthogonal basis v1,v2, . . . ,vn in RanA, we can find vector
PRanAb by the formula

PRanAb =
n∑
k=1

(b,vk)

‖vk‖2
vk.

If we only know a basis in RanA, we need to use the Gram–Schmidt orthog-
onalization to obtain an orthogonal basis from it.

So, theoretically, the problem is solved, but the solution is not very
simple: it involves Gram–Schmidt orthogonalization, which can be compu-
tationally intensive. Fortunately, there exists a simpler solution.

4.1.2. Normal equation. Namely, Ax is the orthogonal projection PRanAb
if and only if b−Ax ⊥ RanA (Ax ∈ RanA for all x).

If a1,a2, . . . ,an are columns of A, then the condition Ax ⊥ RanA can
be rewritten as

b−Ax ⊥ ak, ∀k = 1, 2, . . . , n.

That means

0 = (b−Ax,ak) = a∗k(b−Ax) ∀k = 1, 2, . . . , n.

Joining rows a∗k together we get that these equations are equivalent to

A∗(b−Ax) = 0,

which in turn is equivalent to the so-called normal equation

A∗Ax = A∗b.

A solution of this equation gives us the least square solution of Ax = b.

Note, that the least square solution is unique if and only if A∗A is
invertible.

4.2. Formula for the orthogonal projection. As we already discussed
above, if x is a solution of the normal equation A∗Ax = A∗b (i.e. a least
square solution of Ax = b), then Ax = PRanAb. So, to find the orthogonal
projection of b onto the column space RanA we need to solve the normal
equation A∗Ax = A∗b, and then multiply the solution by A.

If the operator A∗A is invertible, the solution of the normal equation
A∗Ax = A∗b is given by x = (A∗A)−1A∗b, so the orthogonal projection
PRanAb can be computed as

PRanAb = A(A∗A)−1A∗b.

Since this is true for all b,

PRanA = A(A∗A)−1A∗

is the formula for the matrix of the orthogonal projection onto RanA.
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The following theorem implies that for an m × n matrix A the matrix
A∗A is invertible if and only if rankA = n.

Theorem 4.1. For an m× n matrix A

KerA = Ker(A∗A).

Indeed, according to the rank theorem KerA = {0} if and only if rank
A is n. Therefore Ker(A∗A) = {0} if and only if rankA = n. Since the
matrix A∗A is square, it is invertible if and only if rankA = n.

We leave the proof of the theorem as an exercise. To prove the equality
KerA = Ker(A∗A) one needs to prove two inclusions Ker(A∗A) ⊂ KerA
and KerA ⊂ Ker(A∗A). One of the inclusions is trivial, for the other one
use the fact that

‖Ax‖2 = (Ax, Ax) = (A∗Ax,x).

4.3. An example: line fitting. Let us introduce a few examples where
the least square solution appears naturally. Suppose that we know that two
quantities x and y are related by the law y = a+ bx. The coefficients a and
b are unknown, and we would like to find them from experimental data.

Suppose we run the experiment n times, and we get n pairs (xk, yk),
k = 1, 2, . . . , n. Ideally, all the points (xk, yk) should be on a straight line,
but because of errors in measurements, it usually does not happen: the point
are usually close to some line, but not exactly on it. That is where the least
square solution helps!

Ideally, the coefficients a and b should satisfy the equations

a+ bxk = yk, k = 1, 2, . . . , n

(note that here, xk and yk are some fixed numbers, and the unknowns are
a and b). If it is possible to find such a and b we are lucky. If not, the
standard thing to do is to minimize the total quadratic error

n∑
k=1

|a+ bxk − yk|2.

But, minimizing this error is exactly finding the least square solution of the
system 

1 x1

1 x2
...

...
1 xn


[
a
b

]
=


y1

y2
...
yn


(recall that xk yk are some given numbers, and the unknowns are a and b).
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4.3.1. An example. Suppose our data (xk, yk) consist of pairs

(−2, 4), (−1, 2), (0, 1), (2, 1), (3, 1).

Then we need to find the least square solution of
1 −2
1 −1
1 0
1 2
1 3


[
a
b

]
=


4
2
1
1
1


Then

A∗A =

(
1 1 1 1 1
−2 −1 0 2 3

)
1 −2
1 −1
1 0
1 2
1 3

 =

(
5 2
2 18

)

and

A∗b =

(
1 1 1 1 1
−2 −1 0 2 3

)
4
2
1
1
1

 =

(
9
−5

)

so the normal equation A∗Ax = A∗b is rewritten as(
5 2
2 18

)(
a
b

)
=

(
9
−5

)
.

The solution of this equation is

a = 2, b = −1/2,

so the best fitting straight line is

y = 2− 1/2x.

4.4. Other examples: curves and planes. The least square method is
not limited to the line fitting. It can also be applied to more general curves,
as well as to surfaces in higher dimensions.

The only constraint here is that the parameters we want to find be
involved linearly. The general algorithm is as follows:

1. Find the equations that your data should satisfy if there is exact fit;

2. Write these equations as a linear system, where unknowns are the
parameters you want to find. Note, that the system need not to be
consistent (and usually is not);

3. Find the least square solution of the system.
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4.4.1. An example: curve fitting. For example, suppose we know that the
relation between x and y is given by the quadratic law y = a+ bx+ cx2, so
we want to fit a parabola y = a+ bx+ cx2 to the data. Then our unknowns
a, b, c should satisfy the equations

a+ bxk + cx2
k = yk, k = 1, 2, . . . , n

or, in matrix form 
1 x1 x2

1

1 x2 x2
2

...
...

...
1 xn x2

n


 a

b
c

 =


y1

y2
...
yn


For example, for the data from the previous example we need to find the
least square solution of

1 −2 4
1 −1 1
1 0 0
1 2 4
1 3 9


 a

b
c

 =


4
2
1
1
1

 .

Then

A∗A =

 1 1 1 1 1
−2 −1 0 2 3
4 1 0 4 9




1 −2 4
1 −1 1
1 0 0
1 2 4
1 3 9

 =

 5 2 18
2 18 26
18 26 114


and

A∗b =

 1 1 1 1 1
−2 −1 0 2 3
4 1 0 4 9




4
2
1
1
1

 =

 9
−5
31

 .

Therefore the normal equation A∗Ax = A∗b is 5 2 18
2 18 26
18 26 114

 a
b
c

 =

 9
−5
31


which has the unique solution

a = 86/77, b = −62/77, c = 43/154.

Therefore,

y = 86/77− 62x/77 + 43x2/154

is the best fitting parabola.
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4.4.2. Plane fitting. As another example, let us fit a plane z = a + bx + cy
to the data

(xk, yk, zk) ∈ R3, k = 1, 2, . . . n.

The equations we should have in the case of exact fit are

a+ bxk + cyk = zk, k = 1, 2, . . . , n,

or, in the matrix form
1 x1 y1

1 x2 y2
...

...
...

1 xn yn


 a

b
c

 =


z1

z2
...
zn

 .

So, to find the best fitting plane, we need to find the best square solution of
this system (the unknowns are a, b, c).

Exercises.

4.1. Find the least square solution of the system 1 0
0 1
1 1

x =

 1
1
0


4.2. Find the matrix of the orthogonal projection P onto the column space of 1 1

2 −1
−2 4

 .

Use two methods: Gram–Schmidt orthogonalization and formula for the projection.

Compare the results.

4.3. Find the best straight line fit (least square solution) to the points (−2, 4),
(−1, 3), (0, 1), (2, 0).

4.4. Fit a plane z = a+ bx+ cy to four points (1, 1, 3), (0, 3, 6), (2, 1, 5), (0, 0, 0).

To do that

a) Find 4 equations with 3 unknowns a, b, c such that the plane pass through
all 4 points (this system does not have to have a solution);

b) Find the least square solution of the system.

4.5. Minimal norm solution. let an equation Ax = b has a solution, and let A has
non-trivial kernel (so the solution is not unique). Prove that

a) There exist a unique solution x0 of Ax = b minimizing the norm ‖x‖,
i.e. that there exists unique x0 such that Ax0 = b and ‖x0‖ ≤ ‖x‖ for any
x satisfying Ax = b.

b) x0 = P
(KerA)⊥

x for any x satisfying Ax = b.
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4.6. Minimal norm least square solution. Applying previous problem to the equa-
tion Ax = P

RanA
b show that

a) There exists a unique least square solution x0 of Ax = b minimizing the
norm ‖x‖.

b) x0 = P
(KerA)⊥

x for any least square solution x of Ax = b.

5. Adjoint of a linear transformation. Fundamental
subspaces revisited.

5.1. Adjoint matrices and adjoint operators. Let as recall that for an
m × n matrix A its Hermitian adjoint (or simply adjoint) A∗ is defined by

A∗ := AT . In other words, the matrix A∗ is obtained from the transposed
matrix AT by taking complex conjugate of each entry.

The following identity is the main property of adjoint matrix:

(Ax,y) = (x, A∗y) ∀x ∈ Cn, ∀y ∈ Cm.

Before proving this identity, let us introduce some useful formulas. Let us
recall that for transposed matrices we have the identity (AB)T = BTAT .
Since for complex numbers z and w we have zw = z w, the identity

(AB)∗ = B∗A∗

holds for the adjoint.

Also, since (AT )T = A and z = z,

(A∗)∗ = A.

Now, we are ready to prove the main identity:

(Ax,y) = y∗Ax = (A∗y)∗x = (x, A∗y);

the first and the last equalities here follow from the definition of inner prod-
uct in Fn, and the middle one follows from the fact that

(A∗x)∗ = x∗(A∗)∗ = x∗A.

5.1.1. Uniqueness of the adjoint. The above main identity (Ax,y)
= (x, A∗y) is often used as the definition of the adjoint operator. Let us
first notice that the adjoint operator is unique: if a matrix B satisfies

(Ax,y) = (x, By) ∀x,y,
then B = A∗. Indeed, by the definition of A∗ for a given y we have

(x, A∗y) = (x, By) ∀x,
and therefore by Corollary 1.5 A∗y = By. Since it is true for all y, the
linear transformations, and therefore the matrices A∗ and B coincide.
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5.1.2. Adjoint transformation in abstract setting. The above main identity
(Ax,y) = (x, A∗y) can be used to define the adjoint operator in abstract
setting, where A : V → W is an operator acting from one inner product
space to another. Namely, we define A∗ : W → V to be the operator
satisfying

(Ax,y) = (x, A∗y) ∀x ∈ V, ∀y ∈W.
Why does such an operator exists? We can simply construct it: consider
orthonormal bases A = v1,v2, . . . ,vn in V and B = w1,w2, . . . ,wm in W .
If [A]BA is the matrix of A with respect to these bases, we define the operator
A∗ by defining its matrix [A∗]AB as

[A∗]AB = ([A]BA)∗.

We leave the proof that this indeed gives the adjoint operator as an exercise
for the reader.

Note, that the reasoning in the above Sect. 5.1.1 implies that the adjoint
operator is unique.

5.1.3. Useful formulas. Below we present the properties of the adjoint op-
erators (matrices) we will use a lot. We leave the proofs as an exercise for
the reader.

1. (A+B)∗ = A∗ +B∗;

2. (αA)∗ = αA∗;

3. (AB)∗ = B∗A∗;

4. (A∗)∗ = A;

5. (y, Ax) = (A∗y,x).

5.2. Relation between fundamental subspaces.

Theorem 5.1. Let A : V →W be an operator acting from one inner product
space to another. Then

1. KerA∗ = (RanA)⊥;

2. KerA = (RanA∗)⊥;

3. RanA = (KerA∗)⊥;

4. RanA∗ = (KerA)⊥.

Remark. Earlier in Section 7 of Chapter 2 the fundamental subspaces were
defined (as it is often done in the literature) using AT instead of A∗. Of
course, there is no difference for real matrices, so in the real case the above
theorem gives the geometric description of the fundamentals subspaces de-
fined there.

Geometric interpretation of the fundamental subspaces defined using AT

is presented in Chapter 8 below, see Section 3 there (Theorem 3.7). The
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formulas in this theorem are essentially the same as in Theorem 5.1 here,
only the interpretation is a bit different.

Proof of Theorem 5.1. First of all, let us notice, that since for a subspace
E we have (E⊥)⊥ = E, the statements 1 and 3 are equivalent. Similarly,
for the same reason, the statements 2 and 4 are equivalent as well. Finally,
statement 2 is exactly statement 1 applied to the operator A∗ (here we use
the fact that (A∗)∗ = A).

So, to prove the theorem we only need to prove statement 1.

We will present 2 proofs of this statement: a “matrix” proof, and an
“invariant”, or “coordinate-free” one.

In the “matrix” proof, we assume that A is an m × n matrix, i.e. that
A : Fn → Fm. The general case can be always reduced to this one by
picking orthonormal bases in V and W , and considering the matrix of A in
this bases.

Let a1,a2, . . . ,an be the columns of A. Note, that x ∈ (RanA)⊥ if and
only if x ⊥ ak (i.e. (x,ak) = 0) ∀k = 1, 2, . . . , n.

By the definition of the inner product in Fn, that means

0 = (x,ak) = a∗k x ∀k = 1, 2, . . . , n.

Since a∗k is the row number k of A∗, the above n equalities are equivalent to
the equation

A∗x = 0.

So, we proved that x ∈ (RanA)⊥ if and only if A∗x = 0, and that is exactly
the statement 1.

Now, let us present the “coordinate-free” proof. The inclusion x ∈
(RanA)⊥ means that x is orthogonal to all vectors of the form Ay, i.e. that

(x, Ay) = 0 ∀y.
Since (x, Ay) = (A∗x,y), this identity is equivalent to

(A∗x,y) = 0 ∀y,
and by Lemma 1.4 this happens if and only if A∗x = 0. So we proved that
x ∈ (RanA)⊥ if and only if A∗x = 0, which is exactly the statement 1 of
the theorem. �

5.3. The “essential” part of a linear transformation. The above the-
orem makes the structure of the operator A and the geometry of fundamental
subspaces much more transparent. It follows from this theorem that the op-
erator A can be represented as a composition of orthogonal projection onto
RanA∗ and an isomorphism from RanA∗ to RanA.
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Indeed, let Ã : RanA∗ → RanA be the restriction of A to the domain
RanA∗ and the target space RanA,

Ãx = Ax, ∀x ∈ RanA∗.

Since KerA = (RanA∗)⊥, we have

Ax = AP
RanA∗x

= ÃP
RanA∗

∀x ∈ X;

the fact that x− P
RanA∗

x ∈ (RanA∗)⊥ = KerA is used here. Therefore we
can write

Ax = ÃP
RanA∗

x ∀x ∈ X,(5.1)

or, equivalently, A = ÃP
RanA∗

.

Note also that Ã : RanA∗ → RanA is an invertible transformation.
First we notice that Ker Ã = {0}: if x ∈ RanA∗ is such that Ãx = Ax = 0,
then x ∈ KerA = (RanA∗)⊥, so x ∈ RanA∗∩(RanA∗)⊥, thus x = 0. Then

to see that Ã is invertible, it is sufficient to she that Ã is onto (surjective).
But this immediately follows from (5.1):

Ran Ã = ÃRanA∗ = AP
RanA∗

X = AX = RanA.

The isomorphism Ã is sometimes called the “essential part” of the op-
erator A (a non-standard terminology).

The fact the “essential part” Ã : RanA∗ → RanA of A is an isomor-
phism implies the following “complex” rank theorem: rankA = rankA∗.
But, of course, this theorem also follows from an elementary observation that
complex conjugation does not change rank of a matrix, rankA = rankA.

Exercises.

5.1. Show that for a square matrix A the equality det(A∗) = det(A) holds.

5.2. Find matrices of orthogonal projections onto all 4 fundamental subspaces of
the matrix

A =

 1 1 1
1 3 2
2 4 3

 .

Note, that really you need only to compute 2 of the projections. If you pick an
appropriate 2, the other 2 are easy to obtain from them (recall, how the projections
onto E and E⊥ are related).

5.3. Let A be an m× n matrix. Show that KerA = Ker(A∗A).

To do that you need to prove 2 inclusions, Ker(A∗A) ⊂ KerA and KerA ⊂
Ker(A∗A). One of the inclusions is trivial, for the other one use the fact that

‖Ax‖2 = (Ax, Ax) = (A∗Ax,x).

5.4. Use the equality KerA = Ker(A∗A) to prove that
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a) rankA = rank(A∗A);

b) If Ax = 0 has only the trivial solution, A is left invertible. (You can just
write a formula for a left inverse).

5.5. Suppose, that for a matrix A the matrix A∗A is invertible, so the orthogonal
projection onto RanA is given by the formula A(A∗A)−1A∗. Can you write formulas
for the orthogonal projections onto the other 3 fundamental subspaces (KerA,
KerA∗, RanA∗)?

5.6. Let a matrix P be self-adjoint (P ∗ = P ) and let P 2 = P . Show that P is the
matrix of an orthogonal projection. Hint: consider the decomposition x = x1 +x2,
x1 ∈ RanP , x2 ⊥ RanP and show that Px1 = x1, Px2 = 0. For one of the
equalities you will need self-adjointness, for the other one the property P 2 = P .

6. Isometries and unitary operators. Unitary and orthogonal
matrices.

6.1. Main definitions.

Definition. An operator U : X → Y is called an isometry, if it preserves
the norm,

‖Ux‖ = ‖x‖ ∀x ∈ X.

The following theorem shows that an isometry preserves the inner prod-
uct

Theorem 6.1. An operator U : X → Y is an isometry if and only if it
preserves the inner product, i.e if and only if

(x,y) = (Ux, Uy) ∀x,y ∈ X.

Proof. The proof uses the polarization identities (Lemma 1.9). For exam-
ple, if X is a complex space

(Ux, Uy) =
1

4

∑
α=±1,±i

α‖Ux + αUy‖2

=
1

4

∑
α=±1,±i

α‖U(x + αy)‖2

=
1

4

∑
α=±1,±i

α‖x + αy‖2 = (x,y).
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Similarly, for a real space X

(Ux, Uy) =
1

4

(
‖Ux + Uy‖2 − ‖Ux− Uy‖2

)
=

1

4

(
‖U(x + y)‖2 − ‖U(x− y)‖2

)
=

1

4

(
‖x + y‖2 − ‖x− y‖2

)
= (x,y).

�

Lemma 6.2. An operator U : X → Y is an isometry if and only if U∗U = I.

Proof. If U∗U = I, then by the definition of adjoint operator

(x,x) = (U∗Ux,x) = (Ux, Ux) ∀x ∈ X.
Therefore ‖x‖ = ‖Ux‖, and so U is an isometry.

On the other hand, if U is an isometry, then by the definition of adjoint
operator and by Theorem 6.1 we have for all x ∈ X

(U∗Ux,y) = (Ux, Uy) = (x,y) ∀y ∈ X,
and therefore by Corollary 1.5 U∗Ux = x. Since it is true for all x ∈ X, we
have U∗U = I. �

The above lemma implies that an isometry is always left invertible (U∗

being a left inverse).

Definition. An isometry U : X → Y is called a unitary operator if it is
invertible.

Proposition 6.3. An isometry U : X → Y is a unitary operator if and
only if dimX = dimY .

Proof. Since U is an isometry, it is left invertible, and since dimX = dimY ,
it is invertible (a left invertible square matrix is invertible).

On the other hand, if U : X → Y is invertible, dimX = dimY (only
square matrices are invertible, isomorphic spaces have equal dimensions).

�

A square matrix U is called unitary if U∗U = I, i.e. a unitary matrix is
a matrix of a unitary operator acting in Fn.

A unitary matrix with real entries is called an orthogonal matrix. An
orthogonal matrix can be interpreted a matrix of a unitary operator acting
in the real space Rn.

Few properties of unitary operators:

1. For a unitary transformation U , U−1 = U∗;



148 5. Inner product spaces

2. If U is unitary, U∗ = U−1 is also unitary;

3. If U is a isometry, and v1,v2, . . . ,vn is an orthonormal basis, then
Uv1, Uv2, . . . , Uvn is an orthonormal system. Moreover, if U is
unitary, Uv1, Uv2, . . . , Uvn is an orthonormal basis.

4. A product of unitary operators is a unitary operator as well.

6.2. Examples. First of all, let us notice, that

a matrix U is an isometry if and only if its columns form an or-
thonormal system.

This statement can be checked directly by computing the product U∗U .

It is easy to check that the columns of the rotation matrix(
cosα − sinα
sinα cosα

)
are orthogonal to each other, and that each column has norm 1. Therefore,
the rotation matrix is an isometry, and since it is square, it is unitary. Since
all entries of the rotation matrix are real, it is an orthogonal matrix.

The next example is more abstract. Let X and Y be inner product
spaces, dimX = dimY = n, and let x1,x2, . . . ,xn and y1,y2, . . . ,yn be
orthonormal bases in X and Y respectively. Define an operator U : X → Y
by

Uxk = yk, k = 1, 2, . . . , n.

Since for a vector x = c1x1 + c2x2 + . . .+ cnxn

‖x‖2 = |c1|2 + |c2|2 + . . .+ |cn|2

and

‖Ux‖2 = ‖U(

n∑
k=1

ckxk)‖2 = ‖
n∑
k=1

ckyk‖2 =

n∑
k=1

|ck|2,

one can conclude that ‖Ux‖ = ‖x‖ for all x ∈ X, so U is a unitary operator.

6.3. Properties of unitary operators.

Proposition 6.4. Let U be a unitary matrix. Then

1. |detU | = 1. In particular, for an orthogonal matrix detU = ±1;

2. If λ is an eigenvalue of U , then |λ| = 1

Remark. Note, that for an orthogonal matrix, an eigenvalue (unlike the
determinant) does not have to be real. Our old friend, the rotation matrix
gives an example.



6. Isometries and unitary operators. Unitary and orthogonal matrices. 149

Proof of Proposition 6.4. Let detU = z. Since det(U∗) = det(U), see
Problem 5.1, we have

|z|2 = zz = det(U∗U) = det I = 1,

so | detU | = |z| = 1. Statement 1 is proved.

To prove statement 2 let us notice that if Ux = λx then

‖Ux‖ = ‖λx‖ = |λ| · ‖x‖,

so |λ| = 1. �

6.4. Unitary equivalent operators.

Definition. Operators (matrices) A and B are called unitarily equivalent if
there exists a unitary operator U such that A = UBU∗.

Since for a unitary U we have U−1 = U∗, any two unitary equivalent
matrices are similar as well.

The converse is not true, it is easy to construct a pair of similar matrices,
which are not unitarily equivalent.

The following proposition gives a way to construct a counterexample.

Proposition 6.5. A matrix A is unitarily equivalent to a diagonal one if
and only if it has an orthogonal (orthonormal) basis of eigenvectors.

Proof. Let A = UBU∗ and let Bx = λx. Then AUx = UBU∗Ux =
UBx = U(λx) = λUx, i.e. Ux is an eigenvector of A.

So, let A be unitarily equivalent to a diagonal matrix D, i.e. let A =
UDU∗. The vectors ek of the standard basis are eigenvectors of D, so
the vectors Uek are eigenvectors of A. Since U is unitary, the system
Ue1, Ue2, . . . , Uen is an orthonormal basis.

Now let A has an orthogonal basis u1,u2, . . . ,un of eigenvectors. Divid-
ing each vector uk by its norm if necessary, we can always assume that the
system u1,u2, . . . ,un is an orthonormal basis. Let D be the matrix of A in
the basis B = u1,u2, . . . ,un. Clearly, D is a diagonal matrix.

Denote by U the matrix with columns u1,u2, . . . ,un. Since the columns
form an orthonormal basis, U is unitary. The standard change of coordinate
formula implies

A = [A]SS = [I]SB [A]BB [I]BS = UDU−1

and since U is unitary, A = UDU∗. �
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Exercises.

6.1. Orthogonally diagonalize the following matrices,(
1 2
2 1

)
,

(
0 −1
1 0

)
,

 0 2 2
2 0 2
2 2 0


i.e. for each matrix A find a unitary matrix U and a diagonal matrix D such that
A = UDU∗

6.2. True or false: a matrix is unitarily equivalent to a diagonal one if and only if
it has an orthogonal basis of eigenvectors.

6.3. Prove the polarization identities

(Ax,y) =
1

4

[
(A(x + y),x + y)− (A(x− y),x− y)

]
(real case, A = A∗),

and

(Ax,y) =
1

4

∑
α=±1,±i

α(A(x + αy),x + αy) (complex case, A is arbitrary).

6.4. Show that a product of unitary (orthogonal) matrices is unitary (orthogonal)
as well.

6.5. Let U : X → X be a linear transformation on a finite-dimensional inner
product space. True or false:

a) If ‖Ux‖ = ‖x‖ for all x ∈ X, then U is unitary.

b) If ‖Uek‖ = ‖ek‖, k = 1, 2 . . . , n for some orthonormal basis e1, e2, . . . , en,
then U is unitary.

Justify your answers with a proof or a counterexample.

6.6. Let A and B be unitarily equivalent n× n matrices.

a) Prove that trace(A∗A) = trace(B∗B).

b) Use a) to prove that

n∑
j,k=1

|Aj,k|2 =

n∑
j,k=1

|Bj,k|2.

c) Use b) to prove that the matrices(
1 2
2 i

)
and

(
i 4
1 1

)
are not unitarily equivalent.

6.7. Which of the following pairs of matrices are unitarily equivalent:

a)

(
1 0
0 1

)
and

(
0 1
1 0

)
.

b)

(
0 1
1 0

)
and

(
0 1/2
1/2 0

)
.
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c)

 0 1 0
−1 0 0

0 0 1

 and

 2 0 0
0 −1 0
0 0 0

.

d)

 0 1 0
−1 0 0

0 0 1

 and

 1 0 0
0 −i 0
0 0 i

.

e)

 1 1 0
0 2 2
0 0 3

 and

 1 0 0
0 2 0
0 0 3

.

Hint: It is easy to eliminate matrices that are not unitarily equivalent: remember,
that unitarily equivalent matrices are similar, and trace, determinant and eigenval-
ues of similar matrices coincide.

Also, the previous problem helps in eliminating non unitarily equivalent matri-
ces.

Finally, a matrix is unitarily equivalent to a diagonal one if and only if it has
an orthogonal basis of eigenvectors.

6.8. Let U be a 2×2 orthogonal matrix with detU = 1. Prove that U is a rotation
matrix.

6.9. Let U be a 3× 3 orthogonal matrix with detU = 1. Prove that

a) 1 is an eigenvalue of U .

b) If v1,v2,v3 is an orthonormal basis, such that Uv1 = v1 (remember, that
1 is an eigenvalue), then in this basis the matrix of U is 1 0 0

0 cosα − sinα
0 sinα cosα

 ,

where α is some angle.
Hint: Show, that since v1 is an eigenvector of U , all entries below 1

must be zero, and since v1 is also an eigenvector of U∗ (why?), all entries
right of 1 also must be zero. Then show that the lower right 2× 2 matrix
is an orthogonal one with determinant 1, and use the previous problem.

7. Rigid motions in Rn

A rigid motion in an inner product space V is a transformation f : V → V
preserving the distance between point, i.e. such that

‖f(x)− f(y)‖ = ‖x− y‖ ∀x,y ∈ V.
Note, that in the definition we do not assume that the transformation f is
linear.

Clearly, any unitary transformation is a rigid motion. Another example
of a rigid motion is a translation (shift) by a ∈ V , f(x) = x + a.
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The main result of this section is the following theorem, stating that any
rigid motion in a real inner product space is a composition of an orthogonal
transformation and a translation.

Theorem 7.1. Let f be a rigid motion in a real inner product space X, and
let T (x) := f(x)− f(0). Then T is an orthogonal transformation.

To prove this theorem we need the following simple lemma.

Lemma 7.2. Let T be as defined in Theorem 7.1. Then for all x,y ∈ X
1. ‖Tx‖ = ‖x‖;
2. ‖T (x)− T (y)‖ = ‖x− y‖;
3. (T (x), T (y)) = (x,y).

Proof. To prove statement 1 notice that

‖T (x)‖ = ‖f(x)− f(0)‖ = ‖x− 0‖ = ‖x‖.
Statement 2 follows from the following chain of identities:

‖T (x)− T (y)‖ = ‖(f(x)− f(0))− (f(y)− f(0))‖
= ‖f(x)− f(y)‖ = ‖x− y‖.

An alternative explanation would that T is a composition of 2 rigid
motions (f followed by the translation by a = −f(0)), and one can easily
see that a composition of rigid motions is a rigid motion. Since T (0) = 0,
and so ‖T (x)‖ = ‖T (x)− T (0)‖, statement 1 can be treated as a particular
case of statement 2.

To prove statement 3, let us notice that in a real inner product space

‖T (x)− T (y)‖2 = ‖T (x)‖2 + ‖T (y)‖2 − 2(T (x), T (y)),

and

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2(x,y).

Recalling that ‖T (x)− T (y)‖ = ‖x− y‖ and ‖T (x)‖ = ‖x‖, ‖T (y)‖ = ‖y‖,
we immediately get the desired conclusion. �

Proof of Theorem 7.1. First of all notice that for all x ∈ X
‖T (x)‖ = ‖f(x)− f(0)‖ = ‖x− 0‖ = ‖x‖,

so T preserves the norm, ‖Tx‖ = ‖x‖.
We would like to say that the identyty ‖Tx‖ = ‖x‖ means T is an

isometry, but to be able to say that we need to prove that T is a linear
transformation.

To do that, let us fix an orthonormal basis e1, e2, . . . , en in X, and let
bk := T (ek), k = 1, 2, . . . , n. Since T preserves the inner product (statement
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3 of Lemma 7.2), we can conclude that b1,b2, . . . ,bn is an orthonormal
system. In fact, since dimX = n (because basis e1, e2, . . . , en consists of n
vectors), we can conclude that b1,b2, . . . ,bn is an orthonormal basis.

Let x =
∑n

k=1 αkek. Recall that by the abstract orthogonal Fourier
decomposition (2.2) we have that αk = (x, ek). Applying the abstract or-
thogonal Fourier decomposition (2.2) to T (x) and the orthonormal basis
b1,b2, . . . ,bn we get

T (x) =
n∑
k=1

(T (x),bk)bk.

Since

(T (x),bk) = (T (x), T (ek)) = (x, ek) = αk,

we get that

T
( n∑
k=1

αkek

)
=

n∑
k=1

αkbk.

This means that T is a linear transformation whose matrix with respect
to the bases S := e1, e2, . . . , en and B := b1,b2, . . . ,bn is identity matrix,
[T ]B,S = I.

An alternative way to show that T is a linear transformation is the
following direct calculation

‖T (x + αy)− (T (x) + αT (y))‖2 = ‖(T (x + αy)− T (x))− αT (y)‖2

= ‖T (x + αy)− T (x)‖2 + α2‖T (y)‖2 − 2α(T (x + αy)− T (x), T (y))

= ‖x + αy − x‖2 + α2‖y‖2 − 2α(T (x + αy), T (y)) + 2α(T (x), T (y))

= α2‖y‖2 + α2‖y‖2 − 2α(x + αy,y) + 2α(x,y)

= 2α2‖y‖2 − 2α(x,y)− 2α2(y,y) + 2α(x,y) = 0

Therefore

T (x− αy) = T (x) + αT (y),

which implies that T is linear (taking x = 0 or α = 1 we get two properties
from the definition of a linear transformation).

So, T is a linear transformation satisfying ‖Tx‖ = ‖x‖, i.e. T is an
isometry. Since T : X → X, T is unitary transformation (see Proposition
6.3). That completes the proof, since an orthogonal transformation is simply
a unitary transformation in a real inner product space. �

Exercises.

7.1. Give an example of a rigid motion T in Cn, T (0) = 0, which is not a linear
transformation.
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8. Complexification and decomplexification

This section is probably a bit more abstract than the rest of the chapter,
and can be skipped at the first reading.

8.1. Decomplexification.

8.1.1. Decomplexification of a vector space. Any complex vector space can
be interpreted a real vector space: we just need to forget that we can multiply
vectors by complex numbers and act as only multiplication by real numbers
is allowed.

For example, the space Cn is canonically identified with the real space
R2n: each complex coordinate zk = xk + iyk gives us 2 real ones xk and yk.

“Canonically” here means that this is a standard, most natural way of
identifying Cn and R2n. Note, that while the above definition gives us a
canonical way to get real coordinates from complex ones, it does not say
anything about ordering real coordinates.

In fact, there are two standard ways to order the coordinates xk, yk.
One way is to take first the real parts and then the imaginary parts, so the
ordering is x1, x2, . . . , xn, y1, y2, . . . , yn. The other standard alternative is
the ordering x1, y1, x2, y2, . . . , xn, yn. The material of this section does not
depend on the choice of ordering of coordinates, so the reader does not have
to worry about picking an ordering.

8.1.2. Decomplexification of an inner product. It turns out that if we are
given a complex inner product (in a complex space), we can in a canonical
way get a real inner product from it. To see how we can do that, let as
first consider the above example of Cn canonically identifies with R2n. Let
(x,y)C denote the standard inner product in Cn, and (x,y)R be the standard

inner product in R2n (note that the standard inner product in Rn does not
depend on the ordering of coordinates). Then (see Exercise 8.1 below)

(8.1) (x,y)R = Re(x,y)C

This formula can be used to canonically define a real inner product from
the complex one in general situation. Namely, it is an easy exercise to show
that if (x,y)C is an inner product in a complex inner product space, then
(x,y)R defined by (8.1) is a real inner product (on the corresponding real
space).

