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CHAPTER 1

Preliminaries

We assume knowledge of:

Proof by induction and by contradiction

Complex numbers

Basic set-theoretic definitions and notation

Definitions of maps between sets, and especially injective, surjective and bijective
maps

e Finite sets and cardinality of finite sets (in particular with respect to maps
between finite sets).

We denote by N = {1,2,...} the set of all natural numbers. (In particuler, 0 ¢ N).



CHAPTER 2

Vector spaces and linear maps

Before the statement of the formal definition of a field, a field K is either Q, R, or C.

2.1. Matrices and vectors

Consider a system of linear equations

ai1xy + -+ a1y, = b1

A1 + -+ ATy = bm

with n unknowns (zy,...,z,) in K and coefficients a;; in K, b; in K. It is represented
concisely by the equation

fa(z) =
where A = (a;j)1<i<m is the matriz

1<j<sn
aip - Qip
A=
Am1  °  Qmp

with m rows and n columns, b is the column vector

by
b= : .
bm,
x is the column vector with coefficients x1, ..., x,, and f4 is the map f, : K" - K™
defined by
1 111 + -+ Ay
fA( : ) =
T Am1T1 + -+ QmnTnp

We use the notation M,,,(K) for the set of all matrices with m rows and n columns
and coefficients in K, and K" or M, ;(K) for the set of all columns vectors with n rows
and coefficients in K. We will also use the notation K,, for the space of row vectors with
n columns.

We want to study the equation fa(z) = b by composing with other maps: if fa(x) = b,
then g(fa(x)) = g(b) for any map g defined on K™. If g is bijective, then conversely if
g(fa(x)) = g(b), we obtain f4(x) = b by applying the inverse map ¢! to both sides. We
do this with ¢ also defined using a matrix. This leads to matrix products.
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2.2. Matrix products

THEOREM 2.2.1. Let m, n, p be natural numbers. Let A € M,,,,(K) be a matriz with
m rows and n columns, and let B € M, ,,(K) be a matriz with p rows and m columns.
Write
A = (a45)1<i<m, B = (bi;) 1<k<p-
1<j<n 1<is<m
Consider the map f obtained by composition
K" 4 K I8 ke
that is, f = fgo fa. Then we have f = fo where C' € M, ,(K) is the matriz C =

(ckj)1<h<p with
1<j<n

Crj = br1anj + brazj + -+ + b
m
= Z bkiaij-
i=1

PROOF. Let z = (7;)1<j<n € K". We compute f(x) and check that this is the same
as fo(z). First we get by definition

fa(z) =y,

where y = (¥;)1<i<m i the row vector such that

n

Yi = anTy + 0+ Qinky = Z A5 Tj.
j=1

Then we get f(z) = fp(y), which is the row vector (2x)1<k<p With
2 = by + o+ Dl = D brai.
i=1

Inserting the value of y; in this expression, this is

m n n
2 = Z b}m Z QX5 = Z Ckj T
i=1  j=1 j=1
where
m
Crj = brrar; + -+ + bgm@m; = Z britij.
i=1

g

EXERCISE 2.2.2. Take A = (Z Z) and B = (ﬁ 3;) and check the computation

completely.

DEFINITION 2.2.3 (Matrix product). For A and B as above, the matrix C' is called
the matrix product of B and A, and is denoted C' = BA.

ExaMPLE 2.24. (1) For A € M,,,(K) and z € K", if we view z as a column vector
with n rows, we can compute the product Az corresponding to the composition

K 5 K L K7,
3



Using the formula defining f, and f4 and the matrix product, we see that

a1, + -+ a1y
Az = = fa().

Ap1T1 + - + ATy

This means that f, can also be interpreted as the map that maps a vector x to the matrix
product Ax.

(2) Consider B € My, (K), A € M,,(K). Let C = BA, and write A = (a;;),
B = (by;), C = (cyi). Consider an integer j, 1 < j < n and let A; be the j-th column of
A:

CLlj

A =

J
Qg
We can then compute the matrix product BA;, which is an element of Mj ;(K) = K*:

bnalj + blgagj + -+ blnanj
BA; = :

J :

bplalj + bpg(lgj + -+ bpnanj

Comparing with the definition of C, we see that

C1j

BA; = | :
Cpj

is the j-th column of C'. So the columns of the matrix product are obtained by products

of matrices with column vectors.

PROPOSITION 2.2.5 (Properties of the matrix product). (1) Given positive integers
m, n and matrices A and B in M, ,(K), we have fa = fp if and only if A = B. In
particular, if a map f : K* — K™ is of the form f = fa for some matriz A € M,, ,(K),
then this matrix is unique.

(2) Given positive integers m, n, p and q, and matrices

A= (aij>1<i§m, B = (bki)1<k<p, C= (Clk)1<l<q7
Isjsn 1<i<m 1<k<p
defining maps
K" 14, gm 1B, K L, K,
we have the equality of matriz products

C(BA) = (CB)A.

In particular, for any n > 1, the product of matrices is an operation on M, ,(K) (the
product of matrices A and B which have both n rows and n columns is a matrix of the
same size), and it is associative: A(BC') = (AB)C for all matrices A, B, C in M, ,,(K).

PROOF. (1) For 1 < i < n, consider the particular vector e; with all coefficients 0,
except that the i-th coefficient is 1:

1 0 0
0 1 :
€1 = R €2 = 01> ; €n = O
0 : 1



Computing the matrix product fa(e;) = Ae;, we find that

(2.1) fale) = ],

A

which is the i-th column of the matrix A. Therefore, if f4 = fg, the i-column of A and
B are the same (since fa(e;) = fp(e;)), which means that A and B are the same (since
this is true for all columns).

(3) Since composition of maps is associative, we get

(fcofs)ofa= fco(fpo fa),

or fepo fa = fco fpa, or even fiecpa = fopa), which by (1) means that (CB)A
C(BA).

Ol

EXERCISE 2.2.6. Check directly using the formula for the matrix product that C(BA) =
(CB)A.

Now we define two additional operations on matrices and vector: (1) addition; (2)
multiplication by an element t € K.

DEFINITION 2.2.7 (Operations and special matrices). (1) For m, n natural numbers

and A = (a;;)1<i<m, B = (bij)1<i<m matrices in M, ,,(K), the sum A + B is the matrix
1sjsn 1<g<sn

A + B = (CLU I bij)lgigm € Mm,n(K)

1<j<n

(2) For t € K, for m, n natural numbers and A = (a;;)1<icm & matrix in M,, ,(K),
1<j<n

the product tA is the matrix
tA = (taij)lgi‘gm € Mm’n(K)

1<j<n

(3) For m, n natural numbers, the zero matrix 0,,, is the matrix in M, ,,(K) with
all coefficients 0.

(4) For n a natural number, the unit matrix 1, € M, ,(K) is the matrix with
coefficients a;; = 0if ¢  j and a;; = 1 for 1 <@ < n.

EXAMPLE 2.2.8. For instance:

1
10
0

One computes that for any n > 1, we have

O = O
_ o O

fi.(z) =2

for all x € K™. This means that f;, is the identity map Idgn.
5



PROPOSITION 2.2.9. For m, n natural numbers, the following rules apply:
Omn+A=A4+0,,=A4, (Ae M,.(K))
1,, A=A, Al, = A, (AeM,,.(K))
OpmA = 0p p, A0pp = 0y, (A€ My a(K)
A+ A=A+ A1, (Ai+A)+A35=A1+ (A2 + A43), (4 € M,,(K))
0-A=0m, (AeM,,(K))
(tita)A = t1(t2A4), (Ae M, ,(K), te K)
Ai(tAs) = t(A1As) = (tA1) A2, (A1 € My n(K), As e M, ,(K), teK)
t(A1L + Ag) = tAL + tAy,  (Ai € Mpmn(K), te K)
(t1 +ta) A=t A+t A, (Ae M, ,.(K), t; € K)
(B1 + By)A = BiA+ ByA, (Bie Mpn(K), AeM,,(K)),
B(A; + Ay) = BA; + BA;, (Be M,,(K), AieM,,K)).

ProoF. We check only the last property, which is the most complicated in notation.
We write B = (bg;)1<k<p and

1<i<m

Ar = (aij)i<ism, Az = (aj)1<i<m.
1<j<n 1<j<n

The matrix A; + Ay has coefficients ¢;; = a;; + a;j;. The matrix B(A; + Ay) has (k, j)-
coefficient equal to
bklclj + -+ bkmcm]’ = bkl(alj + Clllj) + -+ bkm(am]’ + ainj)
= (bklalj + -+ bkmamj) + (bklallj + -+ bkma’mj)

which is the same as the sum of the (k, j)-coefficient of BA; and that of BAy. This means
that B(Al + A2> = BAl + BAQ O

For n a natural number, k& > 0 integer and A € M, ,(K), we write A° = 1,, and
AP = A- A A (with k factors) for k > 1. We then have A*™ = A*Al for all k, [ > 0.

We also write —A = (—1) - A and A; — Ay = A; + (—A3), so that for instance
A—A=(1-1)A=0-A=0,,.

ExaMpPLE 2.2.10. Warning! The rules of multiplication of numbers are not always
true for matrices!

(1) It can be that a non-zero matrix A € M,, ,(K) does not have an “inverse” B such
that AB = BA = 1. For instance, the matrix

0 1
1= (0 0)
is such that A% = O29. If there was a matrix with BA = 1,, then we would get 022 =

B0ss = BA? = (BA)A = 1,A = A, which is not the case.
(2) It may be that AB + BA.

2.3. Vector spaces and linear maps

Let K be a field.



DEFINITION 2.3.1 (Vector space). A K-vector space, or vector space over K, is
a set V' with a special element 0y (the zero vector in V') and with two operations

{VXV—>V
+v

(v1,v2) — vy +y Vg

(“addition of vectors”) and
KxV -V
v (t,v) — t-y v,

14

multiplication by elements of K”) such that the following rules are valid:

(

(2.2) Oy +v=v+0y=v (veV)

(2.3) Ovo=0y, lyv=v (veV)

(2.4) v +yve =va+y v (v;€V)

(2.5) v +v (vg +y v3) = (v1 +y v2) +v vz (v; € V)
(2.6) (tits) vo=1t1 v (ta-vv) (t;eK, vel)
(2.7) tv(v+vve) =tyvuo+ytyu (teK, v,eV)
(2.8) (t1+t) vo=tivuo+yitavv (eK, veV).

We write —v = (—1) -y v and v; — vy = v1 +y (—v2). In particular we get v — v =
(1+(-1))-vv=0-yv=0using (2.8) and (2.3). For any integer n € Z and v € V, we
write

nv=v+4yv+y - +y v (with n summands), if n >0, nv = (—n)(—v) if n <0.
We then have (n + m)v = nv +y mo for all n and m in Z, and nv = n -y v, where n is
viewed as an element of K.

EXERCISE 2.3.2. Check these last assertions.

LEMMA 2.3.3. In a K-vector space, fort € K and v € V, we have t -y v = 0 if and
only if eithert =0 or v = 0y .

PROOF. If t & 0, we can multiply the formula ¢ -y v = 0 by t7! € K, and we get

til v (t v U) = til : OV = OV
(by (2.3)). On the other hand, by (2.5) followed by the second part of (2.3), this is
(t7) -y v = 1y v = v. This means that if ¢ + 0, the vector v is Oy . O

DEFINITION 2.3.4 (Linear map). Let V' and W be vector spaces over K. A map
f:V-w
is called a linear map (or a K-linear map) if for all ¢; and ¢, € K and all vy, v, € V', we
have
[t v o +yta v o) =t w f(or) +w itz w fo2).
Once we abbreviate the notation to remove the subscripts in the operations, this
becomes simply

f(tivy + tavg) = t1f(v1) + taf(va).
We also get then f(vi—v2) = f(L-v1+(=1)-v2) = 1- f(v1) +(=1)- f(v2) = f(v1) = f(v2).
Furthermore, by induction, we get
[ty + -+ tpv,) = tif(vr) + - + o f(vn)
7



for any n > 1 and elements t; € K, v; € V.
LEMMA 2.3.5. If f : V. — W is linear, then f(Oy) = Oy .

PrOOF. Fix any vector v € V. Then

fOy) = flo—v) = f(1-v+(=1)-v)
=1-f0)+ (=) f(v) = 1+ (=1))f(v) = 0- f(v) = Ow-
U

EXAMPLE 2.3.6. (1) A vector space is never empty since it contains the zero vector.
If V= {z} is a set with one element, defining

Oy =z, a+yb=urx, tva==x

for all a and b € V and t € K, we see that the conditions of the definition holds (because
they all state that two elements of V' should be equal, and V' has only one element, which
means that any equality between elements of V' holds). This vector space is called the
zero space, and usually we will write V' = {0} for this space.

(2) Let m, n > 1 be integers. The set V = M,, ,(K) of matrices with m rows and
n columns is a vector space with the zero matrix 0,,,, as zero vector, and the addition
of matrices and multiplication by elements of K defined in Section 2.2 as operations.
Indeed, Proposition 2.2.9 gives all desired conditions.

In particular (taking n = 1) the space K™ of column vectors with m rows is a vector
space with addition of vectors and multiplication by elements of K. If m =n = 1, we see
that K itself is a K-vector space. The operations on K are then the same as the usual
operations (addition of elements of K and multiplication of elements of K).