Summarizing we can say that

To decomplexify a complex inner product space we simply “for-
get” that we can multiply by complex numbers, i.e. we only allow
multiplication by reals. The canonical real inner product in the
decomplexified space is given by formula (8.1)
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Remark. Any (complex) linear linear transformation on Cn (or, more gen-
erally, on a complex vector space) gives as a real linear transformation: it is
simply the fact that if T (αx + βy) = αTx + βTy holds for α, β ∈ C, then
it of course holds for α, β ∈ R.

The converse is not true, i.e. a (real) linear transformation on the de-
complexification R2n of Cn does not always give a (complex) linear trans-
formation of Cn (the same in the abstract settings).

For example, if one considers the case n = 1, then the multiplication by a
complex number z (general form of a linear transformation in C1) treated as
a linear transformation in R2 has a very specific structure (can you describe
it?).

8.2. Complexification. We can also do a converse, namely get a complex
inner product space from a real one: in fact, you probably already did it
before, without paying much attention to it.

Namely, given a real inner product space Rn we can obtain a complex
space Cn out of it by allowing complex coordinates (with the standard inner
product in both cases). The space Rn in this case will be a real2subspace of
Cn consisting of vectors with real coordinates.

Abstractly, this construction can be described as follows: given a real
vector space X we can define its complexification XC as the collection of
all pairs [x1,x2], x1,x2 ∈ X with the addition and multiplication by a real
number α are defined coordinate-wise,

[x1,x2] + [y1,y2] = [x1 + y1,x2 + y2], α[x1,x2] = [αx1, αx2].

If X = Rn then the vector x1 consists of real parts of complex coordinates
of Cn and the vector x2 of the imaginary parts. Thus informally one can
write the pair [x1,x2] as x1 + ix2.

To define multiplication by complex numbers we define multiplication
by i as

i[x1,x2] = [−x2,x1]

(writing [x1,x2] as x2 + ix2 we can see that it must be defined this way) and
define multiplication by arbitrary complex numbers using second distributive
property (α+ β)v = αv + βv.

If, in addition, X is an inner product space we can extend the inner
product to XC by(

[x1,x2], [y1,y2]
)
XC

= (x1,y1)
X

+ (x2,y2)
X

;

The easiest way to see that everything is well defined, is to fix a basis (an
orthonormal basis in the case of a real inner product space) and see what

2Real subspace mean the set closed with respect to sum and multiplication by real numbers
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this construction gives us in coordinates. Then we can see that if we treat
vector x1 as the vector consisting of the real parts of complex coordinates,
and vector x2 as the vector consisting of imaginary parts of coordinates,
then this construction is exactly the standard complexification of Rn (by
allowing complex coordinates) described above.

The fact that we can express this construction in coordinate-free way,
without picking a basis and working with coordinates, means that the result
does not depend on the choice of a basis.

So, the easiest way to think about complexification is probably as follows:

To construct a complexification of a real vector space X we can
pick a basis (an orthonormal basis if X is a real inner product
space) and then work with coordinates, allowing the complex ones.
The resulting space does not depend on the choice of a basis; we
can get from one coordinates to the others by the standard change
of coordinate formula.

Note, that any linear transformation T in the real space X gives rise to
a linear transformation TC in the complexification XC .

The easiest way to see that is to fix a basis in X (an orthonormal basis if
X is a real inner product space) and to work in a coordinate representation:
in this case TC has the same matrix as T . In the abstract representation we
can write

TC [x1,x2] = [Tx1, Tx2].

On the other hand, not all linear transformations in XC can be obtained
from the transformations in X; if we do complexification in coordinates,
only the transformations with real matrices work.

Note, that this is completely opposite to the situation in the case of
decomplexification, described in Section 8.1.

An attentive reader probably already noticed that the operations of com-
plexification and decomplixification are not the inverse of each other. First,
the space and its complexification have the same dimension, while the de-
complixification of an n-dimensional space has dimension 2n. Moreover, as
we just discussed, the relation between real and complex linear transforma-
tions is completely opposite in these cases.

In the next section we discuss the operation, inverse in some sense to
decomplexification.

8.3. Introducing complex structure to a real space. The construction
described in this section works only for real spaces of even dimension.

8.3.1. An elementary way to introduce a complex structure. Let X be a real
inner product space of dimension 2n. We want invert the decomplexification
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procedure to introduce a complex structure on X, i.e. to identify this space
with a complex space such that its decomplexification (see Section 8.1) give
us the original space X. The simplest idea is to fix an orthonormal basis in
X and then split the coordinates in this basis into two equal parts.

We than treat one half of the coordinates (say coordinates x1, x2, . . . , xn)
as real parts of complex coordinates, and treat the rest as the imaginary
parts. Then we have to join real and imaginary parts together: for example
if we treat x1, x2, . . . , xn as real parts and xn+1, xn+2, . . . , x2n as imaginary
parts, we can define complex coordinates zk = xk + ixn+k.

Of course, the result will generally depend on the choice of the orthonor-
mal basis and on the way we split the real coordinates into real and imagi-
nary parts and on how we join them.

One can also see from the decomplexification construction described in
Section 8.1 that all complex structures on a real inner product space X can
be obtained in this way.

8.3.2. From elementary to abstract construction of complex structure. The
above construction can be described in an abstract, coordinate-free way.
Namely, let us split the space X as X = E ⊕ E⊥, where E is a subspace,
dimE = n (so dimE⊥ = n as well), and let U0 : E → E⊥ be a unitary
(more precisely, orthogonal, since our spaces are real) transformation.

Note, that if v1,v2, . . . ,vn is an orthonormal basis in E, then the system
U0v1, U0v2, . . . , U0vn is an orthonormal basis in E⊥, so

v1,v2, . . . ,vn, U0v1, U0v2, . . . , U0vn

is an orthonormal basis in the whole space X.

If x1, x2, . . . , x2n are coordinates of a vector x in this basis, and we
treat xk + ixn+k, k = 1, 2, . . . , n as complex coordinates of x, then the
multiplication by i is represented by the orthogonal transformation U which
is given in the orthogonal basis of subspaces E,E⊥ by the block matrix

U =

(
0 −U∗0
U0 0

)
.

This means that

i

(
x1

x2

)
= U

(
x1

x2

)
=

(
0 −U∗0
U0 0

)(
x1

x2

)
x1 ∈ E, x2 ∈ E⊥.

Clearly, U is an orthogonal transformation such that U2 = −I. There-
fore, any complex structure on X is given by an orthogonal transformation
U , satisfying U2 = −I; the transformation U gives us the multiplication by
the imaginary unit i.



158 5. Inner product spaces

The converse is also true, namely any orthogonal transformation U sat-
isfying U2 = −I defines a complex structure on a real inner product space
X. Let us explain how.

8.3.3. An abstract construction of complex structure. Let us first consider
an abstract explanation. To define a complex structure, we need to define
the multiplication of vectors by complex numbers (initially we only can
multiply by real numbers). In fact we need only to define the multiplication
by i, the rest will follow from linearity in the original real space. And the
multiplication by i is given by the orthogonal transformation U satisfying
U2 = −I.

Namely, if the multiplication by i is given by U , ix = Ux, then the
complex multiplication must be defined by

(8.2) (α+ βi)x := αx + βUx = (αI + βU)x, α, β ∈ R, x ∈ X.

We will use this formula now as the definition of complex multiplication.

It is not hard to check that for the complex multiplication defined above
by (8.2) all axioms of comples wector space are satisfied. One can see that,
for example by using linearity in the real space X and noticing that that
with respect to algebraic operations (addition and multiplication) the linear
transformations of form

αI = βU, α, β ∈ R,

behave absolutely the same way as complex numbers α+ βi, i.e such trans-
formations give us a representation of the field of complex numbers C.

This means that first, a sum and a product of transformations of the form
αI+βU is a transformation of the same form, and to get the coeeficients α,
β of the result we can perform the operation on the corresponding complex
numbers and take the real and imaginary parts of the result. Note, that
here we need the identity U2 = −I, but we do not need the fact that U is
an orthogonal transformation.

Thus, we got the structure of a complex vector space. To get a complex
inner product space we need to introduce complex inner product, such that
the original real inner product is the real part of it.

We really do not have nay choice here: noticing that for a complex inner
product

Im(x,y) = Re
[
−i(x,y)R

]
= Re(x, iy)R ,

we see that the only way to define the complex inner product is

(8.3) (x,y)C := (x,y)R + i(x, Uy)R .
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Let us show that this is indeed an inner product. We will need the fact
that U∗ = −U , see Exercise 8.4 below (by U∗ here we mean the adjoint with
respect to the original real inner product).

To show that (y,x)C = (x,y)C we use the udentity U∗ = −U and
symmetry of the real inner product:

(y,x)C = (y,x)R + i(y, Ux)

= (x,y)R + i(Ux,y)R
= (x,y)R − i(x, Uy)R

= (x,y)R + i(x, Uy)R

= (x,y)C .

To prove the linearity of the complex inner product, let us first notice
that (x,y)C is real linear in the first (in fact in each) argument, i.e. that
(αx + βy, z)C = α(x, z)C + β(y, z)C for α, β ∈ R; this is true because each
summand in the right side of (8.3) is real linear in argument.

Using real linearity of (x,y)C and the identity U∗ = −U (which implies
that (Ux,y)R = −(x, Uy)R) together with the orthogonality of U , we get
the following chain of equalities

((αI + βU)x,y)C = α(x,y)C + β(Ux,y)C

= α(x,y)C + β
[
(Ux,y)R + i(Ux, Uy)R

]
= α(x,y)C + β

[
−(x, Uy)R + i(x,y)R

]
= α(x,y)C + βi

[
(x,y)R + i(x, Uy)R

]
= α(x,y)C + βi(x,y)C = (α+ βi)(x,y)C ,

which proves complex linearity.

Finally, to prove non-negativity of (x,x)C let us notice (see Exercise 8.3
below) that (x, Ux)R = 0, so

(x,x)C = (x,x)R = ‖x‖2 ≥ 0.

8.3.4. The abstract construction via the elementary one. For a reader who is
not comfortable with such “high brow” and abstract proof, there is another,
more hands on, explanation.

Namely, it can be shown, see Exercise 8.5 below, that there exists a
subspace E, dimE = n (recall that dimX = 2n), such that the matrix of U
with respect to the decomposition X = E ⊕ E⊥ is given by

U =

(
0 −U∗0
U0 0

)
,

where U0 : E → E⊥ is some orthogonal transformation.
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Let v1,v2, . . . ,vn be an orthonormal basis in E. Then the system
U0v1, U0v2, . . . , U0vn is an orthonormal basis in E⊥, so

v1,v2, . . . ,vn, U0v1, U0v2, . . . , U0vn

is an orthonormal basis in the whole space X. Considering the coordinates
x1, x2, . . . , x2n in this basis and treating xk + ixn+k as complex coordinates,
we get an elementary, “coordinate” way of defining complex structure, which
was already described above. But if we look carefully, we see that multipli-
cation by i is given by the transformation U : it is trivial for x ∈ E and for
y ∈ E⊥, and so it is true for all real linear combinations of αx + βy, i.e. for
all vectors in X.

But that means that the abstract introduction of complex structure
and the corresponding elementary approach give us the same result! And
since the elementary approach clearly gives us the a complex structure, the
abstract approach gives us the same complex structure.

Exercises.

8.1. Prove formula (8.1). Namely, show that if

x = (z1, z2, . . . , zn)T , y = (w1, w2, . . . , wn)T ,

zk = xk + iyk, wk = uk + ivk, xk, yk, uk, vk ∈ R, then

Re
( n∑
k=1

zkwk

)
=

n∑
k=1

xkuk +

n∑
k=1

ykvk.

8.2. Show that if (x,y)C is an inner product in a complex inner product space,
then (x,y)R defined by (8.1) is a real inner product space.

8.3. Let U be an orthogonal transformation (in a real inner product space X),
satisfying U2 = −I. Prove that for all x ∈ X

Ux ⊥ x.

8.4. Show, that if U is an orthogonal transformation satisfying U2 = −I, then
U∗ = −U .

8.5. Let U be an orthogonal transformation in a real inner product space, satisfying
U2 = −I. Show that in this case dimX = 2n, and that there exists a subspace
E ⊂ X, dimE = n, and an orthogonal transformation U0 : E → E⊥ such that U
in the decomposition X = E ⊕ E⊥ is given by the block matrix

U =

(
0 −U∗0
U0 0

)
.

This statement can be easily obtained from Theorem 5.1 of Chapter 6, if one notes
that the only rotationRα in R2 satisfyingR2

α = −I are rotations through α = ±π/2.

However, one can find an elementary proof here, not using this theorem. For
example, the statement is trivial if dimX = 2: in this case we can take for E any
one-dimensional subspace, see Exercise 8.3.
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Then it is not hard to show, that such operator U does not exists in R2, and
one can use induction in dimX to complete the proof.





Chapter 6

Structure of operators
in inner product
spaces.

In this chapter we are again assuming that all spaces are finite-dimensional.
Again, we are dealing only with complex or real spaces, theory of inner
product spaces does not apply to spaces over general fields. When we are
not mentioning what space are we in, everything work for both complex and
real spaces.

To avoid writing essentially the same formulas twice we will use the
notation for the complex case: in the real case it give correct, although
sometimes a bit more complicated, formulas.

1. Upper triangular (Schur) representation of an operator.

Theorem 1.1. Let A : X → X be an operator acting in a complex inner
product space. There exists an orthonormal basis u1,u2, . . . ,un in X such
that the matrix of A in this basis is upper triangular.

In other words, any n × n matrix A can be represented as A = UTU∗,
where U is a unitary, and T is an upper triangular matrix.

Proof. We prove the theorem using the induction in dimX. If dimX = 1
the theorem is trivial, since any 1× 1 matrix is upper triangular.

Suppose we proved that the theorem is true if dimX = n − 1, and we
want to prove it for dimX = n.

163
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Let λ1 be an eigenvalue of A, and let u1, ‖u1‖ = 1 be a corresponding
eigenvector, Au1 = λ1u1. Denote E = u⊥1 , and let v2, . . . ,vn be some
orthonormal basis in E (clearly, dimE = dimX−1 = n−1), so u1,v2, . . . ,vn
is an orthonormal basis in X. In this basis the matrix of A has the form

(1.1)


λ1 ∗
0
... A1

0

 ;

here all entries below λ1 are zeroes, and ∗ means that we do not care what
entries are in the first row right of λ1.

We do care enough about the lower right (n− 1)× (n− 1) block, to give
it name: we denote it as A1.

Note, that A1 defines a linear transformation in E, and since dimE =
n − 1, the induction hypothesis implies that there exists an orthonormal
basis (let us denote it as u2, . . . ,un) in which the matrix of A1 is upper
triangular.

So, matrix of A in the orthonormal basis u1,u2, . . . ,un has the form
(1.1), where matrix A1 is upper triangular. Therefore, the matrix of A in
this basis is upper triangular as well. �

Remark. Note, that the subspace E = u⊥1 introduced in the proof is not invariant
under A, i.e. the inclusion AE ⊂ E does not necessarily hold. That means that A1

is not a part of A, it is some operator constructed from A.

Note also, that AE ⊂ E if and only if all entries denoted by ∗ (i.e. all entries
in the first row, except λ1) are zero.

Remark. Note, that even if we start from a real matrix A, the matrices U
and T can have complex entries. The rotation matrix(

cosα − sinα
sinα cosα

)
, α 6= kπ, k ∈ Z

is not unitarily equivalent (not even similar) to a real upper triangular ma-
trix. Indeed, eigenvalues of this matrix are complex, and the eigenvalues of
an upper triangular matrix are its diagonal entries.

Remark. An analogue of Theorem 1.1 can be stated and proved for an
arbitrary vector space, without requiring it to have an inner product. In
this case the theorem claims that any operator have an upper triangular
form in some basis. A proof can be modeled after the proof of Theorem 1.1.
An alternative way is to equip V with an inner product by fixing a basis in
V and declaring it to be an orthonormal one, see Problem 2.4 in Chapter 5.
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Note, that the version for inner product spaces (Theorem 1.1) is stronger
than the one for the vector spaces, because it says that we always can find
an orthonormal basis, not just a basis.

The following theorem is a real-valued version of Theorem 1.1

Theorem 1.2. Let A : X → X be an operator acting in a real inner product
space. Suppose that all eigenvalues of A are real (meaning that A has exactly
n = dimX real eigenvalues, counting multiplicities). Then there exists an
orthonormal basis u1,u2, . . . ,un in X such that the matrix of A in this basis
is upper triangular.

In other words, any real n× n matrix A with all real eigenvalues can be
represented as T = UTU∗ = UTUT , where U is an orthogonal, and T is a
real upper triangular matrices.

Proof. To prove the theorem we just need to analyze the proof of Theorem
1.1. Let us assume (we can always do this without loss of generality) that
the operator (matrix) A acts in Rn.

Suppose, the theorem is true for (n − 1) × (n − 1) matrices. As in the
proof of Theorem 1.1 let λ1 be a real eigenvalue of A, u1 ∈ Rn, ‖u1‖ = 1 be
a corresponding eigenvector, and let v2, . . . ,vn be on orthonormal system
(in Rn) such that u1,v2, . . . ,vn is an orthonormal basis in Rn.

The matrix of A in this basis has form (1.1), where A1 is some real
matrix.

If we can prove that matrix A1 has only real eigenvalues, then we are
done. Indeed, then by the induction hypothesis there exists an orthonormal
basis u2, . . . ,un in E = u⊥1 such that the matrix of A1 in this basis is
upper triangular, so the matrix of A in the basis u1,u2, . . . ,un is also upper
triangular.

To show that A1 has only real eigenvalues, let us notice that

det(A− λI) = (λ1 − λ) det(A1 − λ)

(take the cofactor expansion in the first row, for example), and so any eigen-
value of A1 is also an eigenvalue of A. But A has only real eigenvalues! �

Exercises.

1.1. Use the upper triangular representation of an operator to give an alternative
proof of the fact that determinant is the product and the trace is the sum of
eigenvalues counting multiplicities.

2. Spectral theorem for self-adjoint and normal operators.

In this section we deal with matrices (operators) which are unitarily equiv-
alent to diagonal matrices.
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Let us recall that an operator is called self-adjoint if A = A∗. A matrix
of a self-adjoint operator (in some orthonormal basis), i.e. a matrix satisfying
A∗ = A is called a Hermitian matrix.

The terms self-adjoint and Hermitian essentially mean the same. Usu-
ally people say self-adjoint when speaking about operators (transforma-
tions), and Hermitian when speaking about matrices. We will try to follow
this convention, but since we often do not distinguish between operators and
their matrices, we will sometimes mix both terms.

Theorem 2.1. Let A = A∗ be a self-adjoint operator in an inner product
space X (the space can be complex or real). Then all eigenvalues of A are
real, and there exists and orthonormal basis of eigenvectors of A in X.

This theorem can be restated in matrix form as follows

Theorem 2.2. Let A = A∗ be a self-adjoint (and therefore square) matrix.
Then A can be represented as

A = UDU∗,

where U is a unitary matrix and D is a diagonal matrix with real entries.

Moreover, if the matrix A is real, matrix U can be chosen to be real
(i.e. orthogonal).

Proof. To prove Theorems 2.1 and 2.2 let us first apply Theorem 1.1 (The-
orem 1.2 if X is a real space) to find an orthonormal basis in X such that
the matrix of A in this basis is upper triangular. Now let us ask ourself a
question: What upper triangular matrices are self-adjoint?

The answer is immediate: an upper triangular matrix is self-adjoint if
and only if it is a diagonal matrix with real entries. Theorem 2.1 (and so
Theorem 2.2) is proved. �

Remark. In many textbooks only real matrices are considered, and The-
orem 2.2 is often called the “Spectral Theorem for symmetric matrices”.
However, we should emphasize that the conclusion of Theorem 2.2 fails for
complex symmetric matrices: the theorem holds for Hermitian matrices, and
in particular for real symmetric matrices.

Let us give an independent proof to the fact that eigenvalues of a self-
adjoint operators are real. Let A = A∗ and Ax = λx, x 6= 0. Then

(Ax,x) = (λx,x) = λ(x,x) = λ‖x‖2.
On the other hand,

(Ax,x) = (x, A∗x) = (x, Ax) = (x, λx) = λ(x,x) = λ‖x‖2,
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so λ‖x‖2 = λ‖x‖2. Since ‖x‖ 6= 0 (x 6= 0), we can conclude λ = λ, so λ is
real.

It also follows from Theorem 2.1 that eigenspaces of a self-adjoint oper-
ator are orthogonal. Let us give an alternative proof of this result.

Proposition 2.3. Let A = A∗ be a self-adjoint operator, and let u,v be its
eigenvectors, Au = λu, Av = µv. Then, if λ 6= µ, the eigenvectors u and
v are orthogonal.

Proof. This proposition follows from the spectral theorem (Theorem 1.1),
but here we are giving a direct proof. Namely,

(Au,v) = (λu,v) = λ(u,v).

On the other hand

(Au,v) = (u, A∗v) = (u, Av) = (u, µv) = µ(u,v) = µ(u,v)

(the last equality holds because eigenvalues of a self-adjoint operator are
real), so λ(u,v) = µ(u,v). If λ 6= µ it is possible only if (u,v) = 0. �

Now let us try to find what matrices are unitarily equivalent to a diagonal
one. It is easy to check that for a diagonal matrix D

D∗D = DD∗.

Therefore A∗A = AA∗ if the matrix of A in some orthonormal basis is
diagonal.

Definition. An operator (matrix) N is called normal if N∗N = NN∗.

Clearly, any self-adjoint operator (A∗A = AA∗) is normal. Also, any
unitary operator U : X → X is normal since U∗U = UU∗ = I.

Note, that a normal operator is an operator acting in one space, not from one

space to another. So, if U is a unitary operator acting from one space to another,

we cannot say that U is normal.

Theorem 2.4. Any normal operator N in a complex vector space has an
orthonormal basis of eigenvectors.

In other words, any matrix N satisfying N∗N = NN∗ can be represented
as

N = UDU∗,

where U is a unitary matrix, and D is a diagonal one.

Remark. Note, that in the above theorem even if N is a real matrix, we
did not claim that matrices U and D are real. Moreover, it can be easily
shown, that if D is real, N must be self-adjoint.
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Proof of Theorem 2.4. To prove Theorem 2.4 we apply Theorem 1.1 to
get an orthonormal basis, such that the matrix of N in this basis is upper
triangular. To complete the proof of the theorem we only need to show that
an upper triangular normal matrix must be diagonal.

We will prove this using induction in the dimension of matrix. The case
of 1× 1 matrix is trivial, since any 1× 1 matrix is diagonal.

Suppose we have proved that any (n − 1) × (n − 1) upper triangular
normal matrix is diagonal, and we want to prove it for n× n matrices. Let
N be n× n upper triangular normal matrix. We can write it as

N =


a1,1 a1,2 . . . a1,n

0
... N1

0


where N1 is an upper triangular (n− 1)× (n− 1) matrix.

Let us compare upper left entries (first row first column) of N∗N and
NN∗. Direct computation shows that that

(N∗N)1,1 = a1,1a1,1 = |a1,1|2

and

(NN∗)1,1 = |a1,1|2 + |a1,2|2 + . . .+ |a1,n|2.
So, (N∗N)1,1 = (NN∗)1,1 if and only if a1,2 = . . . = a1,n = 0. Therefore,
the matrix N has the form

N =


a1,1 0 . . . 0

0
... N1

0


It follows from the above representation that

N∗N =


|a1,1|2 0 . . . 0

0
... N∗1N1

0

 , NN∗ =


|a1,1|2 0 . . . 0

0
... N1N

∗
1

0


so N∗1N1 = N1N

∗
1 . That means the matrix N1 is also normal, and by the

induction hypothesis it is diagonal. So the matrix N is also diagonal. �

The following proposition gives a very useful characterization of normal
operators.

Proposition 2.5. An operator N : X → X is normal if and only if

‖Nx‖ = ‖N∗x‖ ∀x ∈ X.
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Proof. Let N be normal, N∗N = NN∗. Then

‖Nx‖2 = (Nx, Nx) = (N∗Nx,x) = (NN∗x,x) = (N∗x, N∗x) = ‖N∗x‖2

so ‖Nx‖ = ‖N∗x‖.
Now let

‖Nx‖ = ‖N∗x‖ ∀x ∈ X.
The Polarization Identities (Lemma 1.9 in Chapter 5) imply that for all
x,y ∈ X

(N∗Nx,y) = (Nx, Ny) =
1

4

∑
α=±1,±i

α‖Nx + αNy‖2

=
1

4

∑
α=±1,±i

α‖N(x + αy)‖2

=
1

4

∑
α=±1,±i

α‖N∗(x + αy)‖2

=
1

4

∑
α=±1,±i

α‖N∗x + αN∗y‖2

= (N∗x, N∗y) = (NN∗x,y)

and therefore (see Corollary 1.6) N∗N = NN∗. �

Exercises.

2.1. True or false:

a) Every unitary operator U : X → X is normal.

b) A matrix is unitary if and only if it is invertible.

c) If two matrices are unitarily equivalent, then they are also similar.

d) The sum of self-adjoint operators is self-adjoint.

e) The adjoint of a unitary operator is unitary.

f) The adjoint of a normal operator is normal.

g) If all eigenvalues of a linear operator are 1, then the operator must be
unitary or orthogonal.

h) If all eigenvalues of a normal operator are 1, then the operator is identity.

i) A linear operator may preserve norm but not the inner product.

2.2. True or false: The sum of normal operators is normal? Justify your conclusion.

2.3. Show that an operator unitarily equivalent to a diagonal one is normal.

2.4. Orthogonally diagonalize the matrix,

A =

(
3 2
2 3

)
.

Find all square roots of A, i.e. find all matrices B such that B2 = A.
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Note, that all square roots of A are self-adjoint.

2.5. True or false: any self-adjoint matrix has a self-adjoint square root. Justify.

2.6. Orthogonally diagonalize the matrix,

A =

(
7 2
2 4

)
,

i.e. represent it as A = UDU∗, where D is diagonal and U is unitary.

Among all square roots of A, i.e. among all matrices B such that B2 = A, find
one that has positive eigenvalues. You can leave B as a product.

2.7. True or false:

a) A product of two self-adjoint matrices is self-adjoint.

b) If A is self-adjoint, then Ak is self-adjoint.

Justify your conclusions

2.8. Let A be m× n matrix. Prove that

a) A∗A is self-adjoint.

b) All eigenvalues of A∗A are non-negative.

c) A∗A+ I is invertible.

2.9. Give a proof if the statement is true, or give a counterexample if it is false:

a) If A = A∗ then A+ iI is invertible.

b) If U is unitary, U + 3
4I is invertible.

c) If a matrix A is real, A− iI is invertible.

2.10. Orthogonally diagonalize the rotation matrix

Rα =

(
cosα − sinα
sinα cosα

)
,

where α is not a multiple of π. Note, that you will get complex eigenvalues in this
case.

2.11. Orthogonally diagonalize the matrix

A =

(
cosα sinα
sinα − cosα

)
.

Hints: You will get real eigenvalues in this case. Also, the trigonometric identities
sin 2x = 2 sinx cosx, sin2 x = (1 − cos 2x)/2, cos2 x = (1 + cos 2x)/2 (applied to
x = α/2) will help to simplify expressions for eigenvectors.

2.12. Can you describe the linear transformation with matrix A from the previous
problem geometrically? Is has a very simple geometric interpretation.

2.13. Prove that a normal operator with unimodular eigenvalues (i.e. with all
eigenvalues satisfying |λk| = 1) is unitary. Hint: Consider diagonalization

2.14. Prove that a normal operator with real eigenvalues is self-adjoint.
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2.15. Show by example that conclusion of Theorem 2.2 fails for complex symmetric
matrices. Namely

a) construct a (diagonalizable) 2×2 complex symmetric matrix not admitting
an orthogonal basis of eigenvectors;

b) construct a 2×2 complex symmetric matrix which cannot be diagonalized.

3. Polar and singular value decompositions.

3.1. Positive definite operators. Square roots.

Definition. A self adjoint operator A : X → X is called positive definite if

(Ax,x) > 0 ∀x 6= 0,

and it is called positive semidefinite if

(Ax,x) ≥ 0 ∀x ∈ X.

We will use the notation A > 0 for positive definite operators, and A ≥ 0
for positive semi-definite.

The following theorem describes positive definite and semidefinite oper-
ators.

Theorem 3.1. Let A = A∗. Then

1. A > 0 if and only if all eigenvalues of A are positive.

2. A ≥ 0 if and only if all eigenvalues of A are non-negative.

Proof. Pick an orthonormal basis such that matrix of A in this basis is
diagonal (see Theorem 2.1). To finish the proof it remains to notice that a
diagonal matrix is positive definite (positive semidefinite) if and only if all
its diagonal entries are positive (non-negative). �

Corollary 3.2. Let A = A∗ ≥ 0 be a positive semidefinite operator. There
exists a unique positive semidefinite operator B such that B2 = A

Such B is called (positive) square root of A and is denoted as
√
A or

A1/2.

Proof. Let us prove that
√
A exists. Let v1,v2, . . . ,vn be an orthonor-

mal basis of eigenvectors of A, and let λ1, λ2, . . . , λn be the corresponding
eigenvalues. Note, that since A ≥ 0, all λk ≥ 0.

In the basis v1,v2, . . . ,vn the matrix of A is a diagonal matrix
diag{λ1, λ2, . . . , λn} with entries λ1, λ2, . . . , λn on the diagonal. Define the
matrix of B in the same basis as diag{

√
λ1,
√
λ2, . . . ,

√
λn}.

Clearly, B = B∗ ≥ 0 and B2 = A.
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To prove that such B is unique, let us suppose that there exists an op-
erator C = C∗ ≥ 0 such that C2 = A. Let u1,u2, . . . ,un be an orthonormal
basis of eigenvectors of C, and let µ1, µ2, . . . , µn be the corresponding eigen-
values (note that µk ≥ 0 ∀k). The matrix of C in the basis u1,u2, . . . ,un
is a diagonal one diag{µ1, µ2, . . . , µn}, and therefore the matrix of A = C2

in the same basis is diag{µ2
1, µ

2
2, . . . , µ

2
n}. This implies that any eigenvalue

λ of A is of form µ2
k, and, moreover, if Ax = λx, then Cx =

√
λx.

Therefore in the basis v1,v2, . . . ,vn above, the matrix of C has the
diagonal form diag{

√
λ1,
√
λ2, . . . ,

√
λn}, i.e. B = C. �

3.2. Modulus of an operator. Singular values. Consider an operator
A : X → Y . Its Hermitian square A∗A is a positive semidefinite operator
acting in X. Indeed,

(A∗A)∗ = A∗A∗∗ = A∗A

and

(A∗Ax,x) = (Ax, Ax) = ‖Ax‖2 ≥ 0 ∀x ∈ X.
Therefore, there exists a (unique) positive-semidefinite square root R =√
A∗A. This operator R is called the modulus of the operator A, and is

often denoted as |A|.
The modulus of A shows how “big” the operator A is:

Proposition 3.3. For a linear operator A : X → Y

‖|A|x‖ = ‖Ax‖ ∀x ∈ X.

Proof. For any x ∈ X
‖|A|x‖2 = (|A|x, |A|x) = (|A|∗|A|x,x) = (|A|2x,x)

= (A∗Ax,x) = (Ax, Ax) = ‖Ax‖2

�

Corollary 3.4.

KerA = Ker |A| = (Ran |A|)⊥.

Proof. The first equality follows immediately from Proposition 3.3, the sec-
ond one follows from the identity KerT = (RanT ∗)⊥ (|A| is self-adjoint). �

Theorem 3.5 (Polar decomposition of an operator). Let A : X → X be an
operator (square matrix). Then A can be represented as

A = U |A|,
where U is a unitary operator.

Remark. The unitary operator U is generally not unique. As one will see
from the proof of the theorem, U is unique if and only if A is invertible.
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Remark. The polar decomposition A = U |A| also holds for operators A :
X → Y acting from one space to another. But in this case we can only
guarantee that U is an isometry from Ran |A| = (KerA)⊥ to Y .

If dimX ≤ dimY this isometry can be extended to an isometry from
the whole X to Y (if dimX = dimY this will be a unitary operator).

Proof of Theorem 3.5. Consider a vector x ∈ Ran |A|. Then vector x
can be represented as x = |A|v for some vector v ∈ X.

Define U0x := Av. By Proposition 3.3

‖U0x‖ = ‖Av‖ = ‖|A|v‖ = ‖x‖
so it looks like U is an isometry from Ran |A| to X.

But first we need to prove that U0 is well defined. Let v1 be another
vector such that x = |A|v1. But x = |A|v = |A|v1 means that v − v1 ∈
Ker |A| = KerA (cf Corollary 3.4), so Av = Av1, meaning that U0x is well
defined.

By the construction A = U0|A|. We leave as an exercise for the reader
to check that U0 is a linear transformation.