Fix a matrix A € M,, ,,(K). The map

fa: Kt — K™
is then linear: indeed, we have seen that fa(x) = Az, and therefore
fa(timy + toxy) = A(tivy + taxg) = tiAxy + toAxy =ty fa(z1) + tafa(zz)

for all t; € K and z; € K.
(3) Let X be an arbitrary set and let V' be a fixed K-vector space (for instance,
V' = K). Define

W=A{f:X—>V}

the set of all possible maps from X to V', with no conditions or restrictions on the values

of f.
Define in W the zero vector Oy as the function f such that f(z) = 0 for all z € X.
Define the sum f; + f5 of two functions f; € W by

(fi + fo)(z) = fi(z) +v fo(x) for all z € X,
and the product tf of a number ¢ € K and a function f € W by
(tf) (@) =t-v f(z)

for all z € X.
ProproOSITION 2.3.7. The set W with Oy, this addition and this multiplication by
elements of K, is a K-vector space.



PrROOF. All the verifications of the conditions in the definition proceed in the same
way, so we only check for instance that associativity fi + (fo + f3) = (f1 + f2) + f3 of
addition.

Let g1 = fi+ (fo+ f3) and go = (fi + f2) + f3. Two maps from X to V are equal if
and only if they take the same value for all x € X. For x € X, the definition of addition
shows that

g(x) = fi(z) +v (f2 + f5)(@) = fiz) +v (fol2) +v fs(2)).
Applying condition (2.5) for the vector space V' and the vectors f;(x), and then the
definitions again, we get
g1(x) = (fi(z) +v fo(x) +v fs(z) = (fr + f2)(2) +v fs(z) = g2(x).
Since this is true for all x € X, this means that g; = go. Since fi, fo, f3 were arbitrary

in W, this then means that (2.5) is true for W. O

For instance, if X = N and V = K, the vector space W becomes the space of
sequences of elements of K: an element of W is a function N — K, and corresponds to

the sequence (f(1),..., f(n),...).
Consider now a subset Y < X, and let Wy = {f : Y — V} be the vector space

of functions from Y to V' (with the operations as above, but applied to functions on Y
instead of X). Consider the maps

T: Wy — W, S W — Wy
defined as follows: (1) for f € Wy, we define T'(f) = g, where g is the function on X such

that
f(zx) ifzxeY
g(x) = ) .
0 otherwise,

(“extension of f by zero to Y”); (2) for f € W, we define S(f) = ¢g by g(y) = f(y) for
all y € Y (“restriction of f to Y”). Then T and S are both linear maps (this is left as
exercise to check).

PROPOSITION 2.3.8. (1) Let V' be a K-vector space. The identity map Idy is linear.
(2) Let Vi, Vo and V3 be K-vector spaces and let
Vi 5 v, -2 v

be linear maps. The composition g o f is then a linear map.
(3) Let f : Vi —> V4, be a bijective linear map. Then the reciprocal bijection f~1 is
linear.

PROOF. (1) is easy and left as exercise.
(2) We just use the definition: for t1, t; € K and x1, 25 € V], we have

(g o f)(tizy + tawa) = g(f(t1z1 + taxa)) = g(t1f(21) + taf (22))
= t1g(f (1)) +tag(f(z2)) = tai(g o f)(z1) + ta2(g o f)(2).
(3) Let t1, to € K and yy, ya € V; be given. Let

r = fﬁl(tlyl + t2y2).
This element x is, by definition, the unique element in Vi such that f(x) = t1y; + tays.
Now define
o' =t f T ) +taf T (ye) € Vi
9



Since f is linear, we have

@) =t f(f () + tof (f ' (2) = tays + tayp

(since f(f~'(y)) =y for all y € V3). Using the uniqueness property of z, this means that
' = x, which states that

S s + taye) =t~ () + taf T (w2).
This shows that f~! is linear. O

DEFINITION 2.3.9 (Isomorphism). A bijective linear map from V; to V5 is called an
isomorphism from V] to V5. If there exists an isomorphism between vector spaces V;
and V5, they are said to be isomorphic.

ExXAMPLE 2.3.10. We consider the special case of linear maps from K" to K™ of the
form f = f4 for some matrix A.

PrRoPOSITION 2.3.11. Consider the linear map f4 : K" — K™ associated to a matrix
Ae M, ,(K). Then f4 is bijective if and only if there exists a matriz B € M, ,,(K) such
that BA = 1,, and AB = 1,,,. If this is the case, the matriz B is unique. We say that A
is invertible and we denote by A~ the matriz B, called the inverse of A.

We will also write A™" = (A™!)" for n > 0.
LEMMA 2.3.12. Any linear map g : K™ — K" is of the form g = fg for some
matriz B € M, ,(K).

PROOF. Define the elements e¢; € K™ for 1 < i < m as in the proof of Proposi-
tion 2.2.5: all coefficients of e; are zero, except that the i-th coefficient is 1. Define the
vectors f; = g(e;) € K", and consider the matrix B obtained by putting together the
vectors (fi,..., fm) in order: if

bli

bm'
then

bll e blm
bnl e bnm

The matrix B has m columns and n rows.

Computing fg(e;) = Be;, we see that fg(e;) = fi = g(e;) for 1 < ¢ < m (this is
similar to the proof of Proposition 2.2.5 (1)). Now note that if x = (2;)1<i<m € K™ is
any vector, then we can write

$:x161+"'+$m€m7
and therefore
g(z) = vigler) + - + Tmg(em)
since ¢ is linear, and this becomes
g(x) =z fpler) + - +xnfalem) = fe(zrer + - + 2pem) = fa(T)

using the linearity of fg. Since x is arbitrary, we conclude that g = fp. O

10



PROOF OF PROPOSITION 2.3.11. (1) First assume that f4 is bijective. Since it is
linear, the inverse map is linear, so that (by the lemma) there exists a matrix B € M, ,,(K)
such that f;' = fg.

We then have

fap=faofs=faofy'=ldgn = f1,.,
which implies by Proposition 2.2.5 that AB = 1,,, and similarly
foa=fpofa=fyofa=1dkn = f1,,

which implies by Proposition 2.2.5 that BA = 1,,.
(2) Conversely, assume that a matrix B with the stated properties exists. Then
Proposition 2.2.5 (2) shows that

feofa= fpa= f1, =ldkg~
and
Jao fp= fap = f1, = ldgn
This implies that f4 is bijective and that the inverse map is fz.
(3) Finally, we check the uniqueness of B: if BPA = BA =1, and AB' = AB = 1,,,

then we get
B = B'l,,= BAB=(B'A)B=1,B = B.

For n = m = 2, a direct computation shows that a matrix

()

is invertible if and only if ad — bc + 0, and in that case that the inverse is
1 d —b
A7l = .
ad — bc (—C a )

2.4. Subspaces

DEFINITION 2.4.1 (Subspace). Let V be a K-vector space. A subset W < V' is called
a vector subspace (or just subspace) of V if 0y € W and if for all s, s3 € K and vy,
ve € W, we have
S$1U1 + SV € Ww.
If this is the case, then W with the zero vector Oy and the restriction to W of the
operations of V', is a K-vector space.

In particular, we get that —v € W for all v € W (take v; = v, s; = —1 and s = 0)
and tv € W for all t € K (take v; = v, s; =t and so = 0).
By induction, if W is a subspace of V', then W contains any sum of the type

tivg + - + Ty,
where t; € K and v; € W. (For instance, if n = 3, then tjv; + tove + tgvg = tju; + 1 -
(tovg + t3vs), and since tovy + tzvg € W, and vy € W, we see that tjv; + tove + tgvg € W).
The last statement concerning W can be checked easily: it is simply because all
identities required of the addition and multiplication already hold in V' (which is a vec-

tor space), and therefore still hold when applied to elements of . For instance, we
check (2.8): if t; and ¢ are in K and v € W, then

(t1+t2)'w’l)=(t1+t2) 'sztl'v’U—thg'Vv:tl 'WU+Wt2'WU7

11



using twice the fact that the addition and multiplication for W are the same as for V.

EXAMPLE 2.4.2. (1) For any vector space V, the subspace {Oy} is a subspace.

(2) Let V7 and V4 be vector spaces. Consider the vector space W of all possible maps
f Vi — V5 (see Example 2.3.6 (3) with V] in place of X and V3 in place of V).
Consider the subset

Homk (Vi, Vo) = {f e W | fis K-linear} < W.

Then Homg (V3, V5) is a subspace of W. To check this, we first note that the zero
map is clearly linear. We must therefore check that if f; and fy are linear maps from V}
to Vs, and if s1, so € K, then the map f = s1f1 + sa2fz (defined using the addition and
multiplication of W) is also a linear map. But for any v € V;, we have

f(0) = s1f1(v) + s2f2(v)

by definition of the operations on W. In particular, for ¢; and ¢5 in K and vy, vy € V7,
we have

f(tivg + tave) = s1.fi(tivr + tava) + safa(tivr + tavs)
= s1(t1fr(v1) + tafi(v2)) + s2(t1fa(v1) + tafo(va))
= t1(s1fi(v1) + safa(v1)) + ta(s1f1(v2) + safa(vs))

since f1 and fo are linear. We recognize that this is ¢1 f(v1) + t2.f (v2) (again by definition
of the operations on W), and this proves that f is linear.

The space Homg (V1, V3) is called the space of linear maps from V; to Va. If Vi = V5,
an element of Homg(V3, V) is called an endomorphism of Vi. One writes then also
Homg (V4, V) = Endk (V4).

(3) We now will determine all subspaces of the R-vector space R?. Let W < R? be
a subspace.

Case 1. If W = {(0,0)}, then it is a subspace.

Case 2. If W contains one non-zero element at least, for instance <a> e W with a

b
and b not both zero, then the definition of vector subspaces shows that, for all t € R, the
element (?Z) belongs to W.

The set W of all elements of this form is a line in the plane through the origin. It is
a subspace in R? (exercise), and is contained in W from what we just saw. If W = Wy,
then W is therefore a line through the origin.

Case 3. If W & Wy, there is some element € W that does not belong to Wj.

c
d
In that case, we claim that W = R2. This means that we have to check that for any

(;j) € R?, there exist two real numbers ¢, and t, with the property that

29 o)+ ()= ()

These conditions mean that fa( <t1>) ) = (i), where A is the matrix

ta

|

N
7N
~ ~+
N =



We will check in a few seconds that ad — bc # 0. Then, as shown at the end of Exam-
ple 2.3.10, the matrix A is invertible with inverse

1 d —c
Al .
ad — be (—b a )

Then (1) = A1 (¥ satisfies A (1) = 441 (*) = (© , which is (2.9).
t2 Yy ta Yy Yy

To show that ad — bec #+ 0, suppose that this is not the case. Then we get

(3) = ()= (o) = (o)

Cc

If b % 0, this means that (d

) = (d/b) (Z) e Wy, which contradicts the assumption that

fz) ¢ Wi
If b = 0, then the condition ad = bc means that a = 0
possible when b = 0, because we also assumed that (Z) + <

(6)-()-:0)-:¢)

This also implies that (2 e Wi, and therefore is also a contradiction. This means that

or d = 0. The first is not
. So we would get d = 0.

we must have ad — bc £ 0.

Further important examples of subspaces are related to linear maps:

DEFINITION 2.4.3 (Kernel and image). Let f : V) — V4 be a linear map.
The kernel of f is the subset Ker(f) = f~*({0y,}) of V; the image of f is the subset

Im(f) = f(V1) of V2.
PROPOSITION 2.4.4. Let f : Vi — V4 be a linear map.
(1) The subset Ker(f) is a subspace of Vi, and the subset Im(f) is a subspace of V5.
(2) The linear map f is injective if and only if Ker(f) = {0y, }.
(3) The linear map f is surjective if and only if Tm(f) = V5.
(4) If w e Im(f), then the set of solutions of the equation f(v) = w is
{v =19+ '}
where vq is any fized element such that f(vy) = w, and v" belongs to the kernel of f.
PROOF. (1) We begin with the kernel. If ¢, 5 are in K and vy, ve in Ker(f), then
f(twl + tgl)g) = t1f<U1) + t2f<v2) =1t -0y +t2-0p =0y

so that tyv1 + tavy € Ker(f).
For the image, again for t; and t; € K and wy, ws € Im(f), there exist v; and vy such
that f(v;) = w;. Then, since f is linear, we get

f(tﬂ)l + tQUQ) = t1w1 + t2w2

which implies that tjw; + tows € Im(f).

(2) If f is injective, then there is at most one element x € V; such that f(z) = Oy,.
Since f(0y,) = Oy,, this means that x = 0y, is the unique element with this property,
which means that Ker(f) = {0y, }.
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Conversely, assume that the kernel of f is {Oy,}. To show that f is injective, we
consider elements v; and vy such that f(v;) = f(ve). We then deduce (because f is
linear) that f(v; —wvy) = 0. So v; — ve € Ker(f), hence v; — vy = Oy, since the kernel
contains only Oy,. This means that v; = ve. Therefore f is injective.

(3) It is a general fact that a map f : X — Y is surjective if and only if the image
f(X) is equal to Y. Therefore the property here is not particular to linear maps.