To extend U0 to a unitary operator U , let us find some unitary transfor-
mation U1 : KerA → (RanA)⊥ = KerA∗. It is always possible to do this,
since for square matrices dim KerA = dim KerA∗ (the Rank Theorem).

It is easy to check that U = U0 + U1 is a unitary operator, and that
A = U |A|. �

3.3. Singular values. Schmidt decomposition.

Definition. Eigenvalues of |A| are called the singular values of A. In other
words, if λ1, λ2, . . . , λn are eigenvalues of A∗A then

√
λ1,
√
λ2, . . . ,

√
λn are

singular values of A.

Remark. Very often in the literature the singular values are defined as the
non-negative square roots of the eigenvalues of A∗A, without any reference
to the modulus |A|.

I consider the notion of the modulus of an operator to be an important
one, so it was introduced above. However, the notion of the modulus of an
operator is not required for what follows (defining the Schur and singular
value decompositions). Moreover, as it will be shown below, the modulus of
A can be easily constructed from the singular value decomposition.

Consider an operator A : X → Y , and let σ1, σ2, . . . , σn be the singu-
lar values of A counting multiplicities. Assume also that σ1, σ2, . . . , σr are
the non-zero singular values of A, counting multiplicities. This means, in
particular, that σk = 0 for k > r.
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By the definition of singular values the numbers σ2
1, σ

2
2, . . . , σ

2
n are eigen-

values of A∗A. Let v1,v2, . . . ,vn be an orthonormal basis1 of eigenvectors
of A∗A, A∗Avk = σ2

kvk.

Proposition 3.6. The system

wk :=
1

σk
Avk, k = 1, 2, . . . , r

is an orthonormal system.

Proof.

(Avj , Avk) = (A∗Avj ,vk) = (σ2
jvj ,vk) = σ2

j (vj ,vk) =

{
0, j 6= k
σ2
j , j = k

since v1,v2, . . . ,vr is an orthonormal system. �

In the notation of the above proposition, the operator A can be repre-
sented as

(3.1) A =

r∑
k=1

σkwkv
∗
k,

or, equivalently

(3.2) Ax =
r∑

k=1

σk(x,vk)wk.

Indeed, we know that v1,v2, . . . ,vn is an orthonormal basis in X. Then
substituting x = vj into the right side of (3.2) we get

r∑
k=1

σk(vj ,vk)wk = σj(vj ,vj)wj = σjwj = Avj if j = 1, 2, . . . , r,

and
r∑

k=1

σk(v
∗
kvj)wk = 0 = Avj for j > r.

So the operators in the left and right sides of (3.1) coincide on the basis
v1,v2, . . . ,vn, so they are equal.

Definition. The above decomposition (3.1) (or (3.2)) is called the Schmidt
decomposition of the operator A.

Remark. Shmidt decomposition of an operator is not unique. Why?

1We know, that for a self-adjoint operator (A∗A in our case) there exists an orthonormal
basis of eigenvectors.
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Lemma 3.7. Let A can be represented as

A =

r∑
k=1

σkwkv
∗
k

where σk > 0 and v1,v2, . . . ,vr, w1,w2, . . . ,wr are some orthonormal sys-
tems.

Then this representation gives a Schmidt decomposition of A.

Proof. We only need to show that v1,v2, . . . ,vr are eigenvectors of A∗A,
A∗Avk = σ2

kvk. Since w1,w2, . . . ,wr is an orthonormal system,

w∗kwj = (wj ,wk) = δk,j :=

{
0, j 6= k
1, j = k,

and therefore

A∗A =
r∑

k=1

σ2
kvkv

∗
k.

Since v1,v2, . . . ,vr is an orthonormal system

A∗Avj =
r∑

k=1

σ2
kvkv

∗
kvj = σ2

jvj

thus vk are eigenvectors of A∗A. �

Corollary 3.8. Let

A =
r∑

k=1

σkwkv
∗
k

be a Schmidt decomposition of A. Then

A∗ =
r∑

k=1

σkvkw
∗
k

is a Scmidt decomposition of A∗

3.4. Matrix representation of the Shmidt decomposition. Singular
value decomposition. The Shmidt decomposition can be written in a nice
matrix form. Namely, let us assume that A : Fn → Fm, where F is either
C or R (we can always do that by fixing orthonormal bases in X and Y
and working with coordinates in these bases). Let σ1, σ2, . . . , σr be non-zero
singular values of A, and let

A =

r∑
k=1

σkwkv
∗
k

be a Scmidt decomposition of A.
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As one can easily see, this equality can be rewritten as

(3.3) A = W̃ Σ̃Ṽ ∗,

where Σ̃ = diag{σ1, σ2, . . . , σr} and Ṽ and W̃ are matrices with columns
v1,v2, . . . ,vr and w1,w2, . . . ,wr respectively. (Can you tell what is the
size of each matrix?)

Note, that since v1,v2, . . . ,vr and w1,w2, . . . ,wr are orthonormal sys-

tems, the matrices Ṽ and W̃ are isometries. Note also that r = rankA, see
Exercise 3.1 below.

If the matrix A is invertible, then m = n = r, the matrices Ṽ , W̃ are

unitary and Σ̃ is an invertible diagonal matrix.

It turns out that it is always possible to write a representation similar

(3.3) with unitary V and W instead of Ṽ and W̃ , and in many situations
it is more convenient to work with such a representation. To write this
representation one needs first to complete the systems v1,v2, . . . ,vr and
w1,w2, . . . ,wr to orthogonal bases in Fn and Fm respectively.

Recall, that to complete, say v1,v2, . . . ,vr to an orthonormal basis in
Fn one just needs to find and orthonormal basis vr+1, . . . ,vn in KerV ∗; then
the system v1,v2, . . . ,vn will be an orthonormal basis in Fn. And one can
always get an orthonormal basis from an arbitrary one using Gram–Schmidt
orthogonalization.

Then A can be represented as

(3.4) A = WΣV ∗,

where V ∈ MF
n×n and W ∈ MF

m×m are unitary matrices with columns
v1,v2, . . . ,vn and w1,w2, . . . ,wm respectively, and Σ is a “diagonal” m×n
matrix

(3.5) Σj,k =

{
σk j = k ≤ r :
0 otherwise.

In other words, to get the matrix Σ one has to take the diagonal matrix
diag{σ1, σ2, . . . , σr} and make it to an m×n matrix by adding extra zeroes
“south and east”.

Definition 3.9. For a matrix A ∈MF
m×n (recall that here F is always C or

R) its singular value decomposition (SVD) is a decomposition of form (3.4),
i.e. a decomposition A = WΣV ∗, where W ∈MF

n×n, V ∈MF
m×m are unitary

matrices and Σ ∈ MR+
m×n is a “diagonal” one (meaning that σk,k ≥ 0 for all

k = 1, 2, . . . ,min{m,n}, and σj,k = 0 for all j 6= k).

The representation (3.3) is often called the reduced or compact SVD.

More precisely the reduced SVD is a representation A = W̃ Σ̃Ṽ ∗, where

Σ̃ ∈MR+
r×r, r ≤ min{m,n} is a diagonal matrix with strictly positive diagonal
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entries, and W̃ ∈ MF
n×r, Ṽ ∈ MF

m×r are isometries; moreover, we require

that at least one of the matrices W̃ and Ṽ is not square.

Remark 3.10. It is easy to see that if A = WΣV ∗ is a singular value
decomposition of A, then σk := σk,k are singular values of A, i.e. σ2

k are
eigenvalues of A∗A. Moreover, the columns vk of V are the corresponding
eigenvectors of A∗A, A∗Avk = σ2

kvk. Note also that if σk 6= 0 then wk =
1
σk
Avk.

All that means that any singular value decomposition A = WΣV ∗ can be
obtained from a Schmidt decomposition (3.2) by the construction described
above in this section.

The reduced singular value decomposition can be interpreted as a matrix
form of the Schmidt decomposition (3.2) for a non-invertible matrix A. For
an invertible matrix A the matrix form of the Schmidt decomposition gives
the singular value decomposition.

Remark 3.11. An alternative way to interpret the singular value decom-
position A = WΣV ∗ is to say that Σ is the matrix of A in the (orthonormal)
bases A = v1,v2, . . . ,vn and B := w1,w2, . . . ,wn, i.e that Σ = [A]B,A .

We will use this interpretation later.

3.4.1. From singular value decomposition to the polar decomposition. Note,
that if we know the singular value decomposition A = WΣV ∗ of a square
matrix A, we can write a polar decomposition of A:

(3.6) A = WΣV ∗ = (WV ∗)(V ΣV ∗) = U |A|
where |A| = V ΣV ∗ and U = WV ∗.

To see that this indeed give us a polar decomposition let us notice that
V ΣV ∗ is a self-adjoint, positive semidefinite operator and that

A∗A = V ΣW ∗WΣV ∗ = V ΣΣV ∗ = V ΣV ∗V ΣV ∗ = (V ΣV ∗)2.

So by the definition of |A| as the unique positive semidefinite square root
of A∗A, we can see that |A| = V ΣV ∗. The transformation WV ∗ is clearly
unitary, as a product of two unitary transformations, so (3.6) indeed gives
us a polar decomposition of A.

Note, that this reasoning only works for square matrices, because if A is
not square, then the product V Σ is not defined (dimensions do not match,
can you see how?).

Exercises.

3.1. Show that the number of non-zero singular values of a matrix A coincides with
its rank.
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3.2. Find Schmidt decompositions A =

r∑
k=1

skwkv
∗
k for the following matrices A:

(
2 3
0 2

)
,

 7 1
0 0
5 5

 ,

 1 1
0 1
−1 1

 .

3.3. Let A be an invertible matrix, and let A = WΣV ∗ be its singular value
decomposition. Find a singular value decomposition for A∗ and A−1.

3.4. Find singular value decomposition A = WΣV ∗ where V and W are unitary
matrices for the following matrices:

a) A =

 −3 1
6 −2
6 −2

;

b) A =

(
3 2 2
2 3 −2

)
.

3.5. Find singular value decomposition of the matrix

A =

(
2 3
0 2

)
Use it to find

a) max‖x‖≤1 ‖Ax‖ and the vectors where the maximum is attained;

b) min‖x‖=1 ‖Ax‖ and the vectors where the minimum is attained;

c) the image A(B) of the closed unit ball in R2, B = {x ∈ R2 : ‖x‖ ≤ 1}.
Describe A(B) geometrically.

3.6. Show that for a square matrix A, |detA| = det |A|.
3.7. True or false

a) Singular values of a matrix are also eigenvalues of the matrix.

b) Singular values of a matrix A are eigenvalues of A∗A.

c) Is s is a singular value of a matrix A and c is a scalar, then |c|s is a singular
value of cA.

d) The singular values of any linear operator are non-negative.

e) Singular values of a self-adjoint matrix coincide with its eigenvalues.

3.8. Let A be an m × n matrix. Prove that non-zero eigenvalues of the matrices
A∗A and AA∗ (counting multiplicities) coincide.

Can you say when zero eigenvalue of A∗A and zero eigenvalue of AA∗ have the
same multiplicity?

3.9. Let s be the largest singular value of an operator A, and let λ be the eigenvalue
of A with largest absolute value. Show that |λ| ≤ s.
3.10. Show that the rank of a matrix is the number of its non-zero singular values
(counting multiplicities).
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3.11. Show that the operator norm of a matrix A coincides with its Frobenius
norm if and only if the matrix has rank one. Hint: The previous problem might
help.

3.12. For the matrix A

A =

(
2 −3
0 2

)
,

describe the inverse image of the unit ball, i.e. the set of all x ∈ R2 such that
‖Ax‖ ≤ 1. Use singular value decomposition.

4. Applications of the singular value decomposition.

As we discussed above, the singular value decomposition is simply diago-
nalization with respect to two different orthonormal bases. Since we have
two different bases here, we cannot say much about spectral properties of an
operator from its singular value decomposition. For example, the diagonal
entries of Σ in the singular value decomposition (3.5) are not the eigenvalues
of A. Note, that for A = WΣV ∗ as in (3.5) we generally have An 6= WΣnV ∗,
so this diagonalization does not help us in computing functions of a matrix.

However, as the examples below show, singular values tell us a lot about
so-called metric properties of a linear transformation.

Final remark: performing singular value decomposition requires finding
eigenvalues and eigenvectors of the Hermitian (self-adjoint) matrix A∗A. To
find eigenvalues we usually computed characteristic polynomial, found its
roots, and so on... This looks like quite a complicated process, especially if
one takes into account that there is no formula for finding roots of polyno-
mials of degree 5 and higher.

However, there are very effective numerical methods of find eigenvalues
and eigenvectors of a hermitian matrix up to any given precision. These
methods do not involve computing the characteristic polynomial and finding
its roots. They compute approximate eigenvalues and eigenvectors directly
by an iterative procedure. Because a Hermitian matrix has an orthogonal
basis of eigenvectors, these methods work extremely well.

We will not discuss these methods here, it goes beyond the scope of
this book. However, you should believe me that there are very effective nu-
merical methods for computing eigenvalues and eigenvectors of a Hermitian
matrix and for finding the singular value decomposition. These methods are
extremely effective, and just a little more computationally intensive than
solving a linear system.
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4.1. Image of the unit ball. Consider for example the following problem:
let A : Rn → Rm be a linear transformation, and let B = {x ∈ Rn : ‖x‖ ≤ 1}
be the closed unit ball in Rn. We want to describe A(B), i.e. we want to
find out how the unit ball is transformed under the linear transformation.

Let us first consider the simplest case when A is a diagonal matrix A =
diag{σ1, σ2, . . . , σn}, σk > 0, k = 1, 2, . . . , n. Then for x = (x1, x2, . . . , xn)T

and (y1, y2, . . . , yn)T = y = Ax we have yk = σkxk (equivalently, xk =
yk/σk) for k = 1, 2, . . . , n, so

y = (y1, y2, . . . , yn)T = Ax for ‖x‖ ≤ 1,

if and only if the coordinates y1, y2, . . . , yn satisfy the inequality

y2
1

σ2
1

+
y2

2

σ2
2

+ · · ·+ y2
n

σ2
n

=
n∑
k=1

y2
k

σ2
k

≤ 1

(this is simply the inequality ‖x‖2 =
∑

k |xk|2 ≤ 1).

The set of points in Rn satisfying the above inequalities is called an el-
lipsoid. If n = 2 it is an ellipse with half-axes σ1 and σ2, for n = 3 it is
an ellipsoid with half-axes σ1, σ2 and σ2. In Rn the geometry of this set
is also easy to visualize, and we call that set an ellipsoid with half axes
σ1, σ2, . . . , σn. The vectors e1, e2, . . . , en or, more precisely the correspond-
ing lines are called the principal axes of the ellipsoid.

The singular value decomposition essentially says that any operator in an
inner product space is diagonal with respect to a pair of orthonormal bases,
see Remark 3.11. Namely, consider the orthogonal bases A = v1,v2, . . . ,vn
and B = w1,w2, . . . ,wn from the singular value decomposition (3.1). Then
the matrix of A in these bases is diagonal

[A]B,A = diag{σn : n = 1, 2, . . . , n}.
Assuming that all σk > 0 and essentially repeating the above reasoning, it
is easy to show that any point y = Ax ∈ A(B) if and only if it satisfies the
inequality

y2
1

σ2
1

+
y2

2

σ2
2

+ · · ·+ y2
n

σ2
n

=
n∑
k=1

y2
k

σ2
k

≤ 1.

where y1, y2, . . . , yn are coordinates of y in the orthonormal basis B =
w1,w2, . . . ,wn, not in the standard one. Similarly, (x1, x2, . . . , xn)T = [x]A .

But that is essentially the same ellipsoid as before, only “rotated” (with
different but still orthogonal principal axes)!

There is also an alternative explanation which is presented below.

Consider the general case, when the matrix A is not necessarily square,
and (or) not all singular values are non-zero. Consider first the case of a
“diagonal” matrix Σ of form (3.5). It is easy to see that the image ΣB of
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the unit ball B is the ellipsoid (not in the whole space but in the Ran Σ)
with half axes σ1, σ2, . . . , σr.

Consider now the general case, A = WΣV ∗, where V , W are unitary
operators. Unitary transformations do not change the unit ball (because
they preserve norm), so V ∗(B) = B. We know that Σ(B) is an ellipsoid in
Ran Σ with half-axes σ1, σ2, . . . , σr. Unitary transformations do not change
geometry of objects, so W (Σ(B)) is also an ellipsoid with the same half-axes.
It is not hard to see from the decomposition A = WΣV ∗ (using the fact that
both W and V ∗ are invertible) that W transforms Ran Σ to RanA, so we
can conclude:

the image A(B) of the closed unit ball B is an ellipsoid in RanA
with half axes σ1, σ2, . . . , σr. Here r is the number of non-zero
singular values, i.e. the rank of A.

4.2. Operator norm of a linear transformation. Given a linear trans-
formation A : X → Y let us consider the following optimization problem:
find the maximum of ‖Ax‖ on the closed unit ball B = {x ∈ X : ‖x‖ ≤ 1}.

Again, singular value decomposition allows us to solve the problem. For
a diagonal matrix A with non-negative entries the maximum is exactly max-
imal diagonal entry. Indeed, let s1, s2, . . . , sr be non-zero diagonal entries of
A and let s1 be the maximal one. Since for x = (x1, x2, . . . , xn)T

(4.1) Ax =

r∑
k=1

skxkek,

we can conclude that

‖Ax‖2 =
r∑

k=1

s2
k|xk|2 ≤ s2

1

r∑
k=1

|xk|2 = s2
1 · ‖x‖2,

so ‖Ax‖ ≤ s1‖x‖. On the other hand, ‖Ae1‖ = ‖s1e1‖ = s1‖e1‖, so indeed
s1 is the maximum of ‖Ax‖ on the closed unit ball B. Note, that in the
above reasoning we did not assume that the matrix A is square; we only
assumed that all entries outside the “main diagonal” are 0, so formula (4.1)
holds.

To treat the general case let us consider the singular value decompo-
sition (3.5), A = WΣV , where W , V are unitary operators, and Σ is the
diagonal matrix with non-negative entries. Since unitary transformations
do not change the norm, one can conclude that the maximum of ‖Ax‖ on
the unit ball B is the maximal diagonal entry of Σ i.e. that

the maximum of ‖Ax‖ on the unit ball B is the maximal singular
value of A.
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Definition. The quantity max{‖Ax‖ : x ∈ X, ‖x‖ ≤ 1} is called the oper-
ator norm of A and denoted ‖A‖.

It is an easy exercise to see that ‖A‖ satisfies all properties of the norm:

1. ‖αA‖ = |α| · ‖A‖;
2. ‖A+B‖ ≤ ‖A‖+ ‖B‖;
3. ‖A‖ ≥ 0 for all A;

4. ‖A‖ = 0 if and only if A = 0,

so it is indeed a norm on a space of linear transformations from from X to
Y .

One of the main properties of the operator norm is the inequality

‖Ax‖ ≤ ‖A‖ · ‖x‖,
which follows easily from the homogeneity of the norm ‖x‖.

In fact, it can be shown that the operator norm ‖A‖ is the best (smallest)
number C ≥ 0 such that

‖Ax‖ ≤ C‖x‖ ∀x ∈ X.
This is often used as a definition of the operator norm.

On the space of linear transformations we already have one norm, the
Frobenius, or Hilbert-Schmidt norm ‖A‖2,

‖A‖22 = trace(A∗A).

So, let us investigate how these two norms compare.

Let s1, s2, . . . , sr be non-zero singular values of A (counting multiplici-
ties), and let s1 be the largest eigenvalues. Then s2

1, s
2
2, . . . , s

2
r are non-zero

eigenvalues of A∗A (again counting multiplicities). Recalling that the trace
equals the sum of the eigenvalues we conclude that

‖A‖22 = trace(A∗A) =
r∑

k=1

s2
k.

On the other hand we know that the operator norm of A equals its largest
singular value, i.e. ‖A‖ = s1. So we can conclude that ‖A‖ ≤ ‖A‖2, i.e. that

the operator norm of a matrix cannot be more than its Frobenius
norm.

This statement also admits a direct proof using the Cauchy–Schwarz in-
equality, and such a proof is presented in some textbooks. The beauty of
the proof we presented here is that it does not require any computations
and illuminates the reasons behind the inequality.
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4.3. Condition number of a matrix. Suppose we have an invertible
matrix A and we want to solve the equation Ax = b. The solution, of
course, is given by x = A−1b, but we want to investigate what happens if
we know the data only approximately.

That happens in the real life, when the data is obtained, for example by
some experiments. But even if we have exact data, round-off errors during
computations by a computer may have the same effect of distorting the data.

Let us consider the simplest model, suppose there is a small error in the
right side of the equation. That means, instead of the equation Ax = b we
are solving

Ax = b + ∆b,

where ∆b is a small perturbation of the right side b.

So, instead of the exact solution x of Ax = b we get the approximate
solution x+∆x of A(x+∆x) = b+∆b. We are assuming that A is invertible,
so ∆x = A−1∆b.

We want to know how big is the relative error in the solution ‖∆x‖/‖x‖
in comparison with the relative error in the right side ‖∆b‖/‖b‖. It is easy
to see that

‖∆x‖
‖x‖ =

‖A−1∆b‖
‖x‖ =

‖A−1∆b‖
‖b‖

‖b‖
‖x‖ =

‖A−1∆b‖
‖b‖

‖Ax‖
‖x‖ .

Since ‖A−1∆b‖ ≤ ‖A−1‖ · ‖∆b‖ and ‖Ax‖ ≤ ‖A‖ · ‖x‖ we can conclude that

‖∆x‖
‖x‖ ≤ ‖A

−1‖ · ‖A‖ · ‖∆b‖
‖b‖ .

The quantity ‖A‖·‖A−1‖ is called the condition number of the matrix A.
It estimates how the relative error in the solution x depends on the relative
error in the right side b.

Let us see how this quantity is related to singular values. Let the num-
bers s1, s2, . . . , sn be the singular values of A, and let us assume that s1 is the
largest singular value and sn is the smallest. We know that the (operator)
norm of an operator equals its largest singular value, so

‖A‖ = s1, ‖A−1‖ =
1

sn
,

so

‖A‖ · ‖A−1‖ =
s1

sn
.

In other words

The condition number of a matrix equals to the ratio of the largest
and the smallest singular values.
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We deduced above that ‖∆x‖
‖x‖ ≤ ‖A−1‖ · ‖A‖ · ‖∆b‖

‖b‖ . It is not hard to see

that this estimate is sharp, i.e. that it is possible to pick the right side b
and the error ∆b such that we have equality

‖∆x‖
‖x‖ = ‖A−1‖ · ‖A‖ · ‖∆b‖

‖b‖ .

We just put b = w1 and ∆b = αwn, where w1 and wn are respectively the
first and the last column of the matrix W in the singular value decomposition
A = WΣV ∗, and α 6= 0 is an arbitrary scalar. Here, as usual, the singular
values are assumed to be in non-increasing order s1 ≥ s2 ≥ . . . ≥ sn, so s1

is the largest and sn is the smallest eigenvalue.

We leave the details as an exercise for the reader.

A matrix is called well conditioned if its condition number is not too big.
If the condition number is big, the matrix is called ill conditioned. What is
“big” here depends on the problem: with what precision you can find your
right side, what precision is required for the solution, etc.

4.4. Effective rank of a matrix. Theoretically, the rank of a matrix is
easy to compute: one just needs to row reduce matrix and count pivots.
However, in practical applications not everything is so easy. The main rea-
son is that very often we do not know the exact matrix, we only know its
approximation up to some precision.

Moreover, even if we know the exact matrix, most computer programs
introduce round-off errors in the computations, so effectively we cannot dis-
tinguish between a zero pivot and a very small pivot.

A simple näıve idea of working with round-off errors is as follows. When
computing the rank (and other objects related to it, like column space,
kernel, etc) one simply sets up a tolerance (some small number) and if the
pivot is smaller than the tolerance, count it as zero. The advantage of
this approach is its simplicity, since it is very easy to program. However,
the main disadvantage is that is is impossible to see what the tolerance is
responsible for. For example, what do we lose is we set the tolerance equal
to 10−6? How much better will 10−8 be?

While the above approach works well for well conditioned matrices, it is
not very reliable in the general case.

A better approach is to use singular values. It requires more computa-
tions, but gives much better results, which are easier to interpret. In this
approach we also set up some small number as a tolerance, and then per-
form singular value decomposition. Then we simply treat singular values
smaller than the tolerance as zero. The advantage of this approach is that
we can see what we are doing. The singular values are the half-axes of the
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ellipsoid A(B) (B is the closed unit ball), so by setting up the tolerance we
just deciding how “thin” the ellipsoid should be to be considered “flat”.

4.5. Moore–Penrose (pseudo)inverse. As we discussed in Section 4 of
Chapter 5 above, the least square solution gives us, in the case when an
equation Ax = b does not have a solutions, the “next best thing” (and
gives us the solution of Ax = b when it exists).

Note, that the question of uniqueness is not addressed by the least square
solution: a solution of the normal equation A∗Ax = A∗b does not have to
be unique. A natural distinguished solution would be a solution of minimal
norm; such a solution is indeed unique, and can be obtained by taking
an arbitrary solution and then taking its projection onto (KerA∗A)⊥ =
(KerA)⊥, see problems 4.5 and 4.6 in Chapter 5.

It is not hard to see that if A = W̃ Σ̃Ṽ ∗ is a reduced singular value
decomposition of A, then the minimal norm least square solution x0 is given
by

x0 = Ṽ Σ̃−1W̃ ∗b.(4.2)

Indeed, x0 is a least square solution of Ax = b (i.e. a solution of Ax =
P

RanA
b):

Ax0 = W̃ Σ̃Ṽ Ṽ ∗Σ̃−1W̃ ∗b = W̃ Σ̃Σ̃−1W̃ ∗b = W̃W̃ ∗b = P
RanA

b;

in the last equality in the chain we used the fact that W̃W̃ ∗ = P
Ran W̃

(P
Ran W̃

= W̃ (W̃ ∗W̃ )−1W̃ ∗ = W̃W̃ ∗) and that Ran W̃ = RanA (see Prob-

lem 4.4 below).

The general solution of Ax = P
RanA

b is given by

x = x0 + y, y ∈ KerA,

so x0 is indeed a unique minimal norm solution of Ax = P
RanA

b, or equiv-
alently, the minimal norm least square solution of Ax = b.

Definition 4.1. The operator A+ := Ṽ Σ̃−1W̃ ∗, where A = W̃ Σ̃Ṽ ∗ is a
reduced singular value decomposition of A, is called the Moore–Penrose in-
verse (or Moore–Penrose pseudoinverse) of the operator A. In other words,
the Moore–Penrose inverse is the operator giving the unique least square
solution of Ax = b.

Remark 4.2. In the literature the Moore–Penrose inverse is usually defined
as a matrix A+ such that

1. AA+A = A;

2. A+AA+ = A+;

3. (AA+)∗ = AA+;
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4. (A+A)∗ = A+A.

It is very easy to check that the operator A+ := Ṽ Σ̃−1W̃ ∗ satisfies
properties 1–4 above.

It is also possible (although a bit harder) to show that an operator
A+ satisfying properties 1–4 is unique. Indeed, right and left multiplying
identity 1 by A+, we get that (A+A)2 = A+A and (AA+)2 = AA+; together
with properties 3 and 4 this means that A+A and AA+ ore orthogonal
projections (see Problem 5.6 in Capter 5).

Trivially, KerA ⊂ KerA+A. On the other hand, identity 1 implies that
KerA+A ⊂ KerA (why?), so KerA+A = KerA. But this means that A+A
is the orthogonal projection onto (KerA)⊥ = RanA∗,

A+A = P
RanA∗

.

Property 1 also implies that AA+y = y for all y ∈ RanA. Since AA+

is an orthogonal projection, we conclude that RanA ⊂ RanAA+. The
opposite inclusion RanAA+ ⊂ RanA is trivial, so AA+ is the orthogonal
projection onto RanA,

AA+ = P
RanA

.

Knowing A+A and AA+ we can rewrite property 2 as

P
RanA∗

A+ = A+ or A+P
RanA

= A+ .

Combining the above identities we get

P
RanA∗

A+P
RanA

= A+.

Finally, for any b in the target space of A

x0 := A+b = P
RanA∗

A+b ∈ RanA∗

and

Ax0 = AA+b = P
RanA

b,

i.e. x0 is a least square solution of Ax = b. Since x0 ∈ RanA∗ = (KerA)⊥,
x0 is, as we discussed above, the least square solution of minimal norm. But,
as we had shown before, such minimal norm solution is given by (4.2), so

A+ = Ṽ Σ̃−1W̃ ∗. �

Exercises.

4.1. Find norms and condition numbers for the following matrices:

a) A =

(
4 0
1 3

)
.

b) A =

(
5 3
−3 3

)
.
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For the matrix A from part a) present an example of the right side b and the
error ∆b such that

‖∆x‖
‖x‖ = ‖A‖ · ‖A−1‖ · ‖∆b‖

‖b‖ ;

here Ax = b and A∆x = ∆b.

4.2. Let A be a normal operator, and let λ1, λ2, . . . , λn be its eigenvalues (counting
multiplicities). Show that singular values of A are |λ1|, |λ2|, . . . , |λn|.

4.3. Find singular values, norm and condition number of the matrix

A =

 2 1 1
1 2 1
1 1 2


You can do this problem practically without any computations, if you use the
previous problem and can answer the following questions:

a) What are singular values (eigenvalues) of an orthogonal projection PE onto
some subspace E?

b) What is the matrix of the orthogonal projection onto the subspace spanned
by the vector (1, 1, 1)T ?

c) How the eigenvalues of the operators T and aT + bI, where a and b are
scalars, are related?

Of course, you can also just honestly do the computations.

4.4. Let A = W̃ Σ̃Ṽ ∗ be a reduced singular value decomposition of A. Show that

RanA = Ran W̃ , and then by taking adjoint that RanA∗ = Ran Ṽ .

4.5. Write a formula for the Moore–Penrose inverse A+ in terms of the singular
value decomposition A = WΣV ∗.

4.6. Tychonov’s regularization: Prove that the Moore–Penrose inverse A+ can be
computed as the limits

A+ = lim
ε→0+

(A∗A+ εI)−1A∗ = lim
ε→0+

A∗(AA∗ + εI)−1.

5. Structure of orthogonal matrices

An orthogonal matrix U with detU = 1 is often called a rotation. The
theorem below explains this name.

Theorem 5.1. Let U be an orthogonal operator in Rn and let detU = 1.2

Then there exists an orthonormal basis v1,v2, . . . ,vn such that the matrix

2For an orthogonal matrix U detU = ±1.
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of U in this basis has the block diagonal form
Rϕ1

Rϕ2

0
. . .

Rϕk0
In−2k

 ,

where Rϕk are 2-dimensional rotations,

Rϕk =

(
cosϕk − sinϕk
sinϕk cosϕk

)
and In−2k stands for the identity matrix of size (n− 2k)× (n− 2k).

Proof. We know that if p is a polynomial with real coefficient and λ is its
complex root, p(λ) = 0, then λ is a root of p as well, p(λ) = 0 (this can
easily be checked by plugging λ into p(z) =

∑n
k=0 akz

k).

Therefore, all complex eigenvalues of a real matrix A can be split into
pairs λk, λk.

We know, that eigenvalues of a unitary matrix have absolute value 1,
so all complex eigenvalues of A can be written as λk = cosαk + i sinαk,
λk = cosαk − i sinαk.

Fix a pair of complex eigenvalues λ and λ, and let u ∈ Cn be the
eigenvector of U , Uu = λu. Then Uu = λu. Now, split u into real and
imaginary parts, i.e. define

x := Re u = (u + u)/2, y = Im u = (u− u)/(2i),

so u = x+ iy (note, that x,y are real vectors, i.e. vectors with real entries).
Then

Ux = U
1

2
(u + u) =

1

2
(λu + λu) = Re(λu).

Similarly,

Uy =
1

2i
U(u− u) =

1

2i
(λu− λu) = Im(λu).

Since λ = cosα+ i sinα, we have

λu = (cosα+ i sinα)(x+ iy) = ((cosα)x−(sinα)y)+ i((cosα)y+(sinα)x).

so

Ux = Re(λu) = (cosα)x−(sinα)y, Uy = Im(λu) = (cosα)y+(sinα)x.

In other word, U leaves the 2-dimensional subspace Eλ spanned by the vec-
tors x,y invariant and the matrix of the restriction of U onto this subspace
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is the rotation matrix

R−α =

(
cosα sinα
− sinα cosα

)
.

Note, that the vectors u and u (eigenvectors of a unitary matrix, cor-
responding to different eigenvalues) are orthogonal, so by the Pythagorean
Theorem

‖x‖ = ‖y‖ =

√
2

2
‖u‖.

It is easy to check that x ⊥ y, so x,y is an orthogonal basis in Eλ. If we
multiply each vector in the basis x,y by the same non-zero number, we do
not change matrices of linear transformations, so without loss of generality
we can assume that ‖x‖ = ‖y‖ = 1 i.e. that x,y is an orthogonal basis in
Eλ.

Let us complete the orthonormal system v1 = x,v2 = y to an orthonor-
mal basis in Rn. Since UEλ ⊂ Eλ, i.e. Eλ is an invariant subspace of U , the
matrix of U in this basis has the block triangular form

R−α ∗

0 U1


where 0 stands for the (n− 2)× 2 block of zeroes.

Since the rotation matrix R−α is invertible, we have UEλ = Eλ. There-
fore

U∗Eλ = U−1Eλ = Eλ,

so the matrix of U in the basis we constructed is in fact block diagonal,
R−α 0

0 U1

 .

Since U is unitary

I = U∗U =


I 0

0 U∗1U1

 ,

so, since U1 is square, it is also unitary.

If U1 has complex eigenvalues we can apply the same procedure to de-
crease its size by 2 until we are left with a block that has only real eigenval-
ues. Real eigenvalues can be only +1 or −1, so in some orthonormal basis
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the matrix of U has the form

R−α1

R−α2

0
. . .

R−αd
−Ir0

Il


;

here Ir and Il are identity matrices of size r× r and l× l respectively. Since
detU = 1, the multiplicity of the eigenvalue −1 (i.e. r) must be even.

Note, that the 2 × 2 matrix −I2 can be interpreted as the rotation
through the angle π. Therefore, the above matrix has the form given in the
conclusion of the theorem with ϕk = −αk or ϕk = π �

Let us give a different interpretation of Theorem 5.1. Define Tj to be a
rotation thorough ϕj in the plane spanned by the vectors vj , vj+1. Then
Theorem 5.1 simply says that U is the composition of the rotations Tj , j =
1, 2, . . . , k. Note, that because the rotations Tj act in mutually orthogonal
planes, they commute, i.e. it does not matter in what order we take the
composition. So, the theorem can be interpreted as follows:

Any rotation in Rn can be represented as a composition of at most
n/2 commuting planar rotations.

If an orthogonal matrix has determinant −1, its structure is described
by the following theorem.

Theorem 5.2. Let U be an orthogonal operator in Rn, and let detU =
−1.Then there exists an orthonormal basis v1,v2, . . . ,vn such that the ma-
trix of U in this basis has block diagonal form

Rϕ1

Rϕ2

0
. . .

Rϕk
Ir0 −1


,

where r = n− 2k − 1 and Rϕk are 2-dimensional rotations,

Rϕk =

(
cosϕk − sinϕk
sinϕk cosϕk

)
and In−2k stands for the identity matrix of size (n− 2k)× (n− 2k).
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We leave the proof as an exercise for the reader. The modification that
one should make to the proof of Theorem 5.1 are pretty obvious.

Note, that it follows from the above theorem that an orthogonal 2 × 2
matrix U with determinant −1 is always a reflection.

Let us now fix an orthonormal basis, say the standard basis in Rn.
We call an elementary rotation3 a rotation in the xj-xk plane, i.e. a linear
transformation which changes only the coordinates xj and xk, and it acts
on these two coordinates as a plane rotation.

Theorem 5.3. Any rotation U (i.e. an orthogonal transformation U with
detU = 1) can be represented as a product at most n(n − 1)/2 elementary
rotations.

To prove the theorem we will need the following simple lemmas.

Lemma 5.4. Let x = (x1, x2)T ∈ R2. There exists a rotation Rα of R2

which moves the vector x to the vector (a, 0)T , where a =
√
x1

1 + x2
2.

The proof is elementary, and we leave it as an exercise for the reader.
One can just draw a picture or/and write a formula for Rα.

Lemma 5.5. Let x = (x1, x2, . . . , xn)T ∈ Rn. There exist n− 1 elementary
rotations R1, R2, . . . , Rn−1 such that Rn−1 . . . , R2R1x = (a, 0, 0, . . . , 0)T ,

where a =
√
x2

1 + x2
2 + . . .+ x2

n.

Proof. The idea of the proof of the lemma is very simple. We use an
elementary rotation R1 in the xn−1-xn plane to “kill” the last coordinate of
x (Lemma 5.4 guarantees that such rotation exists). Then use an elementary
rotation R2 in xn−2-xn−1 plane to “kill” the coordinate number n−1 of R1x
(the rotation R2 does not change the last coordinate, so the last coordinate
of R2R1x remains zero), and so on. . .

For a formal proof we will use induction in n. The case n = 1 is trivial,
since any vector in R1 has the desired form. The case n = 2 is treated by
Lemma 5.4.

Assuming now that Lemma is true for n − 1, let us prove it for n. By
Lemma 5.4 there exists a 2× 2 rotation matrix Rα such that

Rα

(
xn−1

xn

)
=

(
an−1

0

)
,

where an−1 =
√
x2
n−1 + x2

n. So if we define the n × n elementary rotation

R1 by

R1 =

(
In−2 0

0 Rα

)
3This term is not widely accepted.
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(In−2 is (n− 2)× (n− 2) identity matrix), then

R1x = (x1, x2, . . . , xn−2, an−1, 0)T .

We assumed that the conclusion of the lemma holds for n− 1, so there
exist n− 2 elementary rotations (let us call them R2, R3, . . . , Rn−1) in Rn−1

which transform the vector (x1, x2, . . . , xn−1, an−1)T ∈ Rn−1 to the vector
(a, 0, . . . , 0)T ∈ Rn−1. In other words

Rn−1 . . . R3R2(x1, x2, . . . , xn−1, an−1)T = (a, 0, . . . , 0)T .

We can always assume that the elementary rotations R2, R3, . . . , Rn−1

act in Rn, simply by assuming that they do not change the last coordinate.
Then

Rn−1 . . . R3R2R1x = (a, 0, . . . , 0)T ∈ Rn.
Let us now show that a =

√
x2

1 + x2
2 + . . .+ x2

n. It can be easily checked
directly, but we apply the following indirect reasoning. We know that or-
thogonal transformations preserve the norm, and we know that a ≥ 0.
But, then we do not have any choice, the only possibility for a is a =√
x2

1 + x2
2 + . . .+ x2

n. �

Lemma 5.6. Let A be an n × n matrix with real entries. There exist el-
ementary rotations R1, R2, . . . , RN , N ≤ n(n − 1)/2 such that the matrix
B = RN . . . R2R1A is upper triangular, and, moreover, all its diagonal en-
tries except the last one Bn,n are non-negative.

Proof. We will use induction in n. The case n = 1 is trivial, since we can
say that any 1× 1 matrix is of desired form.

Let us consider the case n = 2. Let a1 be the first column of A. By
Lemma 5.4 there exists a rotation R which “kills” the second coordinate of
a1, making the first coordinate non-negative. Then the matrix B = RA is
of desired form.

Let us now assume that lemma holds for (n − 1) × (n − 1) matrices,
and we want to prove it for n × n matrices. For the n × n matrix A let a1

be its first column. By Lemma 5.5 we can find n − 1 elementary rotations
(say R1, R2, . . . , Rn−1 which transform a1 into (a, 0, . . . , 0)T . So, the matrix
Rn−1 . . . R2R1A has the following block triangular form

Rn−1 . . . R2R1A =

(
a ∗
0 A1

)
,

where A1 is an (n− 1)× (n− 1) block.

We assumed that lemma holds for n−1, so A1 can be transformed by at
most (n−1)(n−2)/2 rotations into the desired upper triangular form. Note,
that these rotations act in Rn−1 (only on the coordinates x2, x3, . . . , xn), but
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we can always assume that they act on the whole Rn simply by assuming
that they do not change the first coordinate. Then, these rotations do not
change the vector (a, 0, . . . , 0)T (the first column of Rn−1 . . . R2R1A), so the
matrix A can be transformed into the desired upper triangular form by at
most n− 1 + (n− 1)(n− 2)/2 = n(n− 1)/2 elementary rotations. �

Proof of Theorem 5.3. By Lemma 5.5 there exist elementary rotations
R1, R2, . . . , RN such that the matrix U1 = RN . . . R2R2U is upper triangular,
and all diagonal entries, except maybe the last one, are non-negative.

Note, that the matrix U1 is orthogonal. Any orthogonal matrix is nor-
mal, and we know that an upper triangular matrix can be normal only if it
is diagonal. Therefore, U1 is a diagonal matrix.

We know that an eigenvalue of an orthogonal matrix can either be 1 or
−1, so we can have only 1 or −1 on the diagonal of U1. But, we know that
all diagonal entries of U1, except may be the last one, are non-negative, so
all the diagonal entries of U1, except may be the last one, are 1. The last
diagonal entry can be ±1.

Since elementary rotations have determinant 1, we can conclude that
detU1 = detU = 1, so the last diagonal entry also must be 1. So U1 = I,
and therefore U can be represented as a product of elementary rotations
U = R−1

1 R−1
2 . . . R−1

N . Here we use the fact that the inverse of an elementary
rotation is an elementary rotation as well. �

6. Orientation

6.1. Motivation. In Figures 1, 2 below we see 3 orthonormal bases in R2

and R3 respectively. In each figure, the basis b) can be obtained from the
standard basis a) by a rotation, while it is impossible to rotate the standard
basis to get the basis c) (so that ek goes to vk ∀k).

You have probably heard the word “orientation” before, and you prob-
ably know that bases a) and b) have positive orientation, and orientation of
the bases c) is negative. You also probably know some rules to determine

e1

e2

v1

v2 v1

v2
a) b) c)

Figure 1. Orientation in R2



194 6. Structure of operators in inner product spaces.

the orientation, like the right hand rule from physics. So, if you can see a
basis, say in R3, you probably can say what orientation it has.

But what if you only given coordinates of the vectors v1,v2,v3? Of
course, you can try to draw a picture to visualize the vectors, and then to
see what the orientation is. But this is not always easy. Moreover, how do
you “explain” this to a computer?

It turns out that there is an easier way. Let us explain it. We need to
check whether it is possible to get a basis v1,v2,v3 in R3 by rotating the
standard basis e1, e2, en. There is unique linear transformation U such that

Uek = vk, k = 1, 2, 3;

its matrix (in the standard basis) is the matrix with columns v1,v2,v3. It
is an orthogonal matrix (because it transforms an orthonormal basis to an
orthonormal basis), so we need to see when it is rotation. Theorems 5.1 and
5.2 give us the answer: the matrix U is a rotation if and only if detU = 1.
Note, that (for 3× 3 matrices) if detU = −1, then U is the composition of
a rotation about some axis and a reflection in the plane of rotation, i.e. in
the plane orthogonal to this axis.

This gives us a motivation for the formal definition below.

6.2. Formal definition. Let A and B be two bases in a real vector space
X. We say that the bases A and B have the same orientation, if the change
of coordinates matrix [I]B,A has positive determinant, and say that they

have different orientations if the determinant of [I]B,A is negative.

Note, that since [I]A,B = [I]−1
B,A , one can use the matrix [I]A,B in the

definition.

We usually assume that the standard basis e1, e2, . . . , en in Rn has pos-
itive orientation. In an abstract space one just needs to fix a basis and
declare that its orientation is positive.

e1

e3

e2
v1

v2

v3

v1

v2

v3

a) b) c)

Figure 2. Orientation in R3
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If an orthonormal basis v1,v2, . . . ,vn in Rn has positive orientation
(i.e. the same orientation as the standard basis) Theorems 5.1 and 5.2 say
that the basis v1,v2, . . . ,vn is obtained from the standard basis by a rota-
tion.

6.3. Continuous transformations of bases and orientation.

Definition. We say that a basis A = {a1,a2, . . . ,an} can be continuously
transformed to a basis B = {b1,b2, . . . ,bn} if there exists a continuous
family of bases V(t) = {v1(t),v2(t), . . . ,vn(t)}, t ∈ [a, b] such that

vk(a) = ak, vk(b) = bk, k = 1, 2 . . . , n.

“Continuous family of bases” mean that the vector-functions vk(t) are con-
tinuous (their coordinates in some bases are continuous functions) and,
which is essential, the system v1(t),v2(t), . . . ,vn(t) is a basis for all t ∈ [a, b].

Note, that performing a change of variables, we can always assume, if
necessary that [a, b] = [0, 1].

Theorem 6.1. Two bases A = {a1,a2, . . . ,an} and B = {b1,b2, . . . ,bn}
have the same orientation, if and only if one of the bases can be continuously
transformed to the other.

Proof. Suppose the basis A can be continuously transformed to the basis
B, and let V(t), t ∈ [a, b] be a continuous family of bases, performing this
transformation. Consider a matrix-function V (t) whose columns are the
coordinate vectors [vk(t)]A of vk(t) in the basis A.

Clearly, the entries of V (t) are continuous functions and V (a) = I,
V (b) = [I]A,B. Note, that because V(t) is always a basis, detV (t) is never
zero. Then, the Intermediate Value Theorem asserts that detV (a) and
detV (b) has the same sign. Since detV (a) = det I = 1, we can conclude
that

det[I]A,B = detV (b) > 0,

so the bases A and B have the same orientation.

To prove the opposite implication, i.e. the “only if” part of the theorem,
one needs to show that the identity matrix I can be continuously trans-
formed through invertible matrices to any matrix B satisfying detB > 0.
In other words, that there exists a continuous matrix-function V (t) on an
interval [a, b] such that for all t ∈ [a, b] the matrix V (t) is invertible and such
that

V (a) = I, V (b) = B.

We leave the proof of this fact as an exercise for the reader. There are several
ways to prove that, on of which is outlined in Problems 6.2—6.5 below. �
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Exercises.

6.1. Let Rα be the rotation through α, so its matrix in the standard basis is(
cosα − sinα
sinα cosα

)
.

Find the matrix of Rα in the basis v1,v2, where v1 = e2, v2 = e1.

6.2. Let Rα be the rotation matrix

Rα =

(
cosα − sinα
sinα cosα

)
.

Show that the 2 × 2 identity matrix I2 can be continuously transformed through
invertible matrices into Rα.

6.3. Let U be an n×n orthogonal matrix, and let detU > 0. Show that the n×n
identity matrix In can be continuously transformed through invertible matrices into
U . Hint: Use the previous problem and representation of a rotation in Rn as a
product of planar rotations, see Section 5.

6.4. Let A be an n×n positive definite Hermitian matrix, A = A∗ > 0. Show that
the n × n identity matrix In can be continuously transformed through invertible
matrices into A. Hint: What about diagonal matrices?

6.5. Using polar decomposition and Problems 6.3, 6.4 above, complete the proof
of the “only if” part of Theorem 6.3



Chapter 7

Bilinear and quadratic
forms

While the study of real quadratic forms (i.e. real homogeneous polynomials
of degree 2) was probably the initial motivation for the subject of this chap-
ter, complex quadratic forms (Ax,x), x ∈ Cn, A = A∗ are also of significant
interest. So, unless otherwise specified, result and calculations hold in both
real and complex case.

To avoid writing twice essentially the same formulas, we use the notation
adapted to the complex case: in particular, in the real case the notation A∗

is used instead of AT .

1. Main definition

1.1. Bilinear forms on Rn. A bilinear form on Rn is a function L =
L(x,y) of two arguments x,y ∈ Rn which is linear in each argument, i.e. such
that

1. L(αx1 + βx2,y) = αL(x1,y) + βL(x2,y);

2. L(x, αy1 + βy2) = αL(x,y1) + βL(x,y2).

One can consider bilinear form whose values belong to an arbitrary vector
space, but in this book we only consider forms that take real values.

If x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T , a bilinear form can be
written as

L(x,y) =

n∑
j,k=1

aj,kxkyj ,

197
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or in matrix form
L(x,y) = (Ax,y)

where

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
an,1 an,2 . . . an,n

 .

The matrix A is determined uniquely by the bilinear form L.

1.2. Quadratic forms on Rn. There are several equivalent definition of
a quadratic form.

One can say that a quadratic form on Rn is the “diagonal” of a bilinear
form L, i.e. that any quadratic form Q is defined by Q[x] = L(x,x) =
(Ax,x).

Another, more algebraic way, is to say that a quadratic form is a homo-
geneous polynomial of degree 2, i.e. that Q[x] is a polynomial of n variables
x1, x2, . . . , xn having only terms of degree 2. That means that only terms
ax2

k and cxjxk are allowed.

There many ways (in fact, infinitely many) to write a quadratic form
Q[x] as Q[x] = (Ax,x). For example, the quadratic form Q[x] = x2

1 +
x2

2 − 4x1x2 on R2 can be represented as (Ax,x) where A can be any of the
matrices (

1 −4
0 1

)
,

(
1 0
−4 1

)
,

(
1 −2
−2 1

)
.

In fact, any matrix A of form(
1 a− 4
−a 1

)
will work.

But if we require the matrix A to be symmetric, then such a matrix is
unique:

Any quadratic form Q[x] on Rn admits unique representation
Q[x] = (Ax,x) where A is a (real) symmetric matrix.

For example, for the quadratic form

Q[x] = x2
1 + 3x2

2 + 5x2
3 + 4x1x2 − 16x1x3 + 7x2x3

on R3, the corresponding symmetric matrix A is 1 2 −8
2 3 3.5
−8 3.5 5

 .
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1.3. Quadratic forms on Cn. One can also define a quadratic form on Cn
(or any complex inner product space) by taking a self-adjoint transformation
A = A∗ and defining Q by Q[x] = (Ax,x). While our main examples will
be in Rn, all the theorems are true in the setting of Cn as well. Bearing this
in mind, we will always use A∗ instead of AT

The only essential difference with the real case is that in the complex
case we do not have any freedom of choice: if the quadratic form is real, the
corresponding matrix has to be Hermitian (self-adjoint).

Note that if A = A∗ then

(Ax,x) = (x, A∗x) = (x, Ax) = (Ax,x),

so (Ax,x) ∈ R.

The converse is also true.

Lemma 1.1. Let (Ax,x) be real for all x ∈ Cn. Then A = A∗.

We leave the proof as an exercise for the reader, see Problem 1.4 below

Exercises.

1.1. Find the matrix of the bilinear form L on R3,

L(x,y) = x1y1 + 2x1y2 + 14x1y3− 5x2y1 + 2x2y2− 3x2y3 + 8x3y1 + 19x3y2− 2x3y3.

1.2. Define the bilinear form L on R2 by

L(x,y) = det[x,y],

i.e. to compute L(x,y) we form a 2× 2 matrix with columns x,y and compute its
determinant.

Find the matrix of L.

1.3. Find the matrix of the quadratic form Q on R3

Q[x] = x2
1 + 2x1x2 − 3x1x3 − 9x2

2 + 6x2x3 + 13x2
3.

1.4. Prove Lemma 1.1 above.

Hint: Consider the expression (A(x + zy),x + zy) and show that if it is real

for all z ∈ C then (Ax,y) = (y, A∗x)

2. Diagonalization of quadratic forms

You have probably met quadratic forms before, when you studied second
order curves in the plane. Maybe you even studied the second order surfaces
in R3.

We want to present a unified approach to classification of such objects.
Suppose we are given a set in Rn defined by the equation Q[x] = 1, where
Q is some quadratic form. If Q has some simple form, for example if the
corresponding matrix is diagonal, i.e. if Q[x] = a1x

2
1 + a2x

2
2 + . . .+ anx

2
n, we
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can easily visualize this set, especially if n = 2, 3. In higher dimensions, it
is also possible, if not to visualize, then to understand the structure of the
set very well.

So, if we are given a general, complicated quadratic form, we want to
simplify it as much as possible, for example to make it diagonal. The stan-
dard way of doing that is the change of variables.

2.1. Orthogonal diagonalization. Let us have a quadratic form Q[x] =
(Ax,x) in Fn (F is R or C). Introduce new variables y = (y1, y2, . . . , yn)T ∈
Fn, with y = S−1x, where S is some invertible n× n matrix, so x = Sy.

Then,

Q[x] = Q[Sy] = (ASy, Sy) = (S∗ASy,y),

so in the new variables y the quadratic form has matrix S∗AS.

So, we want to find an invertible matrix S such that the matrix S∗AS
is diagonal. Note, that it is different from the diagonalization of matrices
we had before: we tried to represent a matrix A as A = SDS−1, so the
matrix D = S−1AS was diagonal. However, for unitary matrices U , we
have U∗ = U−1, and we can orthogonally diagonalize symmetric matrices.
So we can apply the orthogonal diagonalization we studied before to the
quadratic forms.

Namely, we can represent the matrix A as A = UDU∗ = UDU−1.
Recall, that D is a diagonal matrix with eigenvalues of A on the diagonal,
and U is the matrix of eigenvectors (we need to pick an orthogonal basis of
eigenvectors). Then D = U∗AU , so in the variables y = U−1x the quadratic
form has diagonal matrix.

Let us analyze the geometric meaning of the orthogonal diagonaliza-
tion. The columns u1,u2, . . . ,un of the unitary matrix U form an orthonor-
mal basis in Fn, let us call this basis B. The change of coordinate matrix
[I]S,B from this basis to the standard one is exactly U . We know that

y = (y1, y2, . . . , yn)T = U−1x, so the coordinates y1, y2, . . . , yn can be inter-
preted as coordinates of the vector x in the new basis u1,u2, . . . ,un.

So, orthogonal diagonalization allows us to visualize very well the set
Q[x] = 1, or a similar one, as long as we can visualize it for diagonal matrices.

Example. Consider the quadratic form of two variables (i.e. quadratic form
on R2), Q(x, y) = 2x2 +2y2 +2xy. Let us describe the set of points (x, y)T ∈
R2 satisfying Q(x, y) = 1.

The matrix A of Q is

A =

(
2 1
1 2

)
.
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Orthogonally diagonalizing this matrix we can represent it as

A = U

(
3 0
0 1

)
U∗, where U =

1√
2

(
1 −1
1 1

)
,

or, equivalently

U∗AU =

(
3 0
0 1

)
=: D.

The set {y : (Dy,y) = 1} is the ellipse with half-axes 1/
√

3 and 1. There-
fore the set {x ∈ R2 : (Ax,x) = 1}, is the same ellipse only in the basis
( 1√

2
, 1√

2
)T , (− 1√

2
, 1√

2
)T , or, equivalently, the same ellipse, rotated π/4.

2.2. Non-orthogonal diagonalization. Orthogonal diagonalization in-
volves computing eigenvalues and eigenvectors, so it may be difficult to do
without computers for large n. On the other hand, the non-orthogonal di-
agonalization, i.e. finding an invertible S (without requiring S−1 = S∗) such
that D = S∗AS is diagonal, is much easier computationally and can be
done using only algebraic operations (addition, subtraction, multiplication,
division).

Below we present two most used methods of non-orthogonal diagonal-
ization.

2.2.1. Diagonalization by completion of squares. The first methods is based
on completion of squares. We will illustrate this method on real quadratic
forms (forms on Rn). After simple modifications this method could be used
in the complex case, but we will not discuss it here. If necessary, an inter-
ested reader should be able to to make the appropriate modifications.

Let us again consider the quadratic form of two variables, Q[x] = 2x2
1 +

2x1x2 + 2x2
2 (it is the same quadratic form as in the above example, only

here we call variables not x, y but x1, x2). Since

2

(
x1 +

1

2
x2

)2

= 2

(
x2

1 + 2x1
1

2
x2 +

1

4
x2

2

)
= 2x2

1 + 2x1x2 +
1

2
x2

2

(note, that the first two terms coincide with the first two terms of Q), we
get

2x2
1 + 2x1x2 + 2x2

2 = 2

(
x1 +

1

2
x2

)2

+
3

2
x2

2 = 2y2
1 +

3

2
y2

2,

where y1 = x1 + 1
2x2 and y2 = x2.

The same method can be applied to quadratic form of more than 2
variables. Let us consider, for example, a form Q[x] in R3,

Q[x] = x2
1 − 6x1x2 + 4x1x3 − 6x2x3 + 8x2

2 − 3x2
3.
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Considering all terms involving the first variable x1 (the first 3 terms in this
case), let us pick a full square or a multiple of a full square which has exactly
these terms (plus some other terms).

Since

(x1 − 3x2 + 2x3)2 = x2
1 − 6x1x2 + 4x1x3 − 12x2x3 + 9x2

2 + 4x2
3

we can rewrite the quadratic form as

(x1 − 3x2 + 2x3)2 − x2
2 + 6x2x3 − 7x2

3.

Note, that the expression −x2
2 + 6x2x3 − 7x2

3 involves only variables x2 and
x3. Since

−(x2 − 3x3)2 = −(x2
2 − 6x2x3 + 9x2

3) = −x2
2 + 6x2x3 − 9x2

3

we have

−x2
2 + 6x2x3 − 7x2

3 = −(x2 − 3x3)2 + 2x2
3.

Thus we can write the quadratic form Q as

Q[x] = (x1 − 3x2 + 2x3)2 − (x2 − 3x3)2 + 2x2
3 = y2

1 − y2
2 + 2y2

3

where

y1 = x1 − 3x2 + 2x3, y2 = x2 − 3x3, y3 = x3.

Finally, let us address the question that an attentive reader is probably
already asking: what to do if at some point we do have a product of two
variables, but no corresponding squares? For example, how to diagonalize
the form x1x2? The answer follows immediately from the identity

4x1x2 = (x1 + x2)2 − (x1 − x2)2,(2.1)

which gives us the representation

Q[x] = y2
1 − y2

2, y1 = (x1 + x2)/2, y2 = (x1 − x2)/2.

2.2.2. Diagonalization using row/column operations. There is another way
of performing non-orthogonal diagonalization of a quadratic form. The idea
is to perform row operations on the matrix A of the quadratic form. The
difference with the row reduction (Gauss–Jordan elimination) is that after
each row operation we need to perform the same column operation, the
reason for that being that we want to make the matrix S∗AS diagonal.

Let us explain how everything works on an example. Suppose we want
to diagonalize a quadratic form with matrix

A =

 1 −1 3
−1 2 1

3 1 1

 .
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We augment the matrix A by the identity matrix, and perform on the aug-
mented matrix (A|I) row/column operations. After each row operation we
have to perform on the matrix A the same column operation.1 We get 1 −1 3 1 0 0

−1 2 1 0 1 0
3 1 1 0 0 1

+R1 ∼

 1 −1 3 1 0 0
0 1 4 1 1 0
3 1 1 0 0 1

 ∼
 1 0 3 1 0 0

0 1 4 1 1 0
3 4 1 0 0 1


−3R1

∼

 1 0 3 1 0 0
0 1 4 1 1 0
0 4 −8 −3 0 1

 ∼
 1 0 0 1 0 0

0 1 4 1 1 0
0 4 −8 −3 0 1


−4R2

∼

 1 0 0 1 0 0
0 1 4 1 1 0
0 0 −24 −7 −4 1

 ∼
 1 0 0 1 0 0

0 1 0 1 1 0
0 0 −24 −7 −4 1

 .

Note, that we perform column operations only on the left side of the aug-
mented matrix

We get the diagonal D matrix on the left, and the matrix S∗ on the
right, so D = S∗AS, 1 0 0

0 1 0
0 0 −24

 =

 1 0 0
1 1 0
−7 −4 1

 1 −1 3
−1 2 1

3 1 1

 1 1 −7
0 1 −4
0 0 1

 .

Let us explain why the method works. A row operation is a left multipli-
cation by an elementary matrix. The corresponding column operation is
the right multiplication by the transposed elementary matrix. Therefore,
performing row operations E1, E2, . . . , EN and the same column operations
we transform the matrix A to

(2.2) EN . . . E2E1AE
∗
1E
∗
2 . . . E

∗
N = EAE∗.

As for the identity matrix in the right side, we performed only row operations
on it, so the identity matrix is transformed to

EN . . . E2E1I = EI = E.

If we now denote E∗ = S we get that S∗AS is a diagonal matrix, and the
matrix E = S∗ is the right half of the transformed augmented matrix.

In the above example we got lucky, because we did not need to inter-
change two rows. This operation is a bit tricker to perform. It is quite

1In the case of complex Hermitian matrices we perform for each row operation the conjugate
o the corresponding column operation, see Remark 2.1 below
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simple if you know what to do, but it may be hard to guess the correct row
operations. Let us consider, for example, a quadratic form with the matrix

A =

(
0 1
1 0

)
If we want to diagonalize it by row and column operations, the simplest
idea would be to interchange rows 1 and 2. But we also must to perform
the same column operation, i.e. interchange columns 1 and 2, so we will end
up with the same matrix.

So, we need something more non-trivial. The identity (2.1), for example,
can be used to diagonalize this quadratic form. However, a simpler idea also
works: use row operations to get a non-zero entry on the diagonal! For
example, if we start with making a1,1 non-zero, the following series of row
(and the corresponding column) operations is one of the possible choices:(

0 1 1 0
1 0 0 1

)
+1

2R2 ∼
(

1/2 1 1 1/2
1 0 0 1

)
∼(

1 1 1 1/2
1 0 0 1

)
−R1

∼
(

1 1 1 1/2
0 −1 −1 1/2

)
∼(

1 0 1 1/2
0 −1 −1 1/2

)
.

Remark. Non-orthogonal diagonalization gives us a simple description of
a set Q[x] = 1 in a non-orthogonal basis. It is harder to visualize, than the
representation given by the orthogonal diagonalization. However, if we are
not interested in the details, for example if it is sufficient for us just to know
that the set is an ellipsoid (or hyperboloid, etc), then the non-orthogonal
diagonalization is an easier way to get the answer.

Remark 2.1. For quadratic forms with complex entries (i.e. for forms
(Ax,x), A = A∗), the non-orthogonal diagonalization works the same way
as in the real case, with the only difference, that the corresponding “column
operations” have the complex conjugate coefficients.

The reason for that is that if a row operation is given by left multiplica-
tion by an elementary matrix Ek, then the corresponding column operation
is given by the right multiplication by E∗k , see (2.2).

Note that formula (2.2) works in both complex and reals cases: in real
case we could write ETk instead of E∗k , but using Hermitian adjoint allows
us to have the same formula in both cases.
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Exercises.

2.1. Diagonalize the quadratic form with the matrix

A =

 1 2 1
2 3 2
1 2 1

 .

Use two methods: completion of squares and row operations. Which one do you
like better?

Can you say if the matrix A is positive definite or not?

2.2. For the matrix A

A =

 2 1 1
1 2 1
1 1 2


orthogonally diagonalize the corresponding quadratic form, i.e. find a diagonal ma-
trix D and a unitary matrix U such that D = U∗AU .

3. Silvester’s Law of Inertia

As we discussed above, there are many ways to diagonalize a quadratic form.
Note, that a resulting diagonal matrix is not unique. For example, if we got
a diagonal matrix

D = diag{λ1, λ2, . . . , λn},
we can take a diagonal matrix

S = diag{s1, s2, . . . , sn}, sk ∈ R, sk 6= 0

and transform D to

S∗DS = diag{s2
1λ1, s

2
2λ2, . . . , s

2
nλn}.

This transformation changes the diagonal entries of D. However, it does not
change the signs of the diagonal entries. And this is always the case!

Namely, the famous Silvester’s Law of Inertia states that:

For a Hermitian matrix A (i.e. for a quadratic form Q[x] =
(Ax,x)) and any of its diagonalization D = S∗AS, the number
of positive (negative, zero) diagonal entries of D depends only on
A, but not on a particular choice of diagonalization.

Here we of course assume that S is an invertible matrix, and D is a diagonal
one.

The idea of the proof of the Silvester’s Law of Inertia is to express the
number of positive (negative, zero) diagonal entries of a diagonalization
D = S∗AS in terms of A, not involving S or D.

We will need the following definition.
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Definition. Given an n × n Hermitian matrix A = A∗ (a quadratic form
Q[x] = (Ax,x) on Fn) we call a subspace E ⊂ Fn positive (resp. negative,
resp. neutral) if

(Ax,x) > 0 (resp. (Ax,x) < 0, resp. (Ax,x) = 0)

for all x ∈ E, x 6= 0.

Sometimes, to emphasize the role of A we will say A-positive (A negative,
A-neutral).

Theorem 3.1. Let A be an n× n Hermitian matrix, and let D = S∗AS be
its diagonalization by an invertible matrix S. Then the number of positive
(resp. negative) diagonal entries of D coincides with the maximal dimension
of an A-positive (resp. A-negative) subspace.

The above theorem says that if r+ is the number of positive diagonal
entries of D, then there exists an A-positive subspace E of dimension r+,
but it is impossible to find a positive subspace E with dimE > r+.

We will need the following lemma, which can be considered a particular
case of the above theorem.

Lemma 3.2. Let D be a diagonal matrix D = diag{λ1, λ2, . . . , λn}. Then
the number of positive (resp. negative) diagonal entries of D coincides with
the maximal dimension of a D-positive (resp. D-negative) subspace.

Proof. By rearranging the standard basis in Fn (changing the numeration)
we can always assume without loss of generality that the positive diagonal
entries of D are the first r+ diagonal entries.

Consider the subspace E+ spanned by the first r+ coordinate vectors
e1, e2, . . . , er+ . Clearly E+ is a D-positive subspace, and dimE+ = r+.

Let us now show that for any other D-positive subspace E we have
dimE ≤ r+. Consider the orthogonal projection P = P

E+
,

Px = (x1, x2, . . . , xr+ , 0 . . . , 0)T , x = (x1, x2, . . . , xn)T .

For a D-positive subspace E define an operator T : E → E+ by

Tx = Px, ∀x ∈ E.
In other words, T is the restriction of the projection P : P is defined on
the whole space, but we restricted its domain to E and target space to E+.
We got an operator acting from E to E+, and we use a different letter to
distinguish it from P .