(4) Suppose w € Im(f), and fix vy € V; such that f(vg) = w. Then for any v € V],
write v/ = v — vg. We have f(v) = w if and only if f(v) = f(vg), which is equivalent to
f(@') = f(v—wp) =0, or in other words to v' € Ker(f). So the solutions of f(v) = w are
the elements v = vy + v" with v’ € Ker(f). O

Another construction of subspaces is given by intersection of subspaces:
PROPOSITION 2.4.5. Let V' be a K-vector space. For any set I and any collection V;
of subspaces of V' for i € I, the intersection
ﬂViz{veV | veV; foralliel} cV
el
s a subspace of V.. In particular, if Vi and Vs are subspaces of V', then Vi n Vs is also a
subspace of V.

PROOF. Let W be the intersection of the subspaces V;. Let vy, vy be elements of W
and tq, to elements of K. Then, for any ¢ € I, the vector t;v; + tavs belongs to V;, since
V; is a subspace of V. This is true for all ¢ € I, and therefore t;v1 + tov, € W. ]

REMARK 2.4.6. In general, if V; and V, are subspaces, the union V; U V5 is not a
subspace.

EXAMPLE 2.4.7. Let V' be the space of all sequences (a,,),>1 of real numbers. Define
for k > 1 the subspace
Fy = {(an)nz1 | ary2 — are1 —ap, = 0}
This is a subspace, for instance because for each k, the map f, : V — R such that
fr((an)) = agyo — axr1 — ay, is linear (exercise), and Fy = Ker(f;). Then
ﬂ Fr ={(an)n>1 €V | apyo = any1 + a, for all n > 1}.
k>1
Generalizing the kernel and image, we have the following constructions:

PROPOSITION 2.4.8. Let V; and V5 be K-vector spaces and f: Vi — Vy a linear map.
(1) If Wy < Vi is a subspace, then

f7HWs) ={ve Vi | f(v)e W}
is a subspace of V.
(2) If W1 < Vi is a subspace, then
fWy) = {veVy | there exists w e W such that f(w) = v}

is a subspace of V.

PRrROOF. This is exactly similar to the proof of Proposition 2.4.4 (1); for instance, if
Wy < V,, and vy, vy are elements of f~1(W5,), while s and ¢ are elements of K, then we
get

f(tvy + svgy) = tf(v1) + sf(ve) € Wy
since f(v;) € Wy and W is a subspace. O
14



2.5. Generating sets

DEFINITION 2.5.1 (Linear combination). Let V' be a K-vector space and S < V a
subset (not necessarily a vector subspace). A linear combination of elements of S is a
vector v € V of the form

v=t101+---+tkvk
for some k£ > 0, where t; € K and v; € S for all 7.

EXAMPLE 2.5.2. (1) If S = &, then Oy is the only linear combination of elements of
S (because an empty sum
2, @

vE
is the zero vector).
(2) If S = {v;} has only one element, then the linear combinations of elements of S
are the vectors tv; where ¢t € K.
(3) More generally, if S is finite, with S = {vy,...,v,} where the v;’s are different,
then a linear combination of S is a vector of the form

tivr + -+ tp,

where all ¢; € K. The point is that if we take a combination of fewer vectors than all
of vy, ..., v,, we can insert the missing vectors by adding them with coefficient 0; for
instance, if n > 6 and

UV = V3 + YUy
we can write

v:0-2}1+O'vg+xvg+0-v4+yv5+0~vﬁ+'--+0-vn.

DEFINITION 2.5.3 (Subspace generated by a set). Let V be a K-vector space and
S < V asubset. The subspace generated by S is the subset of V' whose elements are
the linear combinations of elements of S. It is a vector subspace of V', and is denoted

(S)-
PROOF THAT {S) 1S A SUBSPACE. Consider two linear combinations
v =101+ F U, w = S1wq + -+ W

of elements of S (the vectors v; and w; are not necessarily the same). Then for any z
and y € K, we have

zv +yw = (zt)vr + -+ (Ttp)op + (yswr + -+ + (ysi)w,
which is also a linear combination of elements of S. O

REMARK 2.5.4. It may be that some of the vectors v; and w; are the same. Then the
coeflicients add up: for instance,

x(tyvy + tavg) + y(s101 + Sov9) = (xty + ys1)vy + (zte + ysa)vs.

ExaMPLE 2.5.5. (1) Let W = {f : R — R} be the R-vector space of all possible
maps from R to R (Example 2.3.6 (3), with K =R, X = R and V = R). For i integer
> 0, let f; be the element of W defined by

fi(z) = 2
for all z € R. Let S = {f; | i = 0} be the set of all these functions.
15



A linear combination of elements of S is a function of the form
(2.10) f=tfo + -+t fi,

where t; € R and {iy,...,i;} is some subset of integers > 0. If we define d to be the
largest of the numbers {iy, ..., i}, and define coefficients a; for 0 < i < d so that a; is the
coefficient of f; in the linear combination (2.10) if i € {iy,...,ix}, and otherwise a; = 0,

then we can write

f(z) = ag + a1z + - + agz®

for all x € R. So the linear combinations of elements of S are precisely the functions of
the type
f=a+arfi+ - +aifa

for some integer d > 0 and some coefficients a;.

The space (S is called the space of polynomials (or polynomial functions) on R. It
is often denoted R|[z].

(2) Let S = W, a vector subspace of V. Then (W) = W, since the definition of a
subspace implies that any linear combination of elements of W belongs to W.

DEFINITION 2.5.6 (Generating set; finite-dimensional space). Let V' be a K-vector
space

(1) Let S < V be a subset. We say that S is a generating set of V' if (S) = V| that
is, if every element of V' can be written as a linear combination of elements of S.

(2) If V has a finite generating set, then we say that V is finite-dimensional.

LEMMA 2.5.7. Let S; < Sy be two subsets of V. Then we have (S1) < {(S3). In
particular, if S1 1s a generating set of V', then any subset that contains Sy is also a
generating set.

PRrROOF. By definition, any linear combination of elements of S is also a linear com-
bination of elements of Sy, so that (S;) < (S). 0

ExXAMPLE 2.5.8. (1) The empty set is a generating set of the zero-space {0}.

(2) Let n > 1 and consider V = K". For 1 < ¢ < n, let e; be the column vector
with all coefficients equal to 0 except that the i-th row has coefficient 1 (see the proof of
Proposition 2.2.5). Let S = {ey,...,e,} < V. Then for any x = (z;) in V, we have

21
T= | |=T1€1 + -+ Tpey,
Tn

which shows that = € (5). Therefore S is a generating set of K™. In particular, K" is
finite-dimensional.