Note, that KerT = {0}. Indeed, let for x = (x1, x2, . . . , xn)T ∈ E we
have Tx = Px = 0. Then, by the definition of P

x1 = x2 = . . . = xr+ = 0,
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and therefore

(Dx,x) =

n∑
k=r++1

λkx
2
k ≤ 0 (λk ≤ 0 for k > r+).

But x belongs to a D-positive subspace E, so the inequality (Dx,x) ≤ 0
holds only for x = 0.

Let us now apply the Rank Theorem (Theorem 7.1 from Chapter 2).
First of all, rankT = dim RanT ≤ dimE+ = r+ because RanT ⊂ E+. By
the Rank Theorem, dim KerT + rankT = dimE. But we just proved that
KerT = {0}, i.e. that dim KerT = 0, so

dimE = rankT ≤ dimE+ = r+.

To prove the statement about negative entries, we just apply the above
reasoning to the matrix −D. �

Proof of Theorem 3.1. Let D = S∗AS be a diagonalization of A. Since

(Dx,x) = (S∗ASx,x) = (ASx, Sx)

it follows that for any D-positive subspace E, the subspace SE is an A-
positive subspace. The same identity implies that for any A-positive sub-
space F the subspace S−1F is D-positive.

Since S and S−1 are invertible transformations, dimE = dimSE and
dimF = dimS−1F . Therefore, for any D positive subspace E we can find
an A-positive subspace (namely SE) of the same dimension, and vice versa:
for any A-positive subspace F we can find a D-positive subspace (namely
S−1F ) of the same dimension. Therefore the maximal possible dimensions of
a A-positive and a D-positive subspace coincide, and the theorem is proved.

The case of negative diagonal entries treated similarly, we leave the
details as an exercise to the reader. �

4. Positive definite forms. Minimax characterization of
eigenvalues and the Silvester’s criterion of positivity

Definition. A quadratic form Q is called

• Positive definite if Q[x] > 0 for all x 6= 0.

• Positive semidefinite if Q[x] ≥ 0 for all x.

• Negative definite if Q[x] < 0 for all x 6= 0.

• Negative semidefinite if Q[x] ≤ 0 for all x.

• Indefinite if it take both positive and negative values, i.e. if there
exist vectors x1 and x2 such that Q[x1] > 0 and Q[x2] < 0.
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Definition. A Hermitian matrix A = A∗ is called positive definite (negative
definite, etc. . . ) if the corresponding quadratic form Q[x] = (Ax,x) is
positive definite (negative definite, etc. . . ).

Theorem 4.1. Let A = A∗. Then

1. A is positive definite iff all eigenvalues of A are positive.

2. A is positive semidefinite iff all eigenvalues of A are non-negative.

3. A is negative definite iff all eigenvalues of A are negative.

4. A is negative semidefinite iff all eigenvalues of A are non-positive.

5. A is indefinite iff it has both positive and negative eigenvalues.

Proof. The proof follows trivially from the orthogonal diagonalization. In-
deed, there is an orthonormal basis in which matrix of A is diagonal, and
for diagonal matrices the theorem is trivial. �

Remark. Note, that to find whether a matrix (a quadratic form) is positive
definite (negative definite, etc) one does not have to compute eigenvalues.
By Silvester’s Law of Inertia it is sufficient to perform an arbitrary, not
necessarily orthogonal diagonalization D = S∗AS and look at the diagonal
entries of D.

4.1. Silvester’s criterion of positivity. It is an easy exercise to see that
a 2× 2 matrix

A =

(
a b

b c

)
is positive definite if and only if

(4.1) a > 0 and detA = ac− |b|2 > 0

Indeed, if a > 0 and detA = ac−|b|2 > 0, then c > 0, so traceA = a+c > 0.
So we know that if λ1, λ2 are eigenvalues of A then λ1λ2 > 0 (detA > 0)
and λ1 + λ2 = traceA > 0. But that only possible if both eigenvalues are
positive. So we have proved that conditions (4.1) imply that A is positive
definite. The opposite implication is quite simple, we leave it as an exercise
for the reader.

This result can be generalized to the case of n×n matrices. Namely, for
a matrix A

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
an,1 an,2 . . . an,n


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let us consider its all upper left submatrices

A1 = (a1,1), A2 =

(
a1,1 a1,2

a2,1 a2,2

)
, A3 =

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 , . . . , An = A

Theorem 4.2 (Silvester’s Criterion of Positivity). A matrix A = A∗ is
positive definite if and only if

detAk > 0 for all k = 1, 2, . . . , n.

First of all let us notice that if A > 0 then Ak > 0 also (can you explain
why?). Therefore, since all eigenvalues of a positive definite matrix are
positive, see Theorem 4.1, detAk > 0 for all k.

One can show that if detAk > 0 ∀k then all eigenvalues of A are posi-
tive by analyzing diagonalization of a quadratic form using row and column
operations, which was described in Section 2.2. The key here is the obser-
vation that if we perform row/column operations in natural order (i.e. first
subtracting the first row/column from all other rows/columns, then sub-
tracting the second row/columns from the rows/columns 3, 4, . . . , n, and so
on. . . ), and if we are not doing any row interchanges, then we automatically
diagonalize quadratic forms Ak as well. Namely, after we subtract first and
second rows and columns, we get diagonalization of A2; after we subtract
the third row/column we get the diagonalization of A2, and so on.

Since we are performing only row replacement we do not change the
determinant. Moreover, since we are not performing row exchanges and
performing the operations in the correct order, we preserve determinants of
Ak. Therefore, the condition detAk > 0 guarantees that each new entry in
the diagonal is positive.

Of course, one has to be sure that we can use only row replacements, and
perform the operations in the correct order, i.e. that we do not encounter
any pathological situation. If one analyzes the algorithm, one can see that
the only bad situation that can happen is the situation where at some step
we have zero in the pivot place. In other words, if after we subtracted the
first k rows and columns and obtained a diagonalization of Ak, the entry in
the k + 1st row and k + 1st column is 0. We leave it as an exercise for the
reader to show that this is impossible. �

The proof we outlined above is quite simple. However, let us present, in
more detail, another one, which can be found in more advanced textbooks.
I personally prefer this second proof, for it demonstrates some important
connections.

We will need the following characterization of eigenvalues of a hermitian
matrix.
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4.2. Minimax characterization of eigenvalues. Let us recall that the
codimension of a subspace E ⊂ X is by the definition the dimension of its
orthogonal complement, codimE = dim(E⊥). Since for a subspace E ⊂ X,
dimX = n we have dimE + dimE⊥ = n, we can see that codimE =
dimX − dimE.

Recall that the trivial subspace {0} has dimension zero, so the whole
space X has codimension 0.

Theorem 4.3 (Minimax characterization of eigenvalues). Let A = A∗ be
an n× n matrix, and let λ1 ≥ λ2 ≥ . . . ≥ λn be its eigenvalues taken in the
decreasing order. Then

λk = max
E:

dimE=k

min
x∈E
‖x‖=1

(Ax,x) = min
F :

codimF=k−1

max
x∈F
‖x‖=1

(Ax,x).

Let us explain in more details what the expressions like max min and
min max mean. To compute the first one, we need to consider all subspaces
E of dimension k. For each such subspace E we consider the set of all x ∈ E
of norm 1, and find the minimum of (Ax,x) over all such x. Thus for each
subspace we obtain a number, and we need to pick a subspace E such that
the number is maximal. That is the max min.

The min max is defined similarly.

Remark. A sophisticated reader may notice a problem here: why do the
maxima and minima exist? It is well known, that maximum and minimum
have a nasty habit of not existing: for example, the function f(x) = x has
neither maximum nor minimum on the open interval (0, 1).

However, in this case maximum and minimum do exist. There are two
possible explanations of the fact that (Ax,x) attains maximum and mini-
mum. The first one requires some familiarity with basic notions of analysis:
one should just say that the unit sphere in E, i.e. the set {x ∈ E : ‖x‖ = 1}
is compact, and that a continuous function (Q[x] = (Ax,x) in our case) on
a compact set attains its maximum and minimum.

Another explanation will be to notice that the function Q[x] = (Ax,x),
x ∈ E is a quadratic form on E. It is not difficult to compute the matrix
of this form in some orthonormal basis in E, but let us only note that this
matrix is not A: it has to be a k × k matrix, where k = dimE.

It is easy to see that for a quadratic form the maximum and minimum
over a unit sphere is the maximal and minimal eigenvalues of its matrix.

As for optimizing over all subspaces, we will prove below that the max-
imum and minimum do exist.
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Proof of Theorem 4.3. First of all, by picking an appropriate orthonor-
mal basis, we can assume without loss of generality that the matrix A is
diagonal, A = diag{λ1, λ2, . . . , λn}.

Pick subspaces E and F , dimE = k, codimF = k − 1, i.e. dimE =
n−k+1. Since dimE+dimF > n, there exists a non-zero vector x0 ∈ E∩F .
By normalizing it we can assume without loss of generality that ‖x0‖ = 1.
We can always arrange the eigenvalues in decreasing order, so let us assume
that λ1 ≥ λ2 ≥ . . . ≥ λn.

Since x belongs to the both subspaces E and F

min
x∈E
‖x‖=1

(Ax,x) ≤ (Ax0,x0) ≤ max
x∈F
‖x‖=1

(Ax,x).

We did not assume anything except dimensions about the subspaces E and
F , so the above inequality

(4.2) min
x∈E
‖x‖=1

(Ax,x) ≤ max
x∈F
‖x‖=1

(Ax,x).

holds for all pairs of E and F of appropriate dimensions.

Define

E0 := span{e1, e2, . . . , ek}, F0 := span{ek, ek+1, ek+2, . . . , en}.
Since for a self-adjoint matrix B, the maximum and minimum of (Bx,x) over
the unit sphere {x : ‖x‖ = 1} are the maximal and the minimal eigenvalue
respectively (easy to check on diagonal matrices), we get that

min
x∈E0
‖x‖=1

(Ax,x) = max
x∈F0
‖x‖=1

(Ax,x) = λk.

It follows from (4.2) that for any subspace E, dimE = k

min
x∈E
‖x‖=1

(Ax,x) ≤ max
x∈F0
‖x‖=1

(Ax,x) = λk

and similarly, for any subspace F of codimension k − 1,

max
x∈F
‖x‖=1

(Ax,x) ≥ min
x∈E0
‖x‖=1

(Ax,x) = λk.

But on subspaces E0 and F0 both maximum and minimum are λk, so
min max = max min = λk. �

Corollary 4.4 (Intertwining of eigenvalues). Let A = A∗ = {aj,k}nj,k=1

be a self-adjoint matrix, and let Ã = {aj,k}n−1
j,k=1 be its submatrix of size

(n− 1)× (n− 1). Let λ1, λ2, . . . , λn and µ1, µ2, . . . , µn−1 be the eigenvalues

of A and Ã respectively, taken in decreasing order. Then

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ λn−1 ≥ µn−1 ≥ λn.



212 7. Bilinear and quadratic forms

i.e.

λk ≥ µk ≥ λk+1, k = 1, 2, . . . , n− 1

Proof. Let X̃ ⊂ Fn be the subspace spanned by the first n−1 basis vectors,

X̃ = span{e1, e2, . . . , en−1}. Since (Ãx,x) = (Ax,x) for all x ∈ X̃, Theorem
4.3 implies that

µk = max
E⊂X̃

dimE=k

min
x∈E
‖x‖=1

(Ax,x).

To get λk we need to get maximum over the set of all subspaces E of Fn,

dimE = k, i.e. take maximum over a bigger set (any subspace of X̃ is a
subspace of Fn). Therefore

µk ≤ λk.
(the maximum can only increase, if we increase the set).

On the other hand, any subspace E ⊂ X̃ of codimension k − 1 (here

we mean codimension in X̃) has dimension n − 1 − (k − 1) = n − k, so its
codimension in Fn is k. Therefore

µk = min
E⊂X̃

dimE=n−k

max
x∈E
‖x‖=1

(Ax,x) ≤ min
E⊂Fn

dimE=n−k
max
x∈E
‖x‖=1

(Ax,x) = λk+1

(minimum over a bigger set can only be smaller). �

Proof of Theorem 4.2. If A > 0, then Ak > 0 for k = 1, 2, . . . , n as well
(can you explain why?). Since all eigenvalues of a positive definite matrix
are positive (see Theorem 4.1), detAk > 0 for all k = 1, 2, . . . , n.

Let us now prove the other implication. Let detAk > 0 for all k. We
will show, using induction in k, that all Ak (and so A = An) are positive
definite.

Clearly A1 is positive definite (it is 1 × 1 matrix, so A1 = detA1).
Assuming that Ak−1 > 0 (and detAk > 0) let us show that Ak is positive
definite. Let λ1, λ2, . . . , λk and µ1, µ2, . . . , µk−1 be eigenvalues of Ak and
Ak−1 respectively. By Corollary 4.4

λj ≥ µj > 0 for j = 1, 2, . . . , k − 1.

Since detAk = λ1λ2 . . . λk−1λk > 0, the last eigenvalue λk must also be
positive. Therefore, since all its eigenvalues are positive, the matrix Ak is
positive definite. �

4.3. Some remarks. First of all notice, that Silvester Criterion of Posi-
tivity does not generalize to positive semidefinite matrices if n ≥ 3, meaning
that for n× n matrices, n ≥ 3, the conditions detAk ≥ 0 do not imply that
A is positive semidefinite, see Problem 4.4 below.
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For 2 × 2 matrices, however, the conditions detAk ≥ 0 imply that A is
positive semidefinite, see Problem 4.3 below. This sometimes leads to the
wrong conclusion about n× n matrices.

Finally, we should should say couple words about negative definite ma-
trices. It is a typical students’ mistake to say that the condition detAk < 0
implies that A is negative definite. But that is wrong!

To check if the matrix A is negative definite, one just have to check
that the matrix −A is positive definite. Applying Silvester’s Criterion of
Positivity to −A one can see that A is negative definite if and only if
(−1)k detAk > 0 for all k = 1, 2, . . . , n.

Exercises.

4.1. Using Silvester’s Criterion of Positivity check if the matrices

A =

 4 2 1
2 3 −1
1 −1 2

 , B =

 3 −1 2
−1 4 −2

2 −2 1


are positive definite or not.

Are the matrices −A, A3 and A−1, A+B−1, A+B, A−B positive definite?

4.2. True or false:

a) If A is positive definite, then A5 is positive definite.

b) If A is negative definite, then A8 is negative definite.

c) If A is negative definite, then A12 is positive definite.

d) If A is positive definite and B is negative semidefinite, then A−B is positive
definite.

e) If A is indefinite, and B is positive definite, then A+B is indefinite.

4.3. Let A be a 2× 2 Hermitian matrix, such that a1,1 ≥ 0, detA ≥ 0. Prove that
A is positive semidefinite.

4.4. Find a real symmetric n × n matrix A such that detAk ≥ 0 for all k =
1, 2, . . . , n, but the matrix A is not positive semidefinite. Note that n should be at
least 3, see Problem 4.3 above.

5. Positive definite forms and inner products

Let V be an inner product space and let B = v1,v2, . . . ,vn be a basis (not
necessarily orthogonal) in V . Let G = {gj,k}nj.k=1 be the matrix defined by

gj,k = (vk,vj).
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If x =
∑

k xkvk and y =
∑

k ykvk, then

(x,y) =

∑
k

xkvk,
∑
j

yjvj

 =

n∑
k,j=1

xkyj(vk,vj)

=
n∑
j=1

n∑
k=1

gj,kxkyj = (G[x]B, [y]B)Cn ,

where ( · , · )Cn stands for the standard inner product in Cn. One can im-
mediately see that G is a positive definite matrix (why?).

So, when one works with coordinates in an arbitrary (not necessarily
orthogonal) basis in an inner product space, the inner product (in terms of
coordinates) is not computed as the standard inner product in Cn, but with
the help of a positive definite matrix G as described above.

Note, that this G-inner product coincides with the standard inner prod-
uct in Cn if and only if G = I, which happens if and only if the basis
v1,v2, . . . ,vn is orthonormal.

Conversely, given a positive definite matrix G one can define a non-
standard inner product (G-inner product) in Cn by

(x,y)G := (Gx,y)Cn , x,y ∈ Cn.
One can easily check that (x,y)G is indeed an inner product, i.e. that prop-
erties 1–4 from Section 1.3 of Chapter 5 are satisfied.



Chapter 8

Dual spaces and
tensors

All vector spaces in this chapter are finite-dimensional.

1. Dual spaces

1.1. Linear functionals and the dual space. Change of coordinates
in the dual space.

Definition 1.1. A linear functional on a vector space V (over a field F) is
a linear transformation L : V → F.

This special class of linear transformation sufficiently important to de-
serve a separate name.

If one thinks of vectors as of some physical objects, like force or velocity,
then one can think of a linear functional as a (linear) measurement, that
gives you some a scalar quantity as the result: think about force or velocity
in a given direction.

Definition 1.2. A collection of all linear functionals on a finite-dimensional1

vector space V is called the dual of V and is usually denoted as V ′ or V ∗

As it was discussed earlier in Section 4 of Chapter 1, the collection
L(V,W ) of all linear transformations acting from V to W is a vector space

1We consider here only finite-dimensional spaces because for infinite-dimensional spaces the

dual space consists not of all but only of the so-called bounded linear functionals. Without giving
the precise definition, let us only mention than in the finite-dimensional case (both the domain
and the target space are finite-dimensional) all linear transformations are bounded, and we do not
need to mention the word bounded

215



216 8. Dual spaces and tensors

(with naturally defined operations of addition and multiplication by a scalar.
So, the dual space V ′ = L(V,F) is a vector space.

Let us consider an example. Let the space V be Rn, what is its dual? As
we know, a linear transformation T : Rn → Rm is represented by an m× n
matrix, so a linear functional on Rn (i.e. a linear transformation L : Rn → R
is given by an 1 × n matrix (row), let us denote it by [L]. The collection
of all such rows is isomorphic to Rn (isomorphism is given by taking the
transpose [L]→ [L]T ).

So, the dual of Rn is Rn itself. The same holds true for Cn, of course, as
well as for Fn, where F is an arbitrary field. Since the space V over a field
F (here we mostly interested in the case F = R or F = C) of dimension n is
isomorphic to Fn, and the dual to Fn is isomorphic to Fn, we can conclude
that the dual V ′ is isomorphic to V

Thus, the definition of the dual space is starting to look a bit silly, since
it does not appear to give us anything new.

However, that is not the case! If we look carefully, we can see that the
dual space is indeed a new object. To see that, let us analyze how the entries
of the matrix [L] (which we can call the coordinates of L) change when we
change the basis in V .

1.1.1. Change of coordinates formula. Let

A = {a1,a2, . . . ,an}, B = {b1,b2, . . . ,bn}
be two bases in V , and let [L]A = [L]S,A and [L]B = [L]S,B be the matrices of
L in the bases A and B respectively (we suppose that the basis in the target
space of scalars is always the standard one, so we can skip the subscript S
in the notation). Then recalling the change of coordinate rule from Section
8.4 in Chapter 2 we get that

[L]B = [L]A[I]A,B.

Recall that for a vector v ∈ V its coordinates in different bases are related
by the formula

[v]B = [I]B,A[v]A,

and that

[I]A,B = [I]−1
B,A.

If we denote S := [I]B,A, so [v]B = S[v]A, the entries of the vectors [L]TB
and [L]TA are related by the formula

(1.1) [L]TB = (S−1)T [L]TA

(since we usually represent a vector as a column of its coordinates, we use
[L]TA and [L]TB instead of [L]A and [L]B)

Saying it in words
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If S is the change of coordinate matrix (from old coordinates to
the new ones) in X, then the change of coordinate matrix in the
dual space X ′ is (S−1)T .

So, the dual space V ′ of V while isomorphic to V is indeed a different
object: the difference is in how the coordinates in V and V ′ change when
one changes the basis in V .

Remark. One can ask: why can’t we pick a basis in X and some completely
unrelated basis in the dual X ′? Of course, we can do that, but imagine, what
would it take to compute L(x), knowing coordinates of x in some basis and
coordinates of L in some completely unrelated basis.

So, if we want (knowing the coordinates of a vector x in some basis)
to compute the action of a linear functional L using the standard rules of
matrix algebra, i.e. to multiply a row (the functional) by a column (the
vector), we have no choice: the “coordinates” of the linear functional L
should be the entries of its matrix (in the same basis).

As we can see later, see Section 1.3 below, the entries (“coordinates”)
of a linear functional are indeed the coordinates in some basis (the so-called
dual basis.

1.1.2. A uniqueness theorem.

Lemma 1.3. Let v ∈ V . If L(v) = 0 for all L ∈ V ′ then v = 0. As a
corollary, if L(v1) = L(v2) for all L ∈ V ′, then v1 = v2

Proof. Fix a basis B in V . Then

L(v) = [L]B[v]B.

Picking different matrices (i.e. different L) we can easily see that [v]B = 0.
Indeed, if

Lk = [0, . . . , 0, 1
k
, 0, . . . , 0]

then the equality

Lk[v]B = 0

implies that kth coordinate of [v]B is 0.

Using this equality for all k we conclude that [v]B = 0, so v = 0. �

1.2. Second dual. As we discussed above, the dual space V ′ is a vector
space, so one can consider its dual V ′′ = (V ′)′. It looks like one that can
consider the dual V ′′′ of V ′′ and so on. . . However, the fun stops with V ′′

because

The second dual V ′′ is canonically (i.e. in a natural way) isomor-
phic to V
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Let us decipher this statement. Any vector v ∈ V canonically defines a
linear functional Lv on V ′ (i.e. an element of the second dual V ′′ by the rule

Lv(f) = f(v) ∀f ∈ V ′

It is easy to check that the mapping T : V → V ′′, Tv = Lv is a linear
transformation.

Note, that KerT = {0}. Indeed, if Tv = 0, then

f(v) = 0 ∀f ∈ V ′,

and by Lemma 1.3 above we have v = 0.

Since dimV ′′ = dimV ′ = dimV , the condition KerT = {0} implies that
T is an invertible transformation (isomorphism).

The isomorphism T is very natural, (at least for a mathematician). In
particular, it was defined without using a basis, so it does not depend on
the choice of basis. So, informally we say that V ′′ is canonically isomorphic
to V : the rigorous statement is that the map T described above (which we
consider to be a natural and canonical) is an isomorphism from V to V ′′.

1.3. Dual, a.k.a. biorthogonal bases. In the previous sections, we sev-
eral times referred to the entries of the matrix of a linear functional L as
coordinates. But coordinates in this book usually means the coordinates in
some basis. Are the “coordinates’ of a linear functional really coordinates
in some basis? Turns out the answer is “yes”, so the terminology remains
consistent.

Let us find the basis corresponding to the coordinates of L ∈ V ′. Let
{b1,b2, . . . ,bn} be a basis in V . For L ∈ V ′, let [L]B = [L1, L2, . . . , Ln] be
its matrix (row) in the basis B. Consider linear functionals b′1,b

′
2, . . . ,b

′
n ∈

V ′ defined by

(1.2) b′k(bj) = δk,j

where δk,j is the Kroneker delta,

δk.j =

{
1, j = k
0 j 6= k

Recall, that a linear transformation is defined by its action on a basis, so
the functionals b′k are well defined.

As one can easily see, the functional L can be represented as

L =
∑

Lkb
′
k.
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Indeed, take an arbitrary v =
∑

k αkbk ∈ V , so [v]B = [α1, α2, . . . , αn]T .
By linearity and definition of b′k

b′k(v) = b′k

∑
j

αjbj

 =
∑
j

αjb
′
k(bj) = αk.

Therefore
Lv = [L]B[v]B =

∑
k

Lkαk =
∑
k

Lkb
′
k(v).

Since this identity holds for all v ∈ V , we conclude that L =
∑

k Lkb
′
k.

Since we did not assume anything about L ∈ V ′, we have just shown
that any linear functional L can be represented as a linear combination of
b′1,b

′
2, . . . ,b

′
n, so the system b′1,b

′
2, . . . ,b

′
n is generating.

Let us show that this system is linearly independent (and so it is a basis).
Let 0 =

∑
k Lkb

′
k. Then for an arbitrary j = 1, 2, . . . , n

0 = 0bj =

(∑
k

Lkb
′
k

)
(bj) =

∑
k

Lkb
′
k(bj) = Lj

so Lj = 0. Therefore, all Lk are 0 and the system is linearly independent.

So, the system b′1,b
′
2, . . . ,b

′
n is indeed a basis in the dual space V ′ and

the entries of [L]B are coordinates of L with respect to the basis B.

Definition 1.4. Let b1,b2, . . . ,bn be a basis in V . The system of vectors

b′1,b
′
2, . . . ,b

′
n ∈ V ′,

uniquely defined by the equation (1.2) is called the dual (or biorthogonal)
basis to b1,b2, . . . ,bn.

Note that we have shown that the dual system to a basis is a basis. Note
also that in b′1,b

′
2, . . . ,b

′
n is the dual system to a basis b1,b2, . . . ,bn, then

b1,b2, . . . ,bn is the dual to the basis b′1,b
′
2, . . . ,b

′
n

1.3.1. Abstract non-orthogonal Fourier decomposition. The dual system can
be used for computing the coordinates in the basis b1,b2, . . . ,bn. Let
b′1,b

′
2, . . . ,b

′
n be the biorthogonal system to b1,b2, . . . ,bn, and let v =∑

k αkbk. Then, as it was shown before

b′j(v) = bj

(∑
k

αkbk

)
=
∑
k

αkbj(bk) = αjb
′
j(bj) = αj ,

so αk = b′k(v). Then we can write

(1.3) v =
∑
k

b′k(v)bk.

In other words,
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The kth coordinate of a vector v in a basis B = {b1,b2, . . . ,bn}
is b′k(v)}, where B′ = {b′1,b′2, . . . ,b′n} is the dual basis.

This formula is called (a baby version of) the abstract non-orthogonal
Fourier decomposition of v (in the basis b1,b2, . . . ,bn). The reason for this
name will be clear later in Section 2.3.

Remark 1.5. Let A = {a1,a2, . . . ,an} and B = {b1,b2, . . . ,bm} be bases
in X and Y respectively, and let B′ = {b′1,b′2, . . . ,b′m} be the dual basis to
B. Then the matrix [T ]B,A =: A = {ak,j}mk=1

n
j=1 of the transformation T in

the bases A, B is given by

ak,j = b′k(Taj), j = 1, 2, . . . , n, k = 1, 2, . . . ,m.

1.4. Examples of dual systems. The first example we consider is a trivial
one. Let V be Rn (or Cn) and let e1, e2, . . . , en be the standard basis there.
The dual space will be the space of n-dimensional row vectors, which is
isomorphic to Rn (or Cn in the complex case), and the standard basis there
is the dual to e1, e2, . . . , en. The standard basis in (Rn)′ (or in (Cn)′ is
eT1 , e

T
2 , . . . , e

T
n ) obtained from e1, e2, . . . , en by transposition.

1.4.1. Taylor formula. The next example is more interesting. Let us con-
sider the space Pn of polynomials of degree at most n. As we know, the
powers {ek}nk=0, e(t) = tn form the standard basis in this space. What is
the dual to this basis?

The answer might be tricky to guess, but it is very easy to check when
you know it. Namely, consider the linear functionals e′k ∈ (Pn)′, k =
0, 1, . . . , n, acting on polynomials as follows:

e′k(p) :=
1

k!

dk

dtk
p(t)

∣∣
t=0

=
1

k!
p(k)(0);

here we use the usual agreement that 0! = 1 and d0f/dt0 = f .

Since

dk

dtk
jj =

{
j(j − 1) . . . (j − k + 1)tj−k, k ≤ j
0 k > j

we can easily see that the system {e′k}nk=0 is the dual to the system of powers
{ek}nk=0.

Applying (1.3) to the above system {ek}nk=0 and its dual we get that
any polynomial p of degree at most n can be represented as

(1.4) p(t) =

n∑
k=0

p(k)(0)

k!
tk

This formula is well-known in Calculus as the Taylor formula for polyno-
mials. More precisely, this is a particular case of the Taylor formula, the
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so-called Maclaurin formula. The general Taylor formula

p(t) =
n∑
k=0

p(k)(a)

k!
(t− a)k

can be obtained from (1.4) by applying it to the polynomial p(τ − a) and
then denoting t := τ − a. It also can be obtained by considering powers
(t− a)k, k = 0, 1, . . . , n and finding the dual system the same way we did it
for tk.2

1.4.2. Lagrange interpolation. Our next example deals with the so-called
Lagrange interpolating formula. Let a1, a2, . . . , an+1 be distinct points (in
R or C), and let Pn be the space of polynomials of degree at most n. Define
functionals fk ∈ P′n by

fk(p) = p(ak) ∀p ∈ Pn.

What is the dual of this system of functionals? Note, that while it is not
hard to show that the functionals fk are linearly independent, and so (since
dim(Pn)′ = dimPn = n+ 1) form a basis in (Pn)′, we do not need that. We
will construct the dual system directly, and then will be able to see that the
system f1, f2, . . . , fn+1 is indeed a basis.

Namely, let us define the polynomials pk, k = 1, 2, . . . , n+ 1 as

pk(t) =
∏
j:j 6=k

(t− aj)
/ ∏

j:j 6=k
(ak − aj)

where j in the products runs from 1 to n + 1. Clearly pk(ak) = 1 and
pk(aj) = 0 if j 6= k, so indeed the system p1, p2, . . . , pn+1 is dual to the
system f1, f2, . . . , fn+1.

There is a little detail here, since the notion of a dual system was defined
only for a basis, and we did not prove that either of the systems is one.
But one can immediately see that the system p1, p2, . . . , pn+1 is linearly
independent (can you explain why?), and since it contains n + 1 = dimPn
vectors, it is a basis. Therefore, the system of functionals f1, f2, . . . , fn+1 is
also a basis in the dual space (Pn)′.

Remark. Note, that we did not just got lucky here, this is a general phe-
nomenon. Namely, as Problem 1.1 below asserts, any system of vectors
having a “‘dual” one must be linearly independent. So, constructing a dual
system is a way of proving linear independence (and an easy one, if you can
do it easily as in the above example).

2 Note, that the general Taylor formula says more than the formula for polynomials obtained

here: it says that any n times differentiable function can be approximated near the point a by its
Taylor polynomial. Moreover, if the function is n+ 1 times differentiable, it allows us to estimate

the error. The above formula for polynomials serves as a motivation and a starting point for the
general case
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Applying formula (1.3) to the above example one can see that the
(unique) polynomial p, deg p ≤ n satisfying

(1.5) p(ak) = yk, k = 1, 2, . . . , n+ 1

can be reconstructed by the formula

(1.6) p(t) =
n+1∑
k=1

ykpk(t).

This formula is well -known in mathematics as the “Lagrange interpolation
formula”.

Exercises.

1.1. Let v1,v2, . . . ,vr be a system of vectors in X such that there exists a system
v′1,v

′
2, . . . ,v

′
r of linear functionals such that

v′k(vj) =

{
1, j = k
0 j 6= k

a) Show that the system v1,v2, . . . ,vr is linearly independent.

b) Show that if the system v1,v2, . . . ,vr is not generating, then the “biorthog-
onal” system v′1,v

′
2, . . . ,v

′
r is not unique. Hint: Probably the easiest way

to prove that is to complete the system v1,v2, . . . ,vr to a basis, see Propo-
sition 5.4 from Chapter 2

1.2. Prove that given distinct points a1, a2, . . . , an+1 and values y1, y2, . . . , yn+1

(not necessarily distinct) the polynomial p, deg p ≤ n satisfying (1.5) is unique.
Try to prove it using the ideas from linear algebra, and not what you know about
polynomials.

2. Dual of an inner product space

Let us recall that there is no inner product space over an arbitrary field,
that all our inner product spaces are either real or complex.

2.1. Riesz representation theorem.

Theorem 2.1 (Riesz representation theorem). Let H be an inner product
space. Given a linear functional L on H there exists a unique vector y ∈ H
such that

(2.1) L(v) = (v,y) ∀v ∈ H.

Proof. Fix an orthonormal basis e1, e2, . . . , en in H, and let

[L] = [L1, L2, . . . , Ln]

be the matrix of L in this basis. Define vector y by

(2.2) y :=
∑
k

Lkek,
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where Lk denotes the complex conjugate of Lk. In the case of a real space
the conjugation does nothing and can be simply ignored.

We claim that y satisfies (2.1).

Indeed, take an arbitrary vector v =
∑

k αkek. Then

[v] = [α1, α2, . . . , αn]T

and

L(v) = [L][v] =
∑
k

Lkαk.

On the other hand Recall that if we
know coordinates of
2 vectors in an or-
thonormal basis, we
can compute the in-
ner product by tak-
ing these coordinate
and computing the
standard inner prod-
uct in Cn (or Rn).

(v,y) =
∑
k

αkLk =
∑
k

αkLk

so (2.1) holds.

To show that the vector y is unique, let us assume that y satisfies (2.1).
Then for k = 1, 2, . . . , n

(ek,y) = L(ek) = Lk,

so (y, ek) = Lk. Then, using the formula for the decomposition in the
orthonormal basis, see Section 2.1 of Chapter 5 we get

y =
∑
k

(y, ek)ek =
∑
k

Lkek

which means that any vector satisfying (2.1) must be represented by (2.2).
�

Remark. While the statement of the theorem does not require a basis,
the proof presented above utilizes an orthonormal basis in H, although the
resulting vector y does not depend on the choice of the basis3. An advantage
of this proof is that it gives a formula for computing the representing vector
y.

2.2. Is an inner product space a dual to itself? For a vector y in an
inner product space H one can define a linear functional Ly,

Ly(v) := (v,y).

It is easy to see that the mapping y 7→ Ly is an injective mapping from
H to sits dual H∗. The above Theorem 2.1 asserts that this mapping is a
surjection (onto), so one is tempted to say that the dual of an inner product
space H is (canonically isomorphic to) the space H itself, with the canonical
isomorphism given by y 7→ Ly.

3 An alternative proof that does need a basis is also possible. This alternative proof, that

works in infinite-dimensional case, uses strong convexity of the unit ball in the inner product space
together with the idea of completeness from analysis.
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This is indeed the case if H is a real inner product space and it is
easy to show that the map y 7→ Ly is a linear transformation. We already
discussed that the map is injective and surjective, so it is an invertible linear
transformations, i.e. an isomorphism.

However if H is a complex space, one needs to be a bit more careful.
Namely, the mapping y 7→ Ly that that maps a vector y ∈ H to the linear
functional Ly as in Theorem 2.1 (Ly(v) = (v,y)) is not a linear one.

More precisely, while it is easy to show that

(2.3) Ly1+y2 = Ly1 + Ly2 ,

it follows from the definition of Ly and properties of inner product that

(2.4) Lαy(v) = (v, αy) = α(v,y) = αLy(v),

so Lαy = αLy.

In other words, one can say that the dual of a complex inner product
space is the space itself but with the different linear structure: adding 2 vec-
tors is equivalent to adding corresponding linear functionals, but multiplying
a vector by α is equivalent to multiplying the corresponding functional by
α.

A transformation T satisfying T (αx +βy) = αTx +βTy is some-
times called a conjugate linear transformation.

So, for a complex inner product space H its dual can be canonically iden-
tified with H by a conjugate linear isomorphism (i.e. invertible conjugate
linear transformation)

Of course, for a real inner product space the complex conjugation can
be simply ignored (because α is real), so the map y 7→ Ly is a linear one.
In this case we can, indeed say that the dual of an inner product space H
is the space itself.

In both, real and complex cases, we nevertheless can say that the dual
of an inner product space can be canonically identified with the space itself.

2.3. Biorthogonal systems and orthonormal bases.

Definition 2.2. Let b1,b2, . . . ,bn be a basis in an inner product space H.
The unique system b′1,b

′
2, . . . ,b

′
n in H defined by

(bj ,b
′
k) = δj,k,

where δj,k is the Kroneker delta, is called the biorthogonal or dual to the
basis b1,b2, . . . ,bn.

This definition clearly agrees with Definition 1.4, if one identifies the
dual H ′ with H as it was discussed above. Then it follows immediately
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from the discussion in Section 1.3 that the dual system b′1,b
′
2, . . . ,b

′
n to a

basis b1,b2, . . . ,bn is uniquely defined and forms a basis, and that the dual
to b′1,b

′
2, . . . ,b

′
n is b1,b2, . . . ,bn.

The abstract non-orthogonal Fourier decomposition formula (1.3) can
be rewritten as

v =
n∑
k=1

(v,b′k)bk

Note, that an orthonormal basis is dual to itself. So, if e1, e2, . . . , en is
an orthonormal basis, the above formula is rewritten as

v =

n∑
k=1

(v, ek)ek

which is the classical (orthogonal) abstract Fourier decomposition, see for-
mula (2.2) in Section 2.1 of Chapter 5.

3. Adjoint (dual) transformations and transpose.
Fundamental subspace revisited (once more)

By analogy with the case of an inner product spaces, see Theorem 2.1, it is
customary to write L(v), where L is a linear functional (i.e. L ∈ V ′, v ∈ V )
in the form resembling inner product

L(v) = 〈v, L〉
Note, that the expression 〈v, L〉 is linear in both arguments, unlike the inner
product which in the case of a complex space is linear in the first argument
and conjugate linear in the second. So, to distinguish it from the inner
product, we use the angular brackets.4

Note also, that while in the inner product both vectors belong to the
same space, v and L above belong to different spaces: in particular, we
cannot add them.

3.1. Dual (adjoint) transformation.

Definition 3.1. Let A : X → Y be a linear transformation. The transfor-
mation A′ : Y ′ → X ′ (X ′ and Y ′ are dual spaces for X and Y respectively)
such that

〈Ax,y′〉 = 〈x, A′y′〉 ∀x ∈ X,y′ ∈ Y ′
is called the adjoint (dual) to A.

4This notation, while widely used, is far from the standard. Sometimes (v, L) is used,
sometimes the angular brackets are used for the inner product. So, encountering expression like

that in the text, one has to be very careful to distinguish inner product from the action of a linear
functional.



226 8. Dual spaces and tensors

Of course, it is not a priori clear why the transformation A′ exists. Below
we will show that indeed such transformation exists, and moreover, it is
unique.

3.1.1. Dual transformation for the case A : Fn → Fm. Let us first consider
the case when X = Fn, Y = Fm (F here is, as usual, either R or C, but
everything works for the case of arbitrary fields)

As usual, we identify a vector v in Fn with the column of its coordinates,
and a linear transformation with it matrix (in the standard basis).

The dual of Fn is, as it was discussed above, the space of rows of size n,
so we can identify its with Fn. Again, we will treat an element of (Fn)′ as a
column vector of its coordinates.

Under these agreements we have for x ∈ Fn and x′ ∈ (Fn)′

x′(x) = 〈x,x′〉 = (x′)Tx

where the right side is the product of matrices (or a row and a column).
Then, for arbitrary x ∈ X = Fn and y′ ∈ Y ′ = (Fm)′

〈Ax,y′〉 = (y′)TAx = (ATy′)Tx = 〈x, ATy〉
(the expressions in the middle are products of matrices).

So we have proved that the adjoint transformation exists. let us show
that it is unique. Assume that for some transformation B

〈Ax,y′〉 = 〈x, By′〉 ∀x ∈ Fn, ∀y′ ∈ (Fm)′.

That means that for arbitrary

〈x, (AT −B)y′〉 = 0, ∀x ∈ Fn,∀y′ ∈ (Fm)′

By taking for x and y′ the vectors from the standard bases in Fn and (Fm)′ ∼=
Fm respectively we get that the matrices B and AT coincide. �

So, for X = Fn, Y = Fm

The dual transformation A′ exists, and is unique. Moreover, its
matrix (in the standard bases) equals AT (the transpose of the
matrix of A)

3.1.2. Dual transformation in the abstract setting. Now, let us consider the
general case. In fact, we do not need to do much, since everything can be
reduced to the case of spaces Fn.

Namely, let us fix bases A = a1,a2, . . . ,an in X, and B = b1,b2, . . . ,bm
in Y , and let A′ = a′1,a

′
2, . . . ,a

′
n and B = b′1,b

′
2, . . . ,b

′
m be their dual bases

(in X ′ and Y ′ respectively). For a vector v (from a space or its dual) we as
usual denote by [v]B the column of its coordinates in the basis B. Then

〈x,x′〉 = ([x′]A′)
T [x]A, ∀x ∈ X ∀x′ ∈ X ′,
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i.e. instead of working with x ∈ X and x′ ∈ X ′ we can work with columns
their coordinates (in the dual bases A and A′ respectively) absolutely the
same way we do in in the case of Fn. Of course, the same works for Y , so
working with columns of coordinates and then translating everything back
to the abstract setting we get that the dual transformation exists in unique
in this case as well.

Moreover, using the fact (which we just proved) that for A : Fn → Fm
the matrix of A′ is AT we get

(3.1) [A′]A′,B′ = ([A]B,A)T ,

or in plain English

The matrix of the dual transformation in the dual basis is the
transpose of the matrix of the transformation in the original bases.

Remark 3.2. Note, that while we used basis to construct the dual trans-
formation, the resulting transformation does not depend on the choice of a
basis.

3.1.3. A coordinate-free way to define the dual transformation. Let us now
present another, more “high brow” way of defining the dual of a linear
transformation. Namely, for x ∈ X, y′ ∈ Y let us fix for a moment y′ and
treat the expression 〈Ax,y′〉 = y′(Ax) as a function of x. It is easy to see
that this is a composition of two linear transformations (which ones?) and
so it is a linear function of x, i.e. a linear functional on X, i.e. an element
of X ′.

Let us call this linear functional B(y′) to emphasize the fact that it
depends on y′. Since we can do this for every y′ ∈ Y ′, we can define the
transformation B : Y ′ → X ′ such that

〈Ax,y′〉 = 〈x, B(y′)〉

Our next step is to show that B is a linear transformation. Note, that
since the transformation B was defined in rather indirect way, we cannot
see immediately from the definition that it is linear. To show the linearity
of B let us take y′1,y

′
2 ∈ Y ′. For x ∈ X

〈x, B(αy′1 + βy′2)〉 = 〈Ax, αy′1 + βy′2〉 by the definition of B

= α〈Ax,y′1〉+ β〈Ax,y′2〉 by linearity

= α〈x, B(y′1)〉+ β〈x, B(y′2)〉 by the definition of B

= 〈x, αB(y′1) + βB(y′2)〉 by linearity

Since this identity is true for all x, we conclude that B(αy′1 + βy′2) =
αB(y′1) + βB(y′2), i.e. that B is linear.
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The main advantage of this approach that it does not require a basis, so
it can be (and is) used in the infinite-dimensional situation. However, the
proof that we presented above in Sections 3.1.1, 3.1.2 gives a constructive
way to compute the dual transformation, so we used that proof instead of
more general coordinate-free one.

Remark 3.3. Note, that the above coordinate-free approach can be used to
define the Hermitian adjoint of as operator in an inner product space. The
only addition to the reasoning presented above will be the use of the Riesz
Representation Theorem (Theorem 2.1). We leave the details as an exercise
to the reader, see Problem 3.2 below.

3.2. Annihilators and relations between fundamental subspaces.

Definition 3.4. Let X be a vector space and let E ⊂ X. The annihilator
of E, denoted by E⊥ is the set of all x′ ∈ X ′ such that 〈x,x′〉 = 0 for all
x ∈ E.

Using the fact that X ′′ is canonically isomorphic to X (see Section 1.2)
we say that for E ⊂ X ′ its annihilator E⊥ consists of all vectors x ∈ X such
that 〈x,x′〉 = 0 for all x′ ∈ E.

Remark 3.5. Formally speaking, for E ⊂ X ′ the set E⊥ should be defined
as the set of all x′′ ∈ X ′′ such that 〈x′,x′′〉 = 0 for all x′ ∈ E; the symbol
E⊥ is often used for the annihilator from the second part of Definition 3.4.
However, because of the natural isomorphism of X ′′ and X there is no real
difference between these two cases, so we will always use E⊥.

Distinguishing the cases E ⊂ X and E ⊂ X ′ makes a lot of sense
in the infinite-dimensional situation, where X ′′ is not always canonically
isomorphic to X.

The spaces such that X ′′ canonically isomorphic to X have a special
name: they are called reflexive spaces.

Proposition 3.6. Let E be a subspace of X. Then (E⊥)⊥ = E

This proposition looks absolutely like Proposition 3.6 from Chapter 5.
However its proof is a bit more complicated, since the suggested proof of
Proposition 3.6 from Chapter 5 heavily used the inner product space struc-
ture: it used the decomposition X = E ⊕ E⊥, which is not true in our
situation because, for example, E and E⊥ are in different spaces.

Proof. Let v1,v2, . . . ,vr be a basis in E (recall that all spaces in this
chapter are assumed to be finite-dimensional), so E = span{v1,v2, . . . ,vr}.

By Proposition 5.4 from Chapter 2 the system can be extended to a
basis in all X, i.e. one can find vectors vr+1, . . . ,vn (n = dimX) such that
v1,v2, . . . ,vn is a basis in X.
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Let v′1,v
′
2, . . . ,v

′
n be the dual basis to v1,v2, . . . ,vn. By Problem 3.3

E⊥ = span{v′r+1, . . . ,v
′
n}. Applying again this problem to E⊥ we get that

(E⊥)⊥ = span{v1,v2, . . . ,vn} = E.

�

The following theorem is analogous to Theorem 5.1 from Chapter 5

Theorem 3.7. Let A : X → Y be an operator acting from one vector space
to another. Then

a) KerA′ = (RanA)⊥;

b) KerA = (RanA′)⊥;

c) RanA = (KerA′)⊥;

d) RanA′ = (KerA)⊥.

Proof. First of all, let us notice, that since for a subspace E we have
(E⊥)⊥ = E, the statements 1 and 3 are equivalent. Similarly, for the same
reason, the statements 2 and 4 are equivalent as well. Finally, statement 2 is
exactly statement 1 applied to the operator A′ (here we use the trivial fact
fact that (A′)′ = A, which is true, for example, because of the corresponding
fact for the transpose).

So, to prove the theorem we only need to prove statement 1.

Recall that A′ : Y ′ → X ′. The inclusion y′ ∈ (RanA)⊥ means that y′

annihilates all vectors of the form Ax, i.e. that

〈Ax,y′〉 = 0 ∀x ∈ X.
Since 〈Ax,y′〉 = 〈x, A′y′〉, the last identity is equivalent to

〈x, A′y′〉 = 0 ∀x ∈ X.
But that means that A′y′ = 0 (A′y′ is a zero functional).

So we have proved that y′ ∈ (RanA)⊥ iff A′y′ = 0, or equivalently iff
y′ ∈ KerA′. �

Exercises.

3.1. Prove that if for linear transformations T, T1 : X → Y

〈Tx,y′〉 = 〈T1x,y
′〉

for all x ∈ X and for all y′ ∈ Y ′, then T = T1.

Probably one of the easiest ways of proving this is to use Lemma 1.3.

3.2. Combine the Riesz Representation Theorem (Theorem 2.1) with the reason-
ing in Section 3.1.3 above to present a coordinate-free definition of the Hermitian
adjoint of an operator in an inner product space.
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The next problem gives a way to prove Proposition 3.6

3.3. Let v1,v2, . . . ,vn be a basis in X and let v′1,v
′
2, . . . ,v

′
n be its dual basis. Let

E := span{v1,v2, . . . ,vr}, r < n. Prove that E⊥ = span{v′r+1, . . . ,v
′
n}.

3.4. Use the previous problem to prove that for a subspace E ⊂ X
dimE + dimE⊥ = dimX.

4. What is the difference between a space and its dual?

We know that the dual space X ′ has the same dimension as X, so the
space and its dual are isomorphic. So one can think that really there is no
difference between the space and its dual. However, as we discussed above
in Section 1.1, when we change basis in the space X the coordinates in X
and in X ′ change according to different rules, see formula (1.1) above.

On the other hand, using the natural isomorphism of X and X ′′ we can
say that X is the dual of X ′. From this point of view, there is no difference
between X and X ′: we can start from X and say that X ′ is its dual, or we
can do it the other way around and start from X ′.

We already used this point of view above, for example in the proof of
Theorem 3.7.

Note also, that the change of coordinate formula (1.1) (see also the

boxed statement below it) agrees with this point of view: if S̃ := (S−1)T ,

then (S̃−1)T = S, so we get the change of coordinate formula in X from the
one in X ′ by the same rule!

4.1. Isomorphisms between X and X ′. There are infinitely many pos-
sibilities to define an isomorphism between X and X ′.

If X = Fn then the most natural way to identify X and X ′ is to identify
the standard basis in Fn with the one in (Fn)′. In this case the action of a
linear functional will be given by the “inner product type” expression

〈v,v′〉 = (v′)Tv.

To generalize this to the general case one has to fix a basis B = b1,b2, . . . ,bn
in X and consider the dual basis B′ = b′1,b

′
2, . . . ,b

′
n, and define an isomor-

phism T : X → X ′ by Tbk = b′k, k = 1, 2, . . . , n.

This isomorphism is natural in some sense, but it depends on the choice
of the basis, so in general there is no natural way to identify X and X ′.

The exception to this is case when X is a real inner product space: the
Riesz representation theorem (Theorem 2.1) gives a natural way to identify
a linear functional with a vector in X. Note that this approach works only
for real inner product spaces. In the complex case, the Riesz representation
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theorem gives a natural identification of X and X ′, but this identification is
not linear but conjugate linear.

4.2. An example: velocities (differential operators) and differen-
tial forms as vectors and linear functionals. To illustrate the relations
between vectors and linear functional, let us consider an example from mul-
tivariable calculus, which gives rise to important ideas like tangent and
cotangent bundles in differential geometry.

Let us recall the notion of the path integral (of the second kind) from
the calculus. Recall that a path γ in Rn is defined by its parameterization,
i.e. by a function

t 7→ x(t) = (x1(t), x2(t), . . . , xn(t))T

acting from an interval [a, b] to Rn. If ω is the so-called differential form
(differential 1-form),

ω = f1(x)dx1 + f2(x)dx2 + . . .+ fn(x)dxn,

the path integral ∫
γ
ω =

∫
γ
f1dx1 + f2dx2 + . . .+ fndxn

is computed by substituting x(t) = (x1(t), x2(t), . . . , xn(t))T in the expres-
sion, i.e.

∫
γ ω is computed as∫ b

a

(
f1(x(t))

dx1(t)

dt
+ f2(x(t))

dx2(t)

dt
+ . . .+ fn(x(t))

dxn(t)

dt

)
dt.

In other words, at each moment t we have to evaluate the velocity

v =
dx(t)

dt
=

(
dx1(t)

dt
,
dx2(t)

dt
, . . . ,

dxn(t)

dt

)T
,

apply to it the linear functional f = (f1, f2, . . . , fn), f(v) =
∑n

k=1 fkvk (here
fk = fk(x(t)) but for a fixed t each fk is just a number, so we simply write
fk), and then integrate the result (which depends on t) with respect to t.

4.2.1. Velocities as vectors. Let us fix t and analyze f(v). We will show that
according to the rules of Calculus, the coordinates of v change as coordinates
of a vector, and the coordinates of f as the coordinates of a linear functional
(covector). Let us assume as it is customary in Calculus, that xk are the
coordinates in the standard basis in Rn, and let B = {b1,b2, . . . ,bn} be a
different basis in Rn. We will use notation x̃k to denote the coordinates of
a vector x = (x1, x2, . . . , xn)T , i.e. [x]B = (x̃1, x̃2, . . . , x̃n)T .
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Let A = {ak,j}nk,j=1 be the change of coordinates matrix, A = [I]B,S , so

the new coordinates x̃k are expressed in terms of the old ones as

x̃k =
n∑
j=1

ak,jxj , k = 1, 2, . . . , n.

So the new coordinates ṽk of the vector v are obtained from its old coordi-
nates vk as

ṽk =

n∑
j=1

ak,jvj , k = 1, 2, . . . , n.

4.2.2. Differential forms as linear functionals (covectors). Let us now cal-
culate the differential form

(4.1) ω =

n∑
k=1

fkdxk

in terms of new coordinates x̃k. The change of coordinates matrix from the
new to the old ones is A−1. Let A−1 = {ãk,j}nk,j=1, so

xk =
n∑
j=1

ãk,j x̃j , and dxk =
n∑
j=1

ãk,jdx̃j , k = 1, 2, . . . , n.

Substituting this into (4.1) we get

ω =

n∑
k=1

fk

n∑
j=1

ãk,jdx̃j

=
n∑
j=1

(
n∑
k=1

ãk,jfk

)
dx̃j

=

n∑
j=1

f̃jdx̃j

where

f̃j =

n∑
k=1

ãk,jfk.

But that is exactly the change of coordinate rule for the dual space! So

according to the rules of Calculus, the coefficients of a differential
1-form change by the same rule as coordinates in the dual space

So, according to the accepted rules of Calculus, the coordinates of ve-
locity v change as coordinates of a vector and coefficients (coordinates) of a
differential 1-form change as the entries of a linear functional. In the differ-
ential the set of all velocities is called the tangent space, and the set of all
differential 1 forms is its dual and is called the cotangent space.
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4.2.3. Differential operators as vectors. As we discussed above, in differen-
tial geometry vectors are represented by velocities, i.e. by the derivatives
dx(t)/dt. This is a simple and intuitively clear point of view, but sometimes
it is viewed as a bit näıve.

More “highbrow” point of view, also used in differential geometry (al-
though in more advanced texts) is that vectors are represented by a differ-
ential operators

(4.2) D =
∑
k

vk
∂

∂xk
.

The informal reason for that is the following. Suppose we want to compute
the derivative of a function Φ along the path given by the function t 7→ x(t),
i.e. the derivative

dΦ(x(t))

dt
.

By the Chain Rule, at a given time t

dΦ(x(t))

dt
=

n∑
k=1

(
∂Φ

∂xk

∣∣∣
x=x(t)

)
x′k(t) = DΦ

∣∣
x=x(t)

,

where the differential operator D is given by (4.2) with vk = x′k(t).

Of course, we need to show that the coefficient vk of a differential form
change according to the change of coordinate rule for vectors. This is in-
tuitively clear, and can be easily shown by using the multivariable Chain
Rule. We leave this as an exercise for the reader, see Problem 4.1 below.

4.3. The case of a real inner product space. As we already discussed
above, it follows from the Riesz Representation Theorem (Theorem 2.1) that
a real inner product space X and its dual X ′ are canonically isomorphic.
Thus we can say that vectors and functionals live in the same space which
makes things both simpler and more confusing.

Remark. First of all let us note, that if the change of coordinates matrix S
is orthogonal (S−1 = ST ), then (S−1)T = S. Therefore, for an orthogonal
change of coordinate matrix the coordinates of a vector and of a linear
functional change according to the same rule, so one cannot really see a
difference between a vector and a functional.

The change of coordinate matrix is orthogonal, for example, if we change
from one orthonormal basis to another.

4.3.1. Einstein notation, metric tensor. Let B = {b1,b2, . . . ,bn be a ba-
sis in a real inner product space X and let B′ = {b′1,b′2, . . . ,b′n} be the
dual basis (we identify the dual space X ′ with X via Riesz Representation
Theorem, so b′k can be assumed to be in X).
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Here we present the standard in differential geometry notation (the so-
called Einstein notation) for working with coordinates in these bases. Since
we will only be working with coordinates, we can assume that we are working
in the space Rn with the non-standard inner product ( · , · )G defined by the
positive definite matrix G = {gj,k}nj,k=1, gj,k = (bk,bj)X , which is often
called the metric tensor,

(4.3) (x,y) = (x,y)
G

=
n∑
j=1

n∑
k=1

gj,kxjyk, x,y ∈ Rn

(see Section 5 in Chapter 7).

To distinguish between vectors and linear functionals (co-vectors) it is
agreed to write the coordinates of a vector with indices as superscripts and
the coordinates a a linear functional with indices as subscripts: thus xj ,
j = 1, 2, . . . , n denotes the coordinates of a vector x and fk, k = 1, 2, . . . , n
denotes the coordinates of a linear functional f .

Remark. Putting indices as superscripts can be confusing, since one will
need to distinguish it from the power. However, this is a standard and widely
used notation, so we need to get acquainted with it. While I personally,
like a lot of mathematicians, prefer using coordinate-free notation, all final
computations are done in coordinates, so the coordinate notation has to be
used. And as far as coordinate notations go, you will see that this notation
is quite convenient to work with.

Another convention in the Einstein notation is that whenever in a prod-
uct the same index appear in the subscript and superscript, it means one
needs to sum up in this index. Thus xjfj means

∑
j x

jfj , so we can write

f(x) = xjfj . The same convention holds when we have more than one index
of summation, so (4.3) can be rewritten in this notation as

(4.4) (x,y) = gj,kx
kyj , x,y ∈ Rn

(mathematicians are lazy and are always trying to avoid writing extra sym-
bols, whenever they can).

Finally, the last convention in the Einstein notation is the preservation
of the position of the indices: if we do not sum over an index, it remains in
the same position (subscript or superscript) as it was before. Thus we can

write yj = ajkx
k, but not fj = ajkx

k, because the index j must remain as a
superscript.

Note, that to compute the inner product of 2 vectors, knowing their
coordinates is not sufficient. One also needs to know the matrix G (which
is often called the metric tensor). This agrees with the Einstein notation:
if we try to write (x,y) as the standard inner product, the expression xkyk
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means just the product of coordinates, since for the summation we need the
same index both as the subscript and the superscript. The expression (4.4),
on the other hand, fit this convention perfectly.

4.3.2. Covariant and contravariant coordinates. Lovering and raising the
indices. Let us recall that we have a basis b1,b2, . . . ,bn in a real inner
product space, and that b′1,b

′
2, . . . ,b

′
n, b′k ∈ X is its dual basis (we identify

X with its dual X ′ via Riesz Representation Theorem, so b′k are in X).

Given a vector x ∈ X it can be represented as

x =

n∑
k=1

(x,b′k)bk =:

n∑
k=1

xkbk, and as(4.5)

x =
n∑
k=1

(x,bk)b
′
k =:

n∑
k=1

xkb
′
k.(4.6)

The coordinates xk are called the covariant coordinates of the vector x and
the coordinates xk are called the contravariant coordinates.

Now let us ask ourselves a question: how can one get covariant coordi-
nates of a vector from the contravariant ones?

According to the Einstein notation, we use the contravariant coordinates
working with vectors, and covariant ones for linear functionals (i.e. when we
interpret a vector x ∈ X as a linear functional). We know (see (4.6)) that
xk = (x,bk), so

xk = (x,bk) =
(∑

j

xjbj ,bk

)
=
∑
j

xj(bj ,bk) =
∑
j

gk,jx
j ,

or in the Einstein notation

xk = gk,jx
j .

In other words,

the metric tensor G is the change of coordinates matrix from con-
travariant coordinates xk to the covariant ones xk.

The operation of getting from contravariant coordinates to covariant is
called lowering of the indices.

Note the following interpretation of the formula (4.4) for the inner prod-
uct: as we know for the vector x we get his covariant coordinate as xj =

gj,kx
k, so (x,y) = xjy

j . Similarly, because G is symmetric, we can say that

yk = gj,ky
k and that (x,y) = xkyk. In other words

To compute the inner product of two vectors, one first needs to
use the metric tensor G to lower indices of one vector, and then,
treating this vector as a functional compute its value on the other
vector.
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Of course, we can also change from covariant coordinates xj to con-
travariant ones xj (raise the indices). Since

(x1, x2, . . . , xn)T = G(x1, x2, . . . , xn)T ,

we get that

(x1, x2, . . . , xn)T = G−1(x1, x2, . . . , xn)T

so the change of coordinate matrix in this case is G−1.

Since, as we know, the change of coordinate matrix is the metric tensor,
we can immediately conclude that G−1 is the metric tensor in covariantG−1 is the metric

tensor in covariant
coordinates.

coordinates, i.e. that if G−1 = {gk,j}nk,j=1 then

(x,y) = gk,jxjyk.

Remark. Note, that if one looks at the big picture, the covariant and con-
travariant coordinates are completely interchangeable. It is just the matter
of which one of the bases in the dual pair B and B′ we assign to be the
“primary” one and which one to be the dual.

What to chose as a “primary” object, and what as the “dual” one de-
pends mostly on accepted conventions.

Remark 4.1. Einstein notation is usually used in differential, and espe-
cially Riemannian geometry, where vectors are identified with velocities and
covectors (linear functionals) with the differential 1-forms, see Section 4.2
above. Vectors and covectors here are clearly different objects and form
what is called tangent and cotangent spaces respectively.

In Riemannian geometry one then introduces inner product (i.e. the
metric tensor, if one thinks in terms of coordinates) on the tangent space,
which allows us identify vectors and covectors (linear functionals). In coor-
dinate representation this identification is done by lowering/raising indices,
as described above.

4.4. Conclusions. Let us summarize the above discussion on whether or
not a space is different from its dual.

In short, the answer is “Yes”, they are different objects. Although in the
finite-dimensional case, which is treated in this book, they are isomorphic,
nothing is usually gained from the identification of a space and its dual.

Even in the simplest case of Fn it is useful to think that the elements of
Fn are columns and the elements of its dual are rows (even though, when
doing manipulations with the elements of the dual space we often put the
rows vertically). More striking examples are ones considered in Sections
1.4.1 and 1.4.2 dealing with Taylor formula and Lagrange interpolation.
One can clearly see there that the linear functionals are indeed completely



5. Multilinear functions. Tensors 237

different objects than polynomials, and that hardly anything can be gained
by identifying functionals with the polynomials.

For inner product spaces the situation is different, because such spaces
can be canonically identified with their duals. This identification is linear
for real inner product spaces, so a real inner product space is canonically
isomorphic to its dual. In the case of complex spaces, this identification is
only conjugate linear, but it is nevertheless very helpful to identify a linear
functional with a vector and use the inner product space structure and ideas
like orthogonality, self-adjointness, orthogonal projections, etc.

However, sometimes even in the case of real inner product spaces, it is
more natural to consider the space and its dual as different objects. For ex-
ample, in Riemannian geometry, see Remark 4.1 above vector and covectors
come from different objects, velocities and differential 1-forms respectively.
Even though the introduction of the metric tensor allows us to identify
vectors and covectors, it is sometimes more convenient to remember their
origins think of them as of different objects.

Exercises.

4.1. Let D be a differential operator

D =

n∑
k=1

vk
∂

∂xk
.

Show, using the chain rule, that if we change a basis and write D in new coordinates,
its coefficients vk change according to the change of coordinates rule for vectors.

5. Multilinear functions. Tensors

5.1. Multilinear functions.

Definition 5.1. Let V1, V2, . . . , Vp, V be vector spaces (over the same field
F). A multilinear (p-linear) map with values in V is a function F of p vector
variables v1,v2, . . . ,vp, vk ∈ Vk, with the target space V , which is linear in
each variable vk. In other words, it means that if we fix all variables except
vk we get a linear map, and this should be true for all k = 1, 2, . . . , p. We
will use the symbol L(V1, V2, . . . , Vp;V ) for the set of all such multilinear
functions.

If the target space V is the field of scalars F, we call F a multilinear
functional, or tensor. The number p is called the valency of the multilinear
functional (tensor). Thus, tensor of valency 1 is a linear functional, tensor
of valency 2 is called a bilinear form.
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Example. Let fk ∈ (Vk)
′. Define a polylinear functional F = f1⊗f2⊗. . .⊗fp

by multiplying the functionals fk,

(5.1) f1 ⊗ f2 ⊗ . . .⊗ fp(v1,v2, . . . ,vp) = f1(v1)f2(v2) . . . fp(vp),

for vk ∈ Vk, k = 1, 2, . . . , p. The polylinear functional f1 ⊗ f2 ⊗ . . . ⊗ fp is
called the tensor product of functionals fk.

5.1.1. Multilinear functions form vector space. Notice, that in the space
L(V1, V2, . . . , Vp;V ) one can introduce the natural operations of addition
and multiplication by a scalar,

(F1 + F2)(v1,v2, . . . ,vp) := F1(v1,v2, . . . ,vp) + F2(v1,v2, . . . ,vp),

(αF1)(v1,v2, . . . ,vp) := αF1(v1,v2, . . . ,vp),

where F1, F2 ∈ L(V1, V2, . . . , Vp;V ), α ∈ F.

Equipped with these operations, the space L(V1, V2, . . . , Vp;V ) is a vector
space.

To see that we first need to show that F1 + F2 and αF1 are multilinear
functions. Since “multilinear” means that it is linear in each argument sepa-
rately (with all the other variables fixed), this follows from the corresponding
fact about linear transformation; namely from the fact that the sum of linear
transformations and a scalar multiple of a linear transformation are linear
transformations, cf. Section 4 of Chapter 1.

Then it is easy to show that L(V1, V2, . . . , Vp;V ) satisfies all axioms of
vector space; one just need to use the fact that V satisfies these axioms. We
leave the details as an exercise for the reader. He/she can look at Section
4 of Chapter 1, where it was shown that the set of linear transformations
satisfies axiom 7. Literally the same proof work for multilinear functions;
the proof that all other axioms are also satisfied is very similar.

5.1.2. Dimension of L(V1, V2, . . . , Vp;V ). Let B1,B2, . . . ,Bp be bases in the
spaces V1, V2, . . . , Vp respectively. Since a linear transformation is defined
by its action on a basis, a multilinear function F ∈ L(V1, V2, . . . , Vp;V ) is
defined by its values on all tuples

b1
j1 ,b

2
j2 , . . . ,b

p
jp
, bkjk ∈ Bk.

Since there are exactly

(dimV1)(dimV2) . . . (dimVp)

such tuples, and each F (b1
j1
,b2

j2
, . . . ,bpjp) is determined by dimV coordi-

nates (in some basis in V ). we can conclude that F ∈ L(V1, V2, . . . , Vp;V ) is
determined by (dimV1)(dimV2) . . . (dimVp)(dimV ) entries. In other words

dimL(V1, V2, . . . , Vp;V ) = (dimV1)(dimV2) . . . (dimVp)(dimV ).
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in particular, if the target space is the field of scalars F (i.e. if we are dealing
with multilinear functionals)

dimL(V1, V2, . . . , Vp;F) = (dimV1)(dimV2) . . . (dimVp).