(3) Consider V' = M,, ,(K). For 1 <i<mand 1< j<mn,let E;; €V be the matrix
with all coefficients 0 except the (7, j)-th coefficient that is equal to 1. For instance, for
m =n = 2, we have

10 01 0 0 0 0
El,l = <O O) ) El,? = (O 0) ) E271 = (1 0) ) E2,2 = (0 1) .

Then the finite set S = {£;; | 1 <7< m, 1 <j <n}isa generating set of M,,,(K), so
that in particular M,, ,(K) is finite-dimensional. Indeed, for any matrix A = (a;;), we

can write
A= > D ai;Ey,

I<ism 1<j<n
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which shows that A € {S).
(4) Consider the subset

p;{(iZ)eMmKD]a+d=O};

this is in fact a subspace of M;5(C), because the map

MQQ(C) I C

a b
—a+d

is a linear map, and P is its kernel.
We define the Pauli matrices:

1 0 0 1 0 —1
Al = (O _1> ) AQ = (1 0) ; A3 = <Z O> )
and S = {A;, Ay, A3}, which is a subset of P. Then S generates P: indeed, an element

of P is a matrix
a b
c —a

for some complex numbers a, b, c. Then we check that

a b b+c c—b
(C —CL) =CLA1+ 5 A2+ 2% Ag,

which shows that the matrix belongs to {S).

(5) Let V' = R|z] be the space of real polynomials of Example 2.5.2 (4), and S = {f;}
the set defined there such that (S) = V. So S generates V' by definition. The set S is
infinite, and in fact V' s not finite-dimensional.

To prove this, consider an arbitrary finite set 7" < V' (not necessarily a subset of
S!); we must show that we cannot have (T') = V. But indeed, if we look at all the
functions f; that appear in an expression of some element f of T', there is a largest value
of i, say d, that appears (it is the maximum of a finite set of integers; for instance, for
T = {14z+23, -0 4+721%, 2297} this would be d = 107). Then any linear combination
of elements of T" will only involve functions f; with 0 < 7 < d, and therefore is not equal
to V (for instance, the function fz.; is not in (7")).

LEMMA 2.5.9. Let V; and V5 be K-vector spaces. Let f : Vi — V5 be a linear map.
If f is surjective, and S is a generating set of Vi, then f(S) is a generating set of V,. In
particular, if f is bijective, then Vi s finite-dimensional if and only if Vs is.

PrOOF. Consider a vector v € V5. Since f is surjective, we can write v = f(w) for
some vector w € Vi. Since (S) = Vi, we can express w as a linear combination of elements

of S, of the form
w=tw +- - +t,w,

for some n > 0 and some t; € K. Then, using the linearity of f, we get

v=f(w) =tif(wr) + -+ tnf(wy),

which is a linear combination of elements of f(.5). Hence (f(S)) = V5.
If f is bijective, then applying this fact to f~1 (which is also linear and surjective),
we deduce that S generates V) if and only if f(S) generates V5. In particular, V; is
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then finite-dimensional if and only if V5 is, since if S is finite, then so is f(S), and
conversely. U

2.6. Linear independence and bases

DEFINITION 2.6.1 (Linear independence). Let V' be a K-vector space and S < V a
subset.

(1) If S is finite, with S = {vy,..., v}, with & > 0, where the v; are the distinct
elements of S, we say that S is linearly independent if and only if, for any coefficients
t1, ..., t, in K, we have

tivg + -+t = Oy
if and only if t; = --- =t = 0.

(2) In general, we say that S is linearly independent if and only if every finite subset

T of S is linearly independent.

REMARK 2.6.2. (1) It is always the case that if ¢; = 0 for all i, we have
t1vg + - - -+t = Oy

So the content of the definition is that, in a linearly-independent set, the only linear
combination that can be 0y is the “obvious” one.

(2) If S is linearly independent, this is usually used as follows: we have a finite subset
T = {vq,...,v,} < S, with the v; distinct, and coefficients (¢1,...,t,) and (s1,...,S,),
such that the corresponding linear combinations

v=1tv1 + -+ 0,, W = 8101 + -+ + SpUn,

are known to be equal: v = w. Then it follows that t; = s; for all 7: two equal linear
combinations must have the same coefficients. Indeed, by subtracting w from v = w on
both sides, we get

(t1 = s)vr + -+ + (tn — sn)vn = Oy,
and therefore t; = s; by linear independence.

LEMMA 2.6.3. (1) If S < V is linearly independent and T' < S is a subset of S, then
T is linearly independent.

(2) Let f : Vi —> V, be a linear map between vector spaces over K. If S < Vi is
linearly independent and if f is injective, then f(S) < Vs, is also linearly independent.

PROOF. (1) Any finite subset of 7" is a finite subset of S, and any linear combination
of such a subset which is zero is a linear combination of elements of S which is zero, and
therefore if S is linearly independent, the same holds for T'.

(2) Let T < f(S) be a finite subset. If we write T' = {wy,...,w;} where the vectors
w; € V4 are distinct, then since T" < f(S), there exist vy, ..., v in S < V; such that
f(v;) = w;. Moreover, v; is unique, since f is injective.

Now assume that ¢, ..., t; in K are such that

t1w1 + -+ tkwk = OV2.
This means that
f(tl’Ul + e 4 tkl}k) = OVQ,

since f is linear, or in other words that tyv; + - - - + tvr belongs to the kernel of f. Since
f is injective, Proposition 2.4.4 shows that Ker(f) = {0y, }, and therefore we have

tl’Ul + -+ tk'Uk: = 0V1-
18



But since {vy,...,v} < S, this implies that t; = -+ = t; = 0 since S is linearly
independent. O

DEFINITION 2.6.4 (Basis). Let V' be a K-vector space. A subset S < V which is a
generating set of V' and which is also linearly independent is called a basis of V.

EXAMPLE 2.6.5. (1) The emptyset is linearly independent in any vector space; if this
seems unclear from the definition, it can be taken as a convention (but it is indeed a con-
sequence of the definitions, when properly phrased). Combining this with Example 2.5.8
(1), we see that ¢J is a basis of the zero space {0}.

(2) If S = {v} has a single element, then S is linearly independent if and only if
v # Op. Indeed, if v = 0Oy, then the linear combination 1 -0y = 0y with non-zero
coefficient 1 shows that {Oy} is not linearly independent. If v # Oy, on the other hand,
the linear combinations to consider are of the form tv for ¢t € K, and if tv = 0y, then
t = 0 follows by Lemma 2.3.3.

(3) In K", the set S containing the vectors e; defined for 1 < < n in Example 2.5.8

(2) are linearly independent: indeed, for any ¢, ..., t, in K, we have
th
tier + -+ tpe, =
tn
and this is equal to 0 (in K") if and only if t; = --- =, = 0.
In combination with Example 2.5.8 (2), this means that {ei,...,e,} is a basis of K™.