It is easy to find a basis in L(V1, V2, . . . , Vp;F). Namely, let for k =

1, 2, . . . , p the system Bk = {bkj }dimVk
j=1 be a basis in Vk and let B′ = {b̃kj }dimVk

j=1

be its dual system, b̃kj ∈ V ′k.

Proposition 5.2. The system

b̃1
j1 ⊗ b̃2

j2 ⊗ . . .⊗ b̃pjp , 1 ≤ jk ≤ dimVk, k = 1, 2, . . . , p,

is a basis in the space L(V1, V2, . . . , Vp;F).

Here b̃1
j1
⊗ b̃2

j2
⊗ . . .⊗ b̃pjp is the tensor product of functionals, as defined

in (5.1).

Proof. We want to represent F as

(5.2) F =
∑

j1,j2,...,jp

αj1,j2,...,jpb̃
1
j1 ⊗ b̃2

j2 ⊗ . . .⊗ b̃pjp

Since b̃j(bl) = δj,l, we have

b̃1
j1 ⊗ b̃2

j2 ⊗ . . .⊗ b̃pjp(b
1
j1 ,b

2
j2 , . . . ,b

p
jp

) = 1 and(5.3)

b̃1
j1 ⊗ b̃2

j2 ⊗ . . .⊗ b̃pjp(b
1
j′1
,b2

j′2
, . . . ,bpj′p

) = 0(5.4)

for any collection of indices j′1, j
′
2, . . . , j

′
p different from j1, j2, . . . , jp.

Therefore, applying (5.2) to the tuple b1
j1
,b2

j2
, . . . ,bpjp we get

αj1,j2,...,jp = F (b1
j1 ,b

2
j2 , . . . ,b

p
jp

),

so the representation (5.2) is unique (if exists).

On the other hand, defining αj1,j2,...,jp := F (b1
j1
,b2

j2
, . . . ,bpjp) and using

(5.3) and (5.4), we can see that the equality (5.2) holds on all tuples of
form b1

j1
,b2

j2
, . . . ,bpjp . So decomposition (5.2) holds, so we indeed have a

basis. �

5.2. Tensor Products.

Definition. Let V1, V2, . . . , Vp be vector spaces. The tensor product

V1 ⊗ V2 ⊗ . . .⊗ Vp
of spaces Vk is simply the set L(V ′1 , V

′
2 , . . . , V

′
p ;F) of multilinear functionals;

here V ′k is the dual of Vk.
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Remark 5.3. By Proposition 5.2 we get that if Bk = {bkj }dimVk
j=1 is a basis

in Vk for k = 1, 2, . . . , p, then the system

(5.5) b1
j1 ⊗ b2

j2 ⊗ . . .⊗ bpjp , 1 ≤ jk ≤ dimVk, k = 1, 2, . . . , p,

is a basis in V1 ⊗ V2 ⊗ . . .⊗ Vp.
Here we treat a vector vk ∈ Vk as a linear functional on V ′k; the tensor

product of vectors v1 ⊗ v2 ⊗ . . .⊗ vp is the defined according to (5.1).

Remark. The tensor product v1 ⊗ v2 ⊗ . . .⊗ vp of vectors is clearly linear
in each argument vk. In other words, the map (v1,v2, . . . ,vp) 7→ v1 ⊗ v2 ⊗
. . . ⊗ vp is a multilinear functional with values in V1 ⊗ V2 ⊗ . . . ⊗ Vp. We
leave the proof as an exercise for a reader, see Problem 5.1 below

Remark. Note, that the set {v1 ⊗ v2 ⊗ . . . ⊗ vp : vk ∈ Vk} of tensor
products of vectors is strictly less than V1 ⊗ V2 ⊗ . . .⊗ Vp, see Problem 5.2
below.

5.2.1. Lifting a multilinear function to a linear transformation on the tensor
product.

Proposition 5.4. For any multilinear function F ∈ L(V1, V2, . . . , Vp;V )
there exists a unique linear transformation T : V1 ⊗ V2 ⊗ . . . ⊗ Vp → V
extending F , i.e. such that

(5.6) F (v1,v2, . . . ,vp) = T v1 ⊗ v2 ⊗ . . .⊗ vp,

for all choices of vectors vk ∈ Vk, 1 ≤ k ≤ p.

Remark. If T : V1 ⊗ V2 ⊗ . . . ⊗ Vp → V is a linear transformation, then
trivially the function F ,

F (v1,v2, . . . ,vp) := T v1 ⊗ v2 ⊗ . . .⊗ vp,

is a multilinear function in L(V1, V2, . . . , Vp;V ). This follows immediately
from the fact that the expression v1⊗v2⊗ . . .⊗vp is linear in each variable
vk.

Proof of Proposition 5.4. Define T on the basis (5.5) by

Tb1
j1 ⊗ b2

j2 ⊗ . . .⊗ bpjp = F (b1
j1 ,b

2
j2 , . . . ,b

p
jp

)

and then extend it by linearity to all space V1 ⊗ V2 ⊗ . . .⊗ Vp. To complete
the proof we need to show that (5.6) holds for all choices of vectors vk ∈ Vk,
1 ≤ k ≤ p (we now know that only when each vk is one of the vectors bkjk).

To prove that, let us decompose vk as

vk =
∑
jk

αkjkb
k
jk
, k = 1, 2, . . . , p.
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Using linearity in each variable vk we get

v1 ⊗ v2 ⊗ . . .⊗ vp =
∑

j1,j2,...,jp

α1
j1α

2
j2 , . . . , α

p
jp

b1
j1 ⊗ b2

j2 ⊗ . . .⊗ bpjp ,

F (v1,v2, . . . ,vp) =
∑

j1,j2,...,jp

α1
j1α

2
j2 , . . . , α

p
jp
F (b1

j1 ,b
2
j2 , . . . ,b

p
jp

)

so by the definition of T identity (5.6) holds. �

5.2.2. Dual of a tensor product. As one can easily see, the dual of the tensor
product V1⊗V2⊗. . .⊗Vp is the tensor product of dual spaces V ′1⊗V ′2⊗. . .⊗V ′p .

Indeed, by Proposition 5.4 and remark after it, there is a natural one-to-
one correspondence between multilinear functionals in L(V1, V2, . . . , Vp,F)
(i.e. the elements of V ′1 ⊗ V ′2 ⊗ . . .⊗ V ′n) and the linear transformations T :
V1⊗V2⊗. . .⊗Vp → F (i.e. with the elements of the dual of V1⊗V2⊗. . .⊗Vp).

Note, that the bases from Remark 5.3 and Proposition 5.2 are the dual
bases (in V1 ⊗ V2 ⊗ . . .⊗ Vp and V ′1 ⊗ V ′2 ⊗ . . .⊗ V ′n respectively). Knowing
the dual bases allows us easily calculate the duality between the spaces
V1 ⊗ V2 ⊗ . . . ⊗ Vp and V ′1 ⊗ V ′2 ⊗ . . . ⊗ V ′p , i.e. the expression 〈x,x′〉, x ∈
V1 ⊗ V2 ⊗ . . .⊗ Vp, x′ ∈ V ′1 ⊗ V ′2 ⊗ . . .⊗ V ′p

5.3. Covariant and contravariant tensors. Let X1, X2, . . . , Xp be vec-
tor spaces, and let Vk be either Xk or X ′k, k = 1, 2, . . . , p. For a multilinear
function F ∈ L(V1, V2, . . . , Vp;V ) we say that that it is covariant in variable
vk ∈ Vk if Vk = Xk and contravariant in this variable if Vk = X ′k.

If a multilinear function is covariant (contravariant) in all variables, we
say that the multilinear function is covariant (contravariant). In general, if
a function is covariant in r variables and contravariant in s variables, we say
that the multilinear function is r-covariant s-contravariant (or simply (r, s)
multilinear function, or that its valency is (r, s)).

Thus, a linear functional can be interpreted as 1-covariant tensor (recall,
that we use the word tensor for the case of functionals, i.e. when the target
space is the field of scalars F). By duality, a vector can be interpreted as
1-contravariant tensor.

Remark. At first the terminology might look a bit confusing: if a variable
is a vector (not a functional), it is a covariant variable but a contravariant
object. But notice, that we did not say here a “covariant variable”: we said
that if vk ∈ Xk then the mulitilinear function is covariant in the variable
vk. So, the covariant object is not vk, but the “slot” in the tensor where we
put it!

So there is no contradiction, we put the contravariant objects into co-
variant slots and vice versa.
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Sometimes, slightly abusing the language, people talk about covariant
(contravariant) variables or arguments. But it is usually meant that the
corresponding “slots” in the tensor are covariant (contravariant), and not
the variables as objects.

5.3.1. Linear transformations as tensors. A linear transformation T : X1 →
X2 can be interpreted as 1-covariant 1-contravariant tensor. Namely, the
bilinear functional F ,

F (x1,x
′
2) := 〈Tx1,x

′
2〉, x1 ∈ X1,x

′
2 ∈ X ′2

is covariant in the first variable x1 and contravariant in the second one x′2.

Conversely,

Proposition 5.5. Given a 1-1 tensor F ∈ L(X1, X
′
2;F), there exists a

unique linear transformation T : X1 → X2 such that

(5.7) F (x1,x
′
2) := 〈Tx1,x

′
2〉,

for all x1 ∈ X2, x′2 ∈ X ′2.

Proof. First of all note, that the uniqueness is a trivial corollary of Lemma
1.3, cf. Problem 3.1 above. So we only need to prove existence of T .

Let Bk = {bkj }dimXk
j=1 be a basis in Xk, and let B′k = {b̃kj }dimXk

j=1 be the

dual basis in X ′k, k = 1, 2. Then define the matrix A = {ak,j}dimX2
k=1

dimX1
j=1

by

ak,j = F (b1
j , b̃

2
k).

Define T to be the operator with matrix [T ]B2,B1 = A. Clearly (see Remark
1.5)

(5.8) 〈Tb1
j , b̃

2
k〉 = ak,j = F (b1

j , b̃
2
k)

which implies the equality (5.7). This can be easily seen by decomposing
x1 =

∑
j αjbj and x′2 =

∑
k βkb

′
k and using linearity in each argument.

Another, more high brow explanation is that the tensors in left and the
right sides of (5.7) coincide on a basis in X1⊗X ′2 (see Remark 5.3 about the
basis), so they coincide. To be more precise, one should lift the bilinear forms
to the linear transformations (functionals) X1 ⊗ X ′2 → F (see Proposition
5.4), and since the transformations coincide on a basis, they are equal.

One can also give an alternative, coordinate-free proof of existence of T ,
along the lines of the coordinate-free definition of the dual space (see Section
3.1.3). Namely, if we fix x1, the function F (x1,x

′
2) is a linear in x′2, so it is

a linear functional on X ′2, i.e. a vector in X2.

Let us call this vector T (x1). So we defined a transformation T : X1 →
X2. One can easily show that T is a linear transformation by essentially



5. Multilinear functions. Tensors 243

repeating the reasoning from Section 3.1.3. The equality (5.7) follows au-
thomatically from the definition of T . �

Remark. Note that we also can say that the function F from Proposition
5.5 defines not the transformation T , but its adjoint. Apriori, without as-
suming anything (like order of variables and its interpretation) we cannot
distinguish between a transformation and its adjoint.

Remark. Note, that if we would like to follow the Einstein notation, the
entries aj,k of the matrix A = [T ]B2,B1 of the transformation T should be

written as ajk. Then if xk, k = 1, 2, . . . ,dimX1 are the coordinates of the
vector x ∈ X1, the jth coordinate of y = Tx is given by

yj = ajkx
k.

Recall the here we skip the sign of summation, but we mean the sum over
k. Note also, that we preserve positions of the indices, so the index j stays
upstairs. The index k does not appear in the left side of the equation because
we sum over this index in the right side, and its got “killed”.

Similarly, if xj , j = 1, 2, . . . ,dimX2 are the coordinates of the vector
x′ ∈ X ′2, then kth coordinate of y′ := T ′x′ is given by

yk = ajkxj

(again, skipping the sign of summation over j). Again, since we preserve
the position of the indices, so the index k in yk is a subscript.

Note, that since x ∈ X1 and y = Tx ∈ X2 are vectors, according to the
conventions of the Einstein notation, the indices in their coordinates indeed
should be written as superscripts.

Similarly, x′ ∈ X ′2 and y′ = T ′x′ ∈ X ′1 are covectors, so indices in their
coordinates should be written as subscripts.

The Einstein notation emphasizes the fact mentioned in the previous
remark, that a 1-covariant 1-contravariant tensor gives us both a linear

transformation and its adjoint: the expression ajkx
k gives the action of T ,

and ajkxj gives the action of its adjoint T ′.

5.3.2. Polylinear transformations as tensors. More generally, any polylin-
ear transformation can be interpreted as a tensor. Namely, given a poly-
linear transformation F ∈ L(V1, V2, . . . , Vp;V ) one can define the tensor

F̃ ∈ L(V1, V2, . . . , Vp, V
′;F) by

(5.9) F̃ (v1,v2, . . . ,vp,v
′) = 〈F (v1,v2, . . . ,vp),v

′〉, vk ∈ Vk,v′ ∈ V ′.

Conversely,
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Proposition 5.6. Given a tensor F̃ ∈ L(V1, V2, . . . , Vp, V
′;F) there exists a

unique polylinear transformation F ∈ L(V1, V2, . . . , Vp;V ) such that (5.9) is
satisfied.

Proof. By Proposition 5.4 the tensor F̃ can be extended to a linear trans-

formation (functional) T̃ : V1 ⊗ V2 ⊗ . . .⊗ Vp ⊗ V ′ → F such that

F̃ (v1,v2, . . . ,vp,v
′) = T̃ (v1 ⊗ v2 ⊗ . . .⊗ vp ⊗ v′)

for all vk ∈ Vk, v′ ∈ V ′.
If w ∈W := V1 ⊗ V2 ⊗ . . .⊗ Vp and v′ ∈ V ′, then

w ⊗ v′ ∈ V1 ⊗ V2 ⊗ . . .⊗ Vp ⊗ V ′.
So, we can define a bilinear functional (tensor) G ∈ L(W,V ′;F) by

G(w,v′) := T̃ (w ⊗ v).

By Proposition 5.5, G gives rise to a linear transformation, i.e. there exists
a unique linear transformation T : W → V such that

G(w,v′) = 〈Tw,v′〉 ∀w ∈W, ∀v′ ∈ V ′.
And the linear transformation T gives us the polylinear map

F ∈ L(V1, V2, . . . , Vp;V )

by

F (v1,v2, . . . ,vp) = T (v1 ⊗ v2 ⊗ . . .⊗ vp),

see Remark after Proposition 5.4.

The uniqueness of the transformation F , is, as in Proposition 5.5, is a
trivial corollary of Lemma 1.3. We leave the details as an exercise for the
reader. �

This section shows that

tensors are universal objects in polylinear algebra, since any poly-
linear transformation can be interpreted as a tensor and vice versa.

Exercises.

5.1. Show that the tensor product v1 ⊗ v2 ⊗ . . . ⊗ vp of vectors is linear in each
argument vk.

5.2. Show that the set {v1⊗v2⊗ . . .⊗vp : vk ∈ Vk} of tensor products of vectors
is strictly less than V1 ⊗ V2 ⊗ . . .⊗ Vp.

5.3. Prove that the transformation F from Proposition 5.6 is unique.
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6. Change of coordinates formula for tensors.

The main reason for the differentiation of covariant and contravariant vari-
ables is that under the change of bases, their coordinates change according
to different rules. Thus, the entries of covariant and contravariant vectors
change according to different rules as well.

In this section we going to investigate this in details. Note, that coor-
dinate representations are extremely important, since, for example, all nu-
merical computations (unlike the theoretical investigations) are performed
using some coordinate system.

6.1. Coordinate representation of a tensor. Let F be an r-covariant
s-contravariant tensor, r + s = p. Let x1, . . . ,xr be covariant variables
(xk ∈ Xk), and f1, . . . , fs be the contravariant ones (fk ∈ X ′k). Let us
write the covariant variables first, so the the tensor will be written as

F (x1, . . . ,xr, f1, . . . , fs). For k = 1, 2, . . . , p fix a basis Bk = {b(k)
j }dimXk

j=1

in Xk, and let B′k = {b̃(k)
j }dimXk

j=1 be the dual basis in X ′k.

For a vector xk ∈ Xk let xj(k), j = 1, 2, . . . ,dimXk be its coordinates in

the basis Bk, and similarly, if fk ∈ X ′k let f
(k)
j , j = 1, 2, . . . ,dimXk be its

coordinates in the dual basis B′k (note that in agreement with the Einstein
notation, the coordinates of the vector are indexed by a superscript, and the
coordinate of a covector re indexed by a subscript).

Proposition 6.1. Denote

(6.1) ϕk1,...,ksj1,...,jr
:= F (b

(1)
j1
, . . . ,b

(r)
jr
, b̃

(r+1)
k1

, . . . , b̃
(r+s)
ks

).

Then, in the Einstein notation

(6.2) F (x1, . . . ,xr, f1, . . . , fs) = ϕk1,...,ksj1,...,jr
xj1(1) . . . x

jr
(r)f

(1)
k1

. . . f
(s)
ks

(the summation here is over the indices j1, . . . , jr and k1, . . . , ks).

Note that we use the notation (1), . . . , (r) and (1), . . . , (s) to emphasize
that these are not the indices: the numbers in parenthesis just show the
order of argument. Thus, right side of (6.2) does not have any indices left
(all indices were used in summation), so it is just a number (for fixed xks
and fks).

Proof of Proposition 6.1. To show that (6.1) implies (6.2) we first notice
that (6.1) means that (6.2) hods when xjs and fks are the elements of the
corresponding bases. Decomposing each argument xj and fk in the corre-
sponding basis and using linearity in each argument we can easily get (6.2).
The computation is rather simple, but because there are a lot of indices, the
formulas could be quite big and could look quite frightening.
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To avoid writing too many huge formulas, we leave this computation to
the reader as an exercise.

We do not want the reader to feel cheated, so we present a different,
more “high brow” (abstract) explanation, which does not require any com-
putations! Namely, let us notice that the expressions in the left and the
right side of (6.2) define tensors. By Proposition 5.4 they can be lifted to
linear functionals on the tensor product X1⊗ . . .⊗Xr ⊗X ′r+1⊗ . . .⊗X ′r+s.

Rephrasing what we discussed in the beginning of the proof, we can say
that (6.1) means that the functional coincide on all vectors

b
(1)
j1
⊗ . . .⊗ b

(r)
jr
⊗ b̃

(r+1)
k1

⊗ . . .⊗ b̃
(r+s)
ks

of a basis in the tensor product, so the functionals (and therefore the tensors)
are equal. �

The entries ϕk1,...,ksj1,...,jr
are called the entries of the tensor F in the bases

Bk, k = 1, 2, . . . , p.

Now, let for k = 1, 2, . . . p, Ak be a basis in Xk (and A′k be the dual
basis in X ′k). We want to investigate how the entries of the tensor F change
when we change the bases from Bk to Ak.

6.2. Change of coordinate formulas in Einstein notation. Let us
first consider the familiar cases of vectors and linear functionals, considered
above in Section 1.1.1 but write everything down using the Einstein notation.
Let we have in X two bases, B and A and let

A = [A]A,B

be the change of coordinates matrix from B to A. For a vector x ∈ X let
xk be its coordinates in the basis B and x̃k be the coordinates in the basis
A. Similarly, for f ∈ X ′ let fk denote the coordinates in the basis B′ and

f̃k–the coordinates in the basis A′ (B′ and A′ are the dual bases to B and
A respectively).

Denote by (A)jk the entries of the matrix A: to be consistent with the
Einstein notation the superscript j denotes the number of the row. Then
we can write the change of coordinate formula as

(6.3) x̃j = (A)jkx
k.

Similarly, let (A−1)kj be the entries of A−1: again superscript is used to
denote the number of the row. Then we can write the change of coordinate
formula for the dual space as

(6.4) f̃j = (A−1)kj fk;
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the summation here is over the index k (i.e. along the columns of A−1), so
the change of coordinate matrix in this case is indeed (A−1)T .

Let us emphasize that we did not prove anything here: we only rewrote
formula (1.1) from Section 1.1.1 using the Einstein notation.

Remark. While it is not needed in what follows, let us play a bit more with
the Einstein notation. Namely, the equations

A−1A = I and AA−1 = I

can be rewritten in the Einstein notation as

(A)jk(A
−1)kl = δj,l and (A−1)kj (A)jl = δk,l

respectively.

6.3. Change of coordinates formula for tensors. Now we are ready
to give the change of coordinate formula for general tensors.

For k = 1, 2, . . . , p := r+ s let Ak := [I]A,B be the change of coordinates

matrices, and let A−1
k be their inverses.

As in Section 6.2 we denote by (A)jk the entries of a matrix A, with the
agreement that superscript gives the number of the column.

Proposition 6.2. Given an r-covariant s-contravariant tensor F let

ϕk1,...,ksj1,...,jr
and ϕ̃k1,...,ksj1,...,jr

be its entries in the bases Bk (the old ones) and Ak (the new ones) respec-
tively. In the above notation

ϕ̃k1,...,ksj1,...,jr
= ϕ

k′1,...,k
′
s

j′1,...,j
′
r

(A−1
1 )

j′1
j1
. . . (A−1

r )
j′r
jr

(Ar+1)k1
k′1
. . . (Ar+s)

ks
k′s

(the summation here is in the indices j′1, . . . , j
′
r and k′1, . . . , ks).

Because of many indices, the formula in this proposition looks very com-
plicated. However if one understands the main idea, the formula will turn
out to be quite simple and easy to memorize.

To explain the main idea let us, sightly abusing the language, express
this formula “in plain English”. namely, we can say, that

To express the “new” tensor entries ϕ̃k1,...,ksj1,...,jr
in terms of the “old”

ones ϕk1,...,ksj1,...,jr
, one needs for each covariant index (subscript) apply

the covariant rule (6.4), and for each contravariant index (super-
script) apply the contravariant rule (6.3)

Proof of Proposition 6.2. Informally, the idea of the proof is very simple:
we just change the bases one at a time, applying each time the change
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of coordinate formulas (6.3) or (6.4), depending on whether the tensor is
covariant or contravariant in the corresponding variable.

To write the rigorous formal proof we will use the induction in r ans
s (the number of covariant and contravariant arguments of the tensor).
Proposition is true for r = 1, s = 0 and for r = 0, s = 1, see (6.4) or
(6.3) respectively.

Assuming now that the proposition is proved for some p and s, let us
prove it for r + 1, s and for r, s+ 1.

Let us do the latter case, the other one is done similarly. The maid idea
is that we first change p = r + s bases and use the induction hypothesis;
then we change the last one and use (6.3).

Namely, let ϕ̂
k1,...,ks+1

j1,...,jr
be the entries of an (r, s+1) tensor F in the bases

A1, . . . ,Ap,Bp+1, p = r + s.

Let us fix the index ks+1 and consider the r-covariant s-contravariant

tensor F (x1, . . . ,xr, f1, . . . , fs, b̃
(r+s+1)
s+1 ), where x1, . . . ,xr, f1, . . . , fs are the

variables. Clearly

ϕ
k1,...,ks,ks+1

j1,...,jr
and ϕ̂

k1,...,ks,ks+1

j1,...,jr

are its entries in the bases B1, . . . ,Bp and A1, . . . ,Ap respectively (can you
see why?) Recall, that the index ks+1 here is fixed.

By the induction hypothesis

(6.5) ϕ̂
k1,...,ks,ks+1

j1,...,jr
= ϕ

k′1,...,k
′
s,ks+1

j′1,...,j
′
r

(A−1
1 )

j′1
j1
. . . (A−1

r )
j′r
jr

(Ar+1)k1
k′1
. . . (Ar+s)

ks
k′s
.

Note, that we did not assume anything about the index ks+1, so (6.5) holds
for all ks+1.

Now let us fix indices j1, . . . , jr, k1, . . . , ks and consider 1-contravariant
tensor

F (a
(1)
j1
, . . . ,a

(r)
jr
, ã

(r+1)
k1

, . . . , ã
(r+s)
ks

, fs+1)

of the variable fs+1. Here a
(k)
j are the vectors in the basis Ak and ã

(k)
j are

the vectors in the dual basis A′k.
It is again easy to see that

ϕ̂
k1,...,ks,ks+1

j1,...,jr
and ϕ̃

k1,...,ks,ks+1

j1,...,jr
,

js+1 = 1, 2, . . . ,dimXp+1, are the indices of this functional in the bases Bp+1

and Ap+1 respectively. According to (6.3)

ϕ̃
k1,...,ks,ks+1

j1,...,jr
= ϕ̂

k1,...,ks,k′s+1

j1,...,jr
(Ap+1)

ks+1

k′s+1
,

and since we did not assume anything about the indices j1, . . . , jr, k1, . . . , ks,
the above identity holds for all their combinations. Combining this with
(6.5) we get that the proposition holds for tensors of valency (r, s+ 1).
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The case of valency (r + 1, s) is treated absolutely the same way: the
only difference is that in the end we get a 1-covariant tensor and use (6.4)
instead of (6.3). �





Chapter 9

Advanced spectral
theory

1. Cayley–Hamilton Theorem

Theorem 1.1 (Cayley–Hamilton). Let A be a square matrix, and let p(λ) =
det(A− λI) be its characteristic polynomial. Then p(A) = 0.

A wrong proof. The proof looks ridiculously simple: plugging A instead
of λ in the definition of the characteristic polynomial we get

p(A) = det(A−AI) = det 0 = 0.

�

But this is a wrong proof! To see why, let us analyze what the theorem
states. It states, that if we compute the characteristic polynomial

det(A− λI) = p(λ) =

n∑
k=0

ckλ
k

and then plug matrix A instead of λ to get

p(A) :=

n∑
k=0

ckA
k = c0I + c1A+ . . .+ cnA

n

then the result will be zero matrix.

It is not clear why we get the same result if we just plug A instead of
λ in the determinant det(A − λI). Moreover, it is easy to see that with
the exception of trivial case of 1× 1 matrices we will get a different object.
Namely, A − AI is zero matrix, and its determinant is just the number 0.

251
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But p(A) is a matrix, and the theorem claims that this matrix is the zero
matrix. Thus we are comparing apples and oranges. Even though in both
cases we got zero, these are different zeroes: he number zero and the zero
matrix!

Let us present another proof, which is based on some ideas from analysis.
This proof illus-
trates an important
idea that often it
is sufficient to con-
sider only a typical,
generic situation.
It is going beyond
the scope of the
book, but let us
mention, without
going into details,
that a generic
(i.e. typical) matrix
is diagonalizable.

A “continuous” proof. The proof is based on several observations. First
of all, the theorem is trivial for diagonal matrices, and so for matrices similar
to diagonal (i.e. for diagonalizable matrices), see Problem 1.1 below.

The second observation is that any matrix can be approximated (as close
as we want) by diagonalizable matrices. Since any operator has an upper
triangular matrix in some orthonormal basis (see Theorem 1.1 in Chapter
6), we can assume without loss of generality that A is an upper triangular
matrix.

We can perturb diagonal entries of A (as little as we want), to make them

all different, so the perturbed matrix Ã is diagonalizable (eigenvalues of a a
triangular matrix are its diagonal entries, see Section 1.7 in Chapter 4, and
by Corollary 2.3 in Chapter 4 an n × n matrix with n distinct eigenvalues
is diagonalizable).

As I just mentioned, we can perturb the diagonal entries of A as little

as we want, so Frobenius norm ‖A− Ã‖2 is as small as we want. Therefore
one can find a sequence of diagonalizable matrices Ak such that Ak → A as
k →∞ for example such that ‖Ak − A‖2 → 0 as k →∞). It can be shown
that the characteristic polynomials pk(λ) = det(Ak − λI) converge to the
characteristic polynomial p(λ) = det(A− λI) of A. Therefore

p(A) = lim
k→∞

pk(Ak).

But as we just discussed above the Cayley–Hamilton Theorem is trivial for
diagonalizable matrices, so pk(Ak) = 0. Therefore p(A) = limk→∞ 0 =
0. �

This proof is intended for a reader who is comfortable with such ideas
from analysis as continuity and convergence1. Such a reader should be able
to fill in all the details, and for him/her this proof should look extremely
easy and natural.

However, for others, who are not comfortable yet with these ideas, the
proof definitely may look strange. It may even look like some kind of cheat-
ing, although, let me repeat that it is an absolutely correct and rigorous
proof (modulo some standard facts in analysis). So, let us present another,

1Here I mean analysis, i.e. a rigorous treatment of continuity, convergence, etc, and not
calculus, which, as it is taught now, is simply a collection of recipes.
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proof of the theorem which is one of the “standard” proofs from linear al-
gebra textbooks.

A “standard” proof. We know, see Theorem 6.1.1 from Chapter 6, that
any square matrix is unitary equivalent to an upper triangular one. Since for
any polynomial p we have p(UAU−1) = Up(A)U−1, and the characteristic
polynomials of unitarily equivalent matrices coincide, it is sufficient to prove
the theorem only for upper triangular matrices.

So, let A be an upper triangular matrix. We know that diagonal entries
of a triangular matrix coincide with it eigenvalues, so let λ1, λ2, . . . , λn be
eigenvalues of A ordered as they appear on the diagonal, so

A =


λ1 ∗

λ2

. . .

0 λn

 .

The characteristic polynomial p(z) = det(A − zI) of A can be represented
as p(z) = (λ1 − z)(λ2 − z) . . . (λn − z) = (−1)n(z − λ1)(z − λ2) . . . (z − λn),
so

p(A) = (−1)n(A− λ1I)(A− λ2I) . . . (A− λnI).

Define subspaces Ek := span{e1, e2, . . . , ek}, where e1, e2, . . . , en is the
standard basis in Cn. Since the matrix of A is upper triangular, the sub-
spaces Ek are so-called invariant subspaces of the operator A, i.e. AEk ⊂ Ek
(meaning that Av ∈ Ek for all v ∈ Ek). Moreover, since for any v ∈ Ek and
any λ

(A− λI)v = Av − λv ∈ Ek,
because both Av and λv are in Ek. Thus (A − λI)Ek ⊂ Ek, i.e. Ek is an
invariant subspace of A− λI.

We can say even more about the the subspace (A − λkI)Ek. Namely,
(A − λkI)ek ∈ span{e1, e2, . . . , ek−1}, because only the first k − 1 entries
of the kth column of the matrix of A− λkI can be non-zero. On the other
hand, for j < k we have (A− λk)ej ∈ Ej ⊂ Ek (because Ej is an invariant
subspace of A− λkI).

Take any vector v ∈ Ek. By the definition of Ek it can be repre-
sented as a linear combination of the vectors e1, e2, . . . , ek. Since all vectors
e1, e2, . . . , ek are transformed by A − λkI to some vectors in Ek−1, we can
conclude that

(1.1) (A− λkI)v ∈ Ek−1 ∀v ∈ Ek.
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Take an arbitrary vector x ∈ Cn = En. Applying (1.1) inductively with
k = n, n− 1, . . . 1 we get

x1 := (A− λnI)x ∈ En−1,

x2 := (A− λn−1I)x1 = (A− λn−1I)(A− λnI)x ∈ En−2,

. . .

xn := (A− λ2I)xn−1 = (A− λ2I) . . . (A− λn−1I)(A− λnI)x ∈ E1.

The last inclusion mean that xn = αe1. But (A− λ1I)e1 = 0, so

0 = (A− λ1I)xn = (A− λ1I)(A− λ2I) . . . (A− λnI)x.

Therefore p(A)x = 0 for all x ∈ Cn, which means exactly that p(A) = 0. �

Exercises.

1.1 (Cayley–Hamilton Theorem for diagonalizable matrices). As discussed in the
above section, the Cayley–Hamilton theorem states that if A is a square matrix,
and

p(λ) = det(A− λI) =

n∑
k=0

ckλ
k

is its characteristic polynomial, them p(A) :=
∑n
k=0 ckA

k = 0 (we assuming, that
by definition A0 = I).

Prove this theorem for the special case when A is similar to a diagonal matrix,
A = SDS−1.

Hint: If D = diag{λ1, λ2, . . . , λn} and p is any polynomial, can you compute
p(D)? What about p(A)?
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2. Spectral Mapping Theorem

2.1. Polynomials of operators. Let us also recall that for a square ma-
trix (an operator) A and for a polynomial p(z) =

∑N
k=1 akz

k the operator
p(A) is defined by substituting A instead of the independent variable,

p(A) :=
N∑
k=1

akA
k = a0I + a1A+ a2A

2 + . . .+ aNA
N ;

here we agree that A0 = I.

We know that generally matrix multiplication is not commutative, i.e.
generally AB 6= BA so the order is essential. However

AkAj = AjAk = Ak+j ,

and from here it is easy to show that for arbitrary polynomials p and q

p(A)q(A) = q(A)p(A) = R(A)

where R(z) = p(z)q(z).

That means that when dealing only with polynomials of an operator
A, one does not need to worry about non-commutativity, and act like A is
simply an independent (scalar) variable. In particular, if a polynomial p(z)
can be represented as a product of monomials

p(z) = a(z − z1)(z − z2) . . . (z − zN ),

where z1, z2, . . . , zN are the roots of p, then p(A) can be represented as

p(A) = a(A− z1I)(A− z2I) . . . (A− zNI)

2.2. Spectral Mapping Theorem. Let us recall that the spectrum σ(A)
of a square matrix (an operator) A is the set of all eigenvalues of A (not
counting multiplicities).

Theorem 2.1 (Spectral Mapping Theorem). For a square matrix A and an
arbitrary polynomial p

σ(p(A)) = p(σ(A)).

In other words, µ is an eigenvalue of p(A) if and only if µ = p(λ) for some
eigenvalue λ of A.

Note, that as stated, this theorem does not say anything about multi-
plicities of the eigenvalues.

Remark. Note, that one inclusion is trivial. Namely, if λ is an eigenvalue of
A, Ax = λx for some x 6= 0, then Akx = λkx, and p(A)x = p(λ)x, so p(λ)
is an eigenvalue of p(A). That means that the inclusion p(σ(A)) ⊂ σ(p(A))
is trivial.
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If we consider a particular case µ = 0 of the above theorem, we get the
following corollary.

Corollary 2.2. Let A be a square matrix with eigenvalues λ1, λ2, . . . , λn
and let p be a polynomial. Then p(A) is invertible if and only if

p(λk) 6= 0 ∀k = 1, 2, . . . , n.

Proof of Theorem 2.1. As it was discussed above, the inclusion

p(σ(A)) ⊂ σ(p(A))

is trivial.

To prove the opposite inclusion σ(p(A)) ⊂ p(σ(A)) take a point µ ∈
σ(p(A)). Denote q(z) = p(z) − µ, so q(A) = p(A) − µI. Since µ ∈ σ(p(A))
the operator q(A) = p(A)− µI is not invertible.

Let us represent the polynomial q(z) as a product of monomials,

q(z) = a(z − z1)(z − z2) . . . (z − zN ).

Then, as it was discussed above in Section 2.1, we can represent

q(A) = a(A− z1I)(A− z2I) . . . (A− zNI).

The operator q(A) is not invertible, so one of the terms A − zkI must be
not invertible (because a product of invertible transformations is always
invertible). That means zk ∈ σ(A).

On the other hand zk is a root of q, so

0 = q(zk) = p(zk)− µ
and therefore µ = p(zk). So we have proved the inclusion σ(p(A)) ⊂ p(σ(A)).

�

Exercises.

2.1. An operator A is called nilpotent if Ak = 0 for some k. Prove that if A is
nilpotent, then σ(A) = {0} (i.e. that 0 is the only eigenvalue of A).

Can you do it without using the spectral mapping theorem?
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3. Generalized eigenspaces. Geometric meaning of algebraic
multiplicity

3.1. Invariant subspaces.

Definition. Let A : V → V be an operator (linear transformation) in a
vector space V . A subspace E of the vector space V is called an invariant
subspace of the operator A (or, shortly, A-invariant) if AE ⊂ E, i.e. if
Av ∈ E for all v ∈ E.

If E is A-invariant, then

A2E = A(AE) ⊂ AE ⊂ E,

i.e. E is A2-invariant.

Similarly one can show (using induction, for example), that if AE ⊂ E
then

AkE ⊂ E ∀k ≥ 1.

This implies that P (A)E ⊂ E for any polynomial p, i.e. that:

any A-invariant subspace E is an invariant subspace of p(A).

If E is an A-invariant subspace, then for all v ∈ E the result Av also
belongs to E. Therefore we can treat A as an operator acting on E, not on
the whole space V .

Formally, for an A-invariant subspace E we define the so-called restric-
tion A|E : E → E of A onto E by

(A|E)v = Av ∀v ∈ E.

Here we changed domain and target space of the operator, but the rule
assigning value to the argument remains the same.

We will need the following simple lemma

Lemma 3.1. Let p be a polynomial, and let E be an A-invariant subspace.
Then

p(A|E) = p(A)|E .

Proof. The proof is trivial �

If E1, E2, . . . , Er a basis of A-invariant subspaces, and Ak := A|Ek are
the corresponding restrictions, then, since AEk = AkEk ⊂ Ek, the operators
Ak act independently of each other (do not interact), and to analyze action
of A we can analyze operators Ak separately.
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In particular, if we pick a basis in each subspace Ek and join them to
get a basis in V (see Theorem 2.6 from Chapter 4) then the operator A will
have in this basis the following block-diagonal form

A =


A1

A2
0

. . .

0 Ar


(of course, here we have the correct ordering of the basis in V , first we take
a basis in E1,then in E2 and so on).

Our goal now is to pick a basis of invariant subspaces E1, E2, . . . , Er
such that the restrictions Ak have a simple structure. In this case we will
get a basis in which the matrix of A has a simple structure.

The eigenspaces Ker(A − λkI) would be good candidates, because the
restriction of A to the eigenspace Ker(A−λkI) is simply λkI. Unfortunately,
as we know eigenspaces do not always form a basis (they form a basis if and
only if A can be diagonalized, cf Theorem 2.1 in Chapter 4.

However, the so-called generalized eigenspaces will work.

3.2. Generalized eigenspaces.

Definition 3.2. A vector v is called a generalized eigenvector (correspond-
ing to an eigenvalue λ) if (A− λI)kv = 0 for some k ≥ 1.

The collection Eλ of all generalized eigenvectors, together with 0 is called
the generalized eigenspace (corresponding to the eigenvalue λ.

In other words one can represent the generalized eigenspace Eλ as

(3.1) Eλ =
⋃
k≥1

Ker(A− λI)k.

The sequence Ker(A − λI)k, k = 1, 2, 3, . . . is an increasing sequence of
subspaces, i.e.

Ker(A− λI)k ⊂ Ker(A− λI)k+1 ∀k ≥ 1.

The representation (3.1) does not look very simple, for it involves an in-
finite union. However, the sequence of the subspaces Ker(A−λI)k stabilizes,
i.e.

Ker(A− λI)k = Ker(A− λI)k+1 ∀k ≥ kλ,
so, in fact one can take the finite union.

To show that the sequence of kernels stabilizes, let us notice that if for
finite-dimensional subspaces E and F we have E $ F (symbol E $ F means
that E ⊂ F but E 6= F ), then dimE < dimF .
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Since dim Ker(A− λI)k ≤ dimV < ∞, it cannot grow to infinity, so at
some point

Ker(A− λI)k = Ker(A− λI)k+1.

The rest follows from the lemma below.

Lemma 3.3. Let for some k

Ker(A− λI)k = Ker(A− λI)k+1.

Then

Ker(A− λI)k+r = Ker(A− λI)k+r+1 ∀r ≥ 0.

Proof. Let v ∈ Ker(A− λI)k+r+1, i.e. (A− λI)k+r+1v = 0. Then

w := (A− λI)r ∈ Ker(A− λI)k+1.

But we know that Ker(A − λI)k = Ker(A − λI)k+1 so w ∈ Ker(A − λI)k,
which means (A− λI)kw = 0. Recalling the definition of w we get that

(A− λI)k+rv = (A− λI)kw = 0

so v ∈ Ker(A−λI)k+r. We proved that Ker(A−λI)k+r+1 ⊂ Ker(A−λI)k+r.
The opposite inclusion is trivial. �

Definition. The number d = d(λ) on which the sequence Ker(A − λI)k

stabilizes, i.e. the number d such that

Ker(A− λI)d−1 $ Ker(A− λI)d = Ker(A− λI)d+1

is called the depth of the eigenvalue λ.

It follows from the definition of the depth, that for the generalized
eigenspace Eλ

(3.2) (A− λI)d(λ)v = 0 ∀v ∈ Eλ.

Now let us summarize, what we know about generalized eigenspaces.

a) Eλ is an invariant subspace of A, AEλ ⊂ Eλ.

b) If d(λ) is the depth of the eigenvalue λ, then

((A− λI)|Eλ)d(λ) = (A|Eλ − λIEλ)d(λ) = 0.

(this is just another way of writing (3.2))

c) σ(A|Eλ) = {λ}, because the operator A|Eλ − λIEλ , is nilpotent, see
2, and the spectrum of nilpotent operator consists of one point 0,
see Problem 2.1

Now we are ready to state the main result of this section. Let A : V → V .
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Theorem 3.4. Let σ(A) consists of r points λ1, λ2, . . . , λr, and let Ek :=
Eλk be the corresponding generalized eigenspaces. Then the system of sub-
space E1, E2, . . . , Er is a basis of subspaces in V .

Remark 3.5. If we join the bases in all generalized eigenspaces Ek, then
by Theorem 2.6 from Chapter 4 we will get a basis in the whole space.
In this basis the matrix of the operator A has the block diagonal form
A = diag{A1, A2, . . . , Ar}, where Ak := A|Ek , Ek = Eλk . It is also easy to

see, see (3.2) that the operators Nk := Ak − λkIEk are nilpotent, Ndk
k = 0.

Proof of Theorem 3.4. Let mk be the multiplicity of the eigenvalue λk,
so p(z) =

∏r
k=1(z − λk)mk is the characteristic polynomial of A. Define

pk(z) = p(z)/(z − λk)mk =
∏
j 6=k

(z − λj)mj .

Lemma 3.6.

(3.3) (A− λkI)mk |Ek = 0,

Proof. There are 2 possible simple proofs. The first one is to notice that
mk ≥ dk, where dk is the depth of the eigenvalue λk and use the fact that

(A− λkI)dk |Ek = (Ak − λkIEk)mk = 0,

where Ak := A|Ek (property 2 of the generalized eigenspaces).

The second possibility is to notice that according to the Spectral Map-
ping Theorem, see Corollary 2.2, the operator Pk(A)|Ek = pk(Ak) is invert-
ible. By the Cayley–Hamilton Theorem (Theorem 1.1)

0 = p(A) = (A− λkI)mkpk(A),

and restriction all operators to Ek we get

0 = p(Ak) = (Ak − λkIEk)mkpk(Ak),

so
(Ak − λkIEk)mk = p(Ak)pk(Ak)

−1 = 0 pk(Ak)
−1 = 0.

�

To prove the theorem define

q(z) =

r∑
k=1

pk(z).

Since pk(λj) = 0 for j 6= k and pk(λk) 6= 0, we can conclude that q(λk) 6= 0
for all k. Therefore, by the Spectral Mapping Theorem, see Corollary 2.2,
the operator

B = q(A)

is invertible.
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Note that BEk ⊂ Ek (any A-invariant subspace is also p(A)-invariant).
Since B is an invertible operator, dim(BEk) = dimEk, which together with
BEk ⊂ Ek implies BEk = Ek. Multiplying the last identity by B−1 we get
that B−1Ek = Ek, i.e. that Ek is an invariant subspace of B−1.

Note also, that it follows from (3.3) that

pk(A)|Ej = 0 ∀j 6= k,

because pk(A)|Ej = pk(Aj) and pk(Aj) contains the factor (Aj−λjIEj )mj =
0.

Define the operators Pk by

Pk = B−1pk(A).

Lemma 3.7. For the operators Pk defined above

a) P1 + P2 + . . .+ Pr = I;

b) Pk|Ej = 0 for j 6= k;

c) RanPk ⊂ Ek;

d) moreover, Pkv = v ∀v ∈ Ek, so, in fact RanPk = Ek.

Proof. Property 1 is trivial:

r∑
k=1

Pk = B−1
r∑

k=1

Pkpk(A) = B−1B = I.

Property 2 follows from (3.3). Indeed, pk(A) contains the factor (A−λj)mj ,
restriction of which to Ej is zero. Therefore pk(A)|Ej = 0 and thus Pk|Ej =

B−1pk(A)|Ej = 0.

To prove property 3, recall that according to Cayley–Hamilton Theorem
p(A) = 0. Since p(z) = (z − λk)mkpk(z), we have for w = pk(A)v

(A− λkI)mkw = (A− λkI)mkpk(A)v = p(A)v = 0.

That means, any vector w in Ran pk(A) is annihilated by some power of
(A− λkI), which by definition means that Ran pk(A) ⊂ Ek.

To prove the last property, let us notice that it follows from (3.3) that
for v ∈ Ek

pk(A)v =

r∑
j=1

pj(A)v = Bv,

which implies Pkv = B−1Bv = v. �

Now we are ready to complete the proof of the theorem. Take v ∈ V and
define vk = Pkv. Then according to Statement c) of Lemma 3.7, vk ∈ Ek,
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and by Statement a),

v =
r∑

k=1

vk,

so v admits a representation as a linear combination.

To show that this representation is unique, we can just note, that if v is
represented as v =

∑r
k=1 vk, vk ∈ Ek, then it follows from the Statements

b) and d) of Lemma 3.7 that

Pkv = Pk(v1 + v2 + . . .+ vr) = Pkvk = vk.

�

3.3. Geometric meaning of algebraic multiplicity.

Proposition 3.8. Algebraic multiplicity of an eigenvalue equals the dimen-
sion of the corresponding generalized eigenspace.

Proof. According to Remark 3.5, if we joint bases in generalized eigenspaces
Ek = Eλk to get a basis in the whole space, the matrix of A in any such
basis has a block-diagonal form diag{A1, A2, . . . , Ar}, where Ak := A|Ek .
Operators Nk = Ak − λkIEk are nilpotent, so σ(Nk) = {0}. Therefore,
the spectrum of the operator Ak (recall that Ak = Nk − λkI) consists of
one eigenvalue λk of (algebraic) multiplicity nk = dimEk. The multiplicity
equals nk because an operator in a finite-dimensional space V has exactly
dimV eigenvalues counting multiplicities, and Ak has only one eigenvalue.

Note that we are free to pick bases in Ek, so let us pick them in such a
way that the corresponding blocks Ak are upper triangular. Then

det(A− λI) =
r∏

k=1

det(Ak − λIEk) =
r∏

k=1

(λk − λ)nk .

But this means that the algebraic multiplicity of the eigenvalue λk is nk =
dimEλk . �

3.4. An important application. The following corollary is very impor-
tant for differential equations.

Corollary 3.9. Any operator A in V can be represented as A = D + N ,
where D is diagonalizable (i.e. diagonal in some basis) and N is nilpotent
(Nm = 0 for some m), and DN = ND.

Proof. As we discussed above, see Remark 3.5, if we join the bases in Ek
to get a basis in V , then in this basis A has the block diagonal form A =
diag{A1, A2, . . . , Ar}, where Ak := A|Ek , Ek = Eλk . The operators Nk :=
Ak−λkIEk are nilpotent, and the operatorD = diag{λ1IE1 , λ2IE2 . . . , λrIEr}
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is diagonal (in this basis). Notice also that λkIEkNk = NkλkIEk (iden-
tity operator commutes with any operator), so the block diagonal operator
N = diag{N1, N2, . . . , Nr} commutes with D, DN = ND. Therefore, defin-
ing N as the block diagonal operator N = diag{N1, N2, . . . , Nr} we get the
desired decomposition. �

This corollary allows us to compute functions of operators. Let us recall
that if p is a polynomial of degree d, then p(a + x) can be computed with
the help of Taylor’s formula

p(a+ x) =
d∑

k=0

p(k)(a)

k!
xk

This formula is an algebraic identity, meaning that for each polynomial p
we can check that the formula is true using formal algebraic manipulations
with a and x and not caring about their nature.

Since operators D and N commute, DN = ND, the same rules as for
usual (scalar) variables apply to them, and we can write (by plugging D
instead of a and N instead of x

p(A) = p(D +N) =

d∑
k=0

p(k)(D)

k!
Nk.

Here, to compute the derivative p(k)(D) we first compute the kth derivative
of the polynomial p(x) (using the usual rules from calculus), and then plug
D instead of x.

But since N is nilpotent, Nm = 0 for some m, only first m terms can
be non-zero, so

p(A) = p(D +N) =
m−1∑
k=0

f (k)(D)

k!
Nk.

In m is much smaller than d, this formula makes computation of p(A) much
easier.

The same approach works if p is not a polynomial, but an infinite power
series. For general power series we have to be careful about convergence
of all the series involved, so we cannot say that the formula is true for an
arbitrary power series p(x). However, if the radius of convergence of the
power series is ∞, then everything works fine. In particular, if p(x) = ex,
then, using the fact that (ex)′ = ex we get.

eA =
m−1∑
k=0

eD

k!
Nk = eD

m−1∑
k=0

1

k!
Nk

This formula has important applications in differential equation.
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Note, that the fact that ND = DN is essential here!

4. Structure of nilpotent operators

Recall, that an operator A in a vector space V is called nilpotent if Ak = 0
for some exponent k.

In the previous section we have proved, see Remark 3.5, that if we join
the bases in all generalized eigenspaces Ek = Eλk to get a basis in the
whole space, then the operator A has in this basis a block diagonal form
diag{A1, A2, . . . , Ar} and operators Ak ca be represented as Ak = λkI+Nk,
where Nk are nilpotent operators.

In each generalized eigenspace Ek we want to pick up a basis such that
the matrix of Ak in this basis has the simplest possible form. Since matrix
(in any basis) of the identity operator is the identity matrix, we need to find
a basis in which the nilpotent operator Nk has a simple form.

Since we can deal with each Nk separately, we will need to consider the
following problem:

For a nilpotent operator A find a basis such that the matrix
of A in this basis is simple.

Let see, what does it mean for a matrix to have a simple form. It is easy to
see that the matrix

(4.1)


0 1 0

0 1

0
. . .
. . . 1

0 0


is nilpotent.

These matrices (together with 1× 1 zero matrices) will be our “building
blocks”. Namely, we will show that for any nilpotent operator one can find
a basis such that the matrix of the operator in this basis has the block
diagonal form diag{A1, A2, . . . , Ar}, where each Ak is either a block of form
(4.1) or a 1× 1 zero block.

Let us see what we should be looking for. Suppose the matrix of an
operator A has in a basis v1,v2, . . . ,vp the form (4.1). Then

Av1 = 0(4.2)

and

Avk+1 = vk, k = 1, 2, . . . , p− 1.(4.3)
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Thus we have to be looking for the chains of vectors v1,v2, . . . ,vp satisfying
the above relations (4.2), (4.3).

4.1. Cycles of generalized eigenvectors.

Definition. Let A be a nilpotent operator. A chain of non-zero vectors
v1,v2, . . . ,vp satisfying relations (4.2), (4.3) is called a cycle of generalized
eigenvectors of A. The vector v1 is called the initial vector of the cycle, the
vector vp is called the end vector of the cycle, and the number p is called
the length of the cycle.

Remark. A similar definition can be made for an arbitrary operator. Then
all vectors vk must belong to the same generalized eigenspace Eλ, and they
must satisfy the identities

(A− λI)v1 = 0, (A− λI)vk+1 = vk, k = 1, 2, . . . , p− 1,

Theorem 4.1. Let A be a nilpotent operator, and let C1, C2, . . . , Cr be cycles
of its generalized eigenvectors, Ck = vk1 ,v

k
2 , . . . ,v

k
pk

, pk being the length of

the cycle Ck. Assume that the initial vectors v1
1,v

2
1, . . . ,v

r
1 are linearly in-

dependent. Then no vector belongs to two cycles, and the union of all the
vectors from all the cycles is a linearly independent.

Proof. Let n = p1 + p2 + . . .+ pr be the total number of vectors in all the
cycles2. We will use induction in n. If n = 1 the theorem is trivial.

Let us now assume, that the theorem is true for all operators and for all
collection of cycles, as long as the total number of vectors in all the cycles
is strictly less than n.

Without loss of generality we can assume that the vectors vkj span the
whole space V , because, otherwise we can consider instead of the operator
A its restriction onto the invariant subspace span{vkj : k = 1, 2, . . . , r, 1 ≤
j ≤ pk}.

Consider the subspace RanA. It follows from the relations (4.2), (4.3)
that vectors vkj : k = 1, 2, . . . , r, 1 ≤ j ≤ pk − 1 span RanA. Note that if

pk > 1 then the system vk1 ,v
k
2 , . . . ,v

k
pk−1 is a cycle, and that A annihilates

any cycle of length 1.

Therefore, we have finitely many cycles, and initial vectors of these cycles
are linearly independent, so the induction hypothesis applies, and the vectors
vkj : k = 1, 2, . . . , r, 1 ≤ j ≤ pk − 1 are linearly independent. Since these
vectors also span RanA, we have a basis there. Therefore,

rankA = dim RanA = n− r
2Here we just count vectors in each cycle, and add all the numbers. We do not care if some

cycles have a common vector, we count this vector in each cycle it belongs to (of course, according
to the theorem, it is impossible, but initially we cannot assume that)
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(we had n vectors, and we removed one vector vkpk from each cycle Ck,
k = 1, 2, . . . , r, so we have n− r vectors in the basis vkj : k = 1, 2, . . . , r, 1 ≤
j ≤ pk − 1 ). On the other hand Avk1 = 0 for k = 1, 2, . . . , r, and since these
vectors are linearly independent dim KerA ≥ r. By the Rank Theorem
(Theorem 7.1 from Chapter 2)

dimV = rankA+ dim KerA = (n− r) + dim KerA ≥ (n− r) + r = n

so dimV ≥ n.

On the other hand V is spanned by n vectors, therefore the vectors vkj :
k = 1, 2, . . . , r, 1 ≤ j ≤ pk, form a basis, so they are linearly independent �

4.2. Jordan canonical form of a nilpotent operator.

Theorem 4.2. Let A : V → V be a nilpotent operator. Then V has a basis
consisting of union of cycles of generalized eigenvectors of the operator A.

Proof. We will use induction in n where n = dimV . For n = 1 the theorem
is trivial.

Assume that the theorem is true for any operator acting in a space of
dimension strictly less than n.

Consider the subspace X = RanA. X is an invariant subspace of the
operator A, so we can consider the restriction A|X .

Since A is not invertible, dim RanA < dimV , so by the induction hy-
pothesis there exist cycles C1, C2, . . . , Cr of generalized eigenvectors such that
their union is a basis in X. Let Ck = vk1 ,v

k
2 , . . . ,v

k
pk

, where vk1 is the initial
vector of the cycle.

Since the end vector vkpk belong to RanA, one can find a vector vkpk+1

such that Avpk+1 = vkpk . So we can extend each cycle Ck to a bigger cycle

C̃k = vk1 ,v
k
2 , . . . ,v

k
pk
,vkpk+1. Since the initial vectors vk1 of cycles C̃k, k =

1, 2, . . . , r are linearly independent, the above Theorem 4.1 implies that the
union of these cycles is a linearly independent system.

By the definition of the cycle we have vk1 ∈ KerA, and we assumed
that the initial vectors vk1 , k = 1, 2, . . . , r are linearly independent. Let us
complete this system to a basis in KerA, i.e. let find vectors u1,u2, . . . ,uq
such that the system v1

1,v
2
1, . . . ,v

r
1,u1,u2, . . . ,uq is a basis in KerA (it may

happen that the system vk1 , k = 1, 2, . . . , r is already a basis in KerA, in
which case we put q = 0 and add nothing).

The vector uj can be treated as a cycle of length 1, so we have a collec-

tion of cycles C̃1, C̃2, . . . , C̃r,u1,u2, . . . ,uq, whose initial vectors are linearly
independent. So, we can apply Theorem 4.1 to get that the union of all
these cycles is a linearly independent system.
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To show that it is a basis, let us count the dimensions. We know that
the cycles C1, C2, . . . , Cr have dim RanA = rankA vectors total. Each cycle

C̃k was obtained from Ck by adding 1 vector to it, so the total number of

vectors in all the cycles C̃k is rankA+ r.

We know that dim KerA = r + q (because v1
1,v

2
1, . . . ,v

r
1,u1,u2, . . . ,uq

is a basis there). We added to the cycles C̃1, C̃2, . . . , C̃r additional q vectors,
so we got

rankA+ r + q = rankA+ dim KerA = dimV

linearly independent vectors. But dimV linearly independent vectors is a
basis. �

Definition. A basis consisting of a union of cycles of generalized eigen-
vectors of a nilpotent operator A (existence of which is guaranteed by the
Theorem 4.2) is called a Jordan canonical basis for A.

Note, that such basis is not unique.

Corollary 4.3. Let A be a nilpotent operator. There exists a basis (a Jordan
canonical basis) such that the matrix of A in this basis is a block diagonal
diag{A1, A2, . . . , Ar}, where all Ak (except may be one) are blocks of form
(4.1), and one of the blocks Ak can be zero.

The matrix of A in a Jordan canonical basis is called the Jordan canoni-
cal form of the operator A. We will see later that the Jordan canonical form
is unique, if we agree on how to order the blocks (i.e. on how to order the
vectors in the basis).

Proof of Corollary 4.3. According to Theorem 4.2 one can find a basis
consisting of a union of cycles of generalized eigenvectors. A cycle of size
p gives rise to a p × p diagonal block of form (4.1), and a cycle of length 1
correspond to a 1× 1 zero block. We can join these 1× 1 zero blocks in one
large zero block (because off-diagonal entries are 0). �

4.3. Dot diagrams. Uniqueness of the Jordan canonical form.
There is a good way of visualizing Theorem 4.2 and Corollary 4.3, the so-
called dot diagrams. This methods also allows us to answer many natural
questions, like “is the block diagonal representation given by Corollary 4.3
unique?”

Of course, if we treat this question literally, the answer is “no”, for we
always can change the order of the blocks. But, if we exclude such trivial
possibilities, for example by agreeing on some order of blocks (say, if we put
all non-zero blocks in decreasing order, and then put the zero block), is the
representation unique, or not?
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r r r r r rr r r rr rrr



0 1
0 1

0 1
0 1 0

0
0 1

0 1
0

0 1
0

0 0 1
0

0
0


Figure 1. Dot diagram and corresponding Jordan canonical form of a
nilpotent operator

To better understand the structure of nilpotent operators, described in
the Section 4.1, let us draw the so-called dot diagram. Namely, suppose we
have a basis, which is a union of cycles of generalized eigenvalues. Let us
represent the basis by an array of dots, so that each column represents a
cycle. The first row consists of initial vectors of cycles, and we arrange the
columns (cycles) by their length, putting the longest one to the left.

On the figure 1 we have the dot diagram of a nilpotent operator, as
well as its Jordan canonical form. This dot diagram shows, that the basis
has 1 cycle of length 5, one cycle of length 3, two cycles of length 2, and 2
cycles of length 1. The cycle of length 5 corresponds to the 5 × 5 block of
the matrix, the cycle of length 3 correspond to 3 non-zero block, and two
cycles of length 2 correspond to two 2 × 2 blocks. Three cycles of length 1
correspond to two zero entries on the diagonal. Here in each block we only
giving the main diagonal and the diagonal above it; all other entries of the
matrix are zero.

If we agree on the ordering of the blocks, there is a one-to-one corre-
spondence between dot diagrams and Jordan canonical forms (for nilpotent
operators). So, the question about uniqueness of the Jordan canonical form
is equivalent to the question about uniqueness of the dot diagram.

To answer this question, let us analyze, how the operator A transforms
the dot diagram. Since the operator A annihilates initial vectors of the
cycles, and moves vector vk+1 of a cycle to the vector vk, we can see that
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the operator A acts on its dot diagram by deleting the first (top) row of the
diagram.

The new dot diagram corresponds to a Jordan canonical basis in RanA,
and allows us to write down the Jordan canonical form for the restriction
A|RanA.

Similarly, it is not hard to see that the operator Ak removes the first
k rows of the dot diagram. Therefore, if for all k we know the dimensions
dim Ker(Ak), we know the dot diagram of the operator A. Namely, the
number of dots in the first row is dim KerA, the number of dots in the
second row is

dim Ker(A2)− dim KerA,

and the number of dots in the kth row is

dim Ker(Ak)− dim Ker(Ak+1).

But this means that the dot diagram, which was initially defined using
a Jordan canonical basis, does not depend on a particular choice of such a
basis. Therefore, the dot diagram, is unique! This implies that if we agree
on the order of the blocks, then the Jordan canonical form is unique.

4.4. Computing a Jordan canonical basis. Let us say few words about
computing a Jordan canonical basis for a nilpotent operator. Let p1 be the
largest integer such that Ap1 6= 0 (so Ap1+1 = 0). One can see from the
above analysis of dot diagrams, that p1 is the length of the longest cycle.

Computing operators Ak, k = 1, 2, . . . , p1, and counting dim Ker(Ak) we
can construct the dot diagram of A. Now we want to put vectors instead of
dots and find a basis which is a union of cycles.

We start by finding the longest cycles (because we know the dot diagram,
we know how many cycles should be there, and what is the length of each
cycle). Consider a basis in the column space Ran(Ap1). Name the vectors
in this basis v1

1,v
2
1, . . . ,v

r1
1 , these will be the initial vectors of the cycles.

Then we find the end vectors of the cycles v1
p1 ,v

2
p1 , . . . ,v

r1
p1 by solving the

equations

Ap1vkp1 = vk1 , k = 1, 2, . . . , r1.

Applying consecutively the operator A to the end vector vkp1 , we get all the

vectors vkj in the cycle. Thus, we have constructed all cycles of maximal
length.

Let p2 be the length of a maximal cycle among those that are left to
find. Consider the subspace Ran(Ap2), and let dim Ran(Ap2) = r2. Since
Ran(Ap1) ⊂ Ran(Ap2), we can complete the basis v1

1,v
2
1, . . . ,v

r1
1 to a basis
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v1
1,v

2
1, . . . ,v

r1
1 ,v

r1+1
1 , . . . ,vr21 in Ran(Ar2). Then we find end vectors of the

cycles Cr1+1, . . . , Cr2 by solving (for vkp2) the equations

Ap1vkp2 = vk1 , k = r1 + 1, r1 + 2, . . . , r2,

thus constructing th cycles of length p2.

Let p3 denote the length of a maximal cycle among ones left. Then,
completing the basis v1

1,v
2
1, . . . ,v

r2
1 in Ker(Ap2) to a basis in Ker(Ap3 we

construct the cycles of length p3, and so on. . .

One final remark: as we discussed above, if we know the dot diagram, we
know the canonical form, so after we have found a Jordan canonical basis,
we do not need to compute the matrix of A in this basis: we already know
it!

5. Jordan decomposition theorem

Theorem 5.1. Given an operator A there exist a basis (Jordan canonical
basis) such that the matrix of A in this basis has a block diagonal form with
blocks of form

(5.1)


λ 1 0

λ 1

λ
. . .
. . . 1

0 λ


where λ is an eigenvalue of A. Here we assume that the block of size 1 is
just λ.

The block diagonal form from Theorem 5.1 is called the Jordan canonical
form of the operator A. The corresponding basis is called a Jordan canonical
basis for an operator A.

Proof of Theorem 5.1. According to Theorem 3.4 and Remark 3.5, if
we join bases in the generalized eigenspaces Ek = Eλk to get a basis in
the whole space, the matrix of A in this basis has a block diagonal form
diag{A1, A2, . . . , Ar}, where Ak = A|Ek . The operators Nk = Ak − λkIEk
are nilpotent, so by Theorem 4.2 (more precisely, by Corollary 4.3) one can
find a basis in Ek such that the matrix of Nk in this basis is the Jordan
canonical form of Nk. To get the matrix of Ak in this basis one just puts λk
instead of 0 on the main diagonal. �
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5.1. Remarks about computing Jordan canonical basis. First of all
let us recall that the computing of eigenvalues is the hardest part, but here
we do not discuss this part, and assume that eigenvalues are already com-
puted.

For each eigenvalue λ we compute subspaces Ker(A− λI)k, k = 1, 2, . . .
until the sequence of the subspaces stabilizes. In fact, since we have an
increasing sequence of subspaces (Ker(A− λI)k ⊂ Ker(A− λI)k+1), then it
is sufficient only to keep track of their dimension (or ranks of the operators
(A − λI)k). For an eigenvalue λ let m = mλ be the number where the
sequence Ker(A− λI)k stabilizes, i.e. m satisfies

dim Ker(A− λI)m−1 < dim Ker(A− λI)m = dim Ker(A− λI)m+1.

Then Eλ = Ker(A−λI)m is the generalized eigenspace corresponding to the
eigenvalue λ.

After we computed all the generalized eigenspaces there are two possible
ways of action. The first way is to find a basis in each generalized eigenspace,
so the matrix of the operator A in this basis has the block-diagonal form
diag{A1, A2, . . . , Ar}, where Ak = A|Eλk . Then we can deal with each ma-

trix Ak separately. The operators Nk = Ak −λkI are nilpotent, so applying
the algorithm described in Section 4.4 we get the Jordan canonical repre-
sentation for Nk, and putting λk instead of 0 on the main diagonal, we get
the Jordan canonical representation for the block Ak. The advantage of this
approach is that we are working with smaller blocks. But we need to find
the matrix of the operator in a new basis, which involves inverting a matrix
and matrix multiplication.

Another way is to find a Jordan canonical basis in each of the generalized
eigenspaces Eλk by working directly with the operator A, without splitting
it first into the blocks. Again, the algorithm we outlined above in Section
4.4 works with a slight modification. Namely, when computing a Jordan
canonical basis for a generalized eigenspace Eλk , instead of considering sub-
spaces Ran(Ak−λkI)j , which we would need to consider when working with
the block Ak separately, we consider the subspaces (A− λkI)jEλk .
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