This basis is called the standard or canonical basis of K.
(4) Similarly, the matrices E; ; in M,, ,,(K) in Example 2.5.8 (3) are linearly indepen-
dent: for any coefficients ¢; ; for 1 <¢ < m and 1 < j < n, we have

tinr o tin

SN B = e e ],

1<i<m 1<j<n tmi b

which is the zero matrix 0,,,, only if all coefficients are zero. In combination with Exam-
ple 2.5.8 (3), this shows that {F;;} is a basis of M,, ,(K).

(5) We consider the space V' = R[z] of polynomials of Example 2.5.2 (4). Let S = {f;}
be the set of functions f;(x) = z* for + > 0 integer considered in that example. By
definition, S is a generating set of V. We claim that it is also linearly independent, and
therefore is a basis of V.

Let T be a finite subset of S, and d the largest integer such that f; belongs to T
Then T < {fo,..., fa}, and using Lemma 2.6.3, it suffices to prove that {fy,..., f4} is
linearly independent to deduce that T is also linearly independent. We will prove this by
induction on d.

For d = 0, the set is {fy}, and since fy + Oy, this is a linearly independent set.

Assume now that d > 1 and that {fy, ..., f4_1} is linearly independent. We will prove
the same for {fy, ..., fa}. Consider real numbers tg, ..., ty such that

(2.11) tofo+ -+ tafa = Oyp.
This means that for all real numbers z, we have
to+t1x 4+ - + tgz? = 0.

The left-hand side is a function of z that is indefinitely differentiable, and so is the right-
hand side (which is constant). Differentiating d times on both sides, we get d!t; = 0,
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which implies that t; = 0. Then the relation (2.11) becomes

tofo+ - +ta—1fa—1 = Oy.

Since, by induction, we assumed that {fo,..., fs_1} is linearly independent, the coeffi-
cients tg, ..., tg—1 must all be zero. Therefore, in (2.11), all coefficients are zero. This
means that {fo,..., f4} is linearly independent.

PROPOSITION 2.6.6. Let V' be a K-vector space and S = {vy,...,v,} be a finite subset
of V., with the v;’s distinct. Define

K'—V
t1
L d t]_'U]_ + e + tnvn-
tn

(1) The map gg is linear.

(2) The map gs is surjective if and only if S is a generating set of V.
(3) The map gs is injective if and only if S is linearly independent.
(4) The map gs is an isomorphism if and only if S is a basis of V.

PROOF. (1) is left as an exercise.

(2) The image of gg is the set {.S) of all linear combinations of elements of S; therefore
gs is surjective if and only if (S) = V| which means if and only if S is a generating set of
V.

(3) The kernel of gg is the set of vectors (t1,...,t,) such that the linear combination
tivg + -+,

is equal to Oy. Therefore Ker(f) = {Ok»} if and only if the only linear combination
of elements of S that is zero is the one with all coefficients ¢; equal to 0, which means
precisely if and only if S is linearly independent.

(4) is the combination of (2) and (3). O

2.7. Dimension

THEOREM 2.7.1 (Main theorem). Let V' be a K-vector space.

(1) For any subset S of V' such that S generates V', there exists a subset T < S such
that T is a basis of V.

(2) For any subset S of V' such that S is linearly independent in V', there exists a
subset T' < V' such that S < T', and such that T is a basis of V.

(3) If S and Sy are two bases of V', then they have the same cardinality, in the sense
that there exists a bijection f : S1 — So. If V s finite-dimensional, then any basis of V
is finite, and the number of elements in a basis is independent of the choice of the basis.

COROLLARY 2.7.2. Let V be a K-vector space. There exists at least one basis in V.

PROOF. One can either:

— Apply part (1) of Theorem 2.7.1 with S = V', which generates V, so that (1) states
that V' contains a subset that is a basis;

— Or apply part (2) of Theorem 2.7.1 with S = ¢, which is linearly independent in
V', so that (2) states that there is a subset T" of V' that is a basis. O
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DEFINITION 2.7.3 (Dimension). Let V' be a K-vector space. The dimension of V,
denoted either dim(V') or dimg(V), is the cardinality of any basis of V. It is an integer
or zero if V' is finite-dimensional.

EXAMPLE 2.7.4. (1) The zero space {0} has dimension zero; its only basis is the empty
set (Example 2.6.5 (1)).

(2) For n > 1, the space K" has dimension n, since {ej,...,e,} is a basis with n
elements (Example 2.6.5 (3)).

(3) For m, n > 1, the space M, ,(K) has dimension mn since the matrices E;; for
1 <i<mandl<j<nform a basis (Example 2.6.5 (4)).

We will prove Theorem 2.7.1 only when V' is finite-dimensional. We use three lemmas.

LEMMA 2.7.5. Let V be a K-vector space, and S < V linearly independent. Let
W =(S)c V. IfweV —W, then the set S U {w} is linearly independent.

PROOF. Let T be a finite subset of S U {w}. If w ¢ T, then T' < S, and hence is
linearly independent since S is.
Assume now that w € T. Write T' = {w, vq,...,v,} with v;’s distinct elements of S.

Then T has n + 1 elements (since w ¢ {(S), so w ¢ S). Assume to, ti, ..., t, are elements
of K such that

tow + tlvl + -+ tnvn = Ov.
If to = 0, we would get a zero linear combination of vectors in S, and deduce that

ty =--- =t, =0 also by linear independence of S.
If ty #+ 0, on the other hand, we would get

1
w=——(tvy + - + tyv,)
to

but the right-hand side of this expression is an element of (S), and this is impossible
since w ¢ W. U

LEMMA 2.7.6. Let V' be a K-vector space, and S < V a generating set. Let w be a
vector in S. If we (S —{w}), then S — {w} is a generating set.

PROOF. Let W be (S — {w}). The assumption means that there exists an integer
n = 0, elements vy, ..., v, of S, different from w, and elements ¢4, ..., ¢, in K, such that

w =t + -+ thU,.
Let v € V' be arbitrary. Since S generates V', we can express v as a linear combination
U= S1w; + -+ SpWg

where w; € S are distinct and s; € K. If w does not appear in {wy, ..., wy}, it follows
that v € W. Otherwise, we may assume that w; = w by permuting the vectors. Then we
get

v = 811101 + - - - + S1tp Uy + SoWa + - - - SpWk,
and this also belongs to W since none of the v;’s or w;’s are equal to w. Therefore we
see that V = W. U

LEMMA 2.7.7. Let V be a finite-dimensional K-vector space, and S < V a finite
generating set with n elements. If T'< V has at least n + 1 elements, then T is linearly
dependent.
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PRrOOF. It suffices to prove this when T has exactly n + 1 elements (since T" always
contains a set with that many elements, and if the subset is linearly dependent, then so
is T).

We will then proceed by induction on n > 0. The property P(n) to be proved for all
n is: “for any vector space V over K, if there exists a generating subset S of V' with n
elements, then all subsets of V' with n 4+ 1 elements are linearly dependent.”

We first check that P(0) is true. A generating set with 0 elements must be ¢, and
in that case V = (&) = {0}; there is only one subset with 1 element (namely {0}), and
it is indeed linearly dependent. So the property P(0) is true.

Now we assume that n > 1 and that P(n — 1) is true. We will then prove P(n).
Let V be a vector space with a generating set S = {vy,...,v,} with n elements. Let
T = {wy,...,wy41} be a subset of V' with n + 1 elements. We must show that T is
linearly dependent.

Since (S) = V, there exist numbers ¢;; for 1 <i<n+ 1 and 1 < j < n such that

wp = t111)1 + -+ tlnvn

Wpe1 = tn+171U1 + -+ tn+1,nvn-
Case 1. If t17 = -+ = t,411 = 0, then the relations become

w1 = t121)2 + -+ tann

Wpy1 = tpgp1202 + -+ Lyy1,0Un.

This means that 7" = (V}) where V] is the subspace ({vs, ..., v,}) generated by the (n—1)
vectors vy, ..., v,. By the induction hypothesis, applied to V;, S; = {vs,...,v,} and
Ty = {ws,...,w,}, the subset T} is linearly dependent, which implies that the larger set
T is also linearly dependent.

Case 2. If there is some ¢ such that t;; & 0, then up to permuting the vectors, we may
assume that ¢1; + 0. For 2 < i < n + 1, the relations then imply that

Wy — Llwl = <ti1 - tthH>U1 + Tt (tm B titM)U”

t11 11 11
tz’l til
= (tn - —t12)?}2 +- 4+ (tm — _t1n>vn-
tll tll
Let
, i1
(2.12) w; =w; — —w; €V
t11
for2<i<n+1, and
ti1
Sij = tij — Etlj

for2<i<n+1and 2 < j <n. The new relations are of the form

Wy = S92U2 + -+ + SopUp

Wy = Sp+1,2V2 + 0+ Spt1nUn.
This means that the set
! / /
T = {wQ’ cee 7wn+1}
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with n elements is contained in V;, which is generated by n—1 elements. By the induction
hypothesis, the set 7" is linearly dependent. Therefore there exist xs, ..., z,,1 in K, not
all equal to 0, such that

/ /

If we replace w; by its value (2.12), we get

n+1 )
—<Z Llili'z')wl + Tows + -+ Tpp1Wpir = Oy
~ 111
=2
Since not all of (za,...,z,41) are zero, this means that 7" is linearly dependent. O

PrROOF OF THEOREM 2.7.1 FOR V' FINITE-DIMENSIONAL. We denote by n an inte-
ger n = (0 such that V' has a generating set Sy with n elements. This exists because V' is
finite-dimensional.

(1) Consider the set D of integers d > 0 such that there is a subset 7" of S with d
elements, such that d is linearly independent. Since (J is linearly independent, the set D
is not empty. Moreover, by Lemma 2.7.7, the set D is finite because no integer > n + 1
can belong to D.

Let m be the largest integer in D, and let 7' < S be a linearly independent subset
with m elements (“a linearly independent subset with as many elements as possible”).
We will show that 7' is a basis of V.

Let W = (T). Since T is linearly independent, T is a basis of V' if and only if W = V.
If this were not the case, then some element w of S would not be in W (otherwise,
S < W implies that V = (S) < W). But then Lemma 2.7.5 shows that T"u {w} < S is
linearly independent in V', and since it contains more elements than 7', this contradicts
the definition of m. This contradictions means that, in fact, we have W = V, and
therefore T is a basis of V' contained in S.

(2) Consider now the set D" of integers d > 0 such that there is a subset 7" of V'
containing S which is a generating set of V. Since S U Sy generates V', the set D’ is not
empty. There exists then a smallest element m of D’. Let T be a generating subset of V/,
containing S, with cardinality m. We will show that 7" is a basis of V.

Since T" generates V, it is enough to check that T is linearly independent. Suppose this

is not the case. Write T" = {vy, ..., v,,} for distinct elements of V', where S = {vq, ..., v}
for some k < m (which we may assume because S < T).

The linear dependency means that there exist elements tq, ..., t,, of K, not all zero,
such that

tivg + -+ Ly = 0.

There exists some ¢ with ¢ > k£ + 1 such that ¢; & 0, since otherwise the relation would
imply that S is linearly dependent. Assume for instance that t;.; & 0 (up to exchanging
two vectors, we may assume this). Then we get

Vps1 = ——(L1vr + -+ B0 + tpgoUpia + 0 F b U).
k1

Denote T" = {v1,..., Uk, Vgy2, -+ ,Un}. Then S < T’ and this relation shows that
Vg41 € (T"). Lemma 2.7.6 shows that 7" generates V. Since 7" has m — 1 elements and
contains S, this contradicts the definition of m.

(3) Let S; and S5 be two bases of V. Since S5 is linearly independent and S; gen-
erates V, Lemma 2.7.7 shows that Card(S2) < Card(S;). Similarly, we get Card(S;) <
Card(.S3), and conclude that S; and S, have the same number of elements. O

23



REMARK 2.7.8. In the case of vector spaces which are not finite-dimensional, the proof
of Theorem 2.7.1 requires the azxiom of choice of set theory. In particular, in general, the
bases which are shown to exist in Theorem 2.7.1 cannot be written down explicitly. As
an example, there is no known explicit basis of {f : R — R} as an R-vector space.

2.8. Properties of dimension

LEMMA 2.8.1. Let f : Vi — V4 be an isomorphism between vector spaces. Then
dim(V;) = dim(V4).

PROOF. Indeed, if S < V] is a basis of Vi, then f(S) < V; is a basis of V,, by
combining Lemma 2.5.9 and Lemma 2.6.3 (2). O

PROPOSITION 2.8.2. Let V' be a K-vector space with finite dimension.
Any subspace W of V' has finite dimension; we have

0 < dim(W) < dim(V),
and dim(W) = 0 if and only if W = {0y}, while dim(W') = dim(V') if and only if W = V.

PRrROOF. We first prove that W has finite dimension. We give two proofs, one depend-
ing on the general case of Theorem 2.7.1, the other not using possibly infinite bases.

First proof. Let S be a basis of W. It is linearly independent in V', and therefore
Card(S) < dim(V') by Lemma 2.7.7.

This argument is fast but the existence of a basis was only fully proved in the finite-
dimensional case earlier. If one takes this for granted, one can skip the next proof.

Second proof. Let S = {vy,...,v,} be a basis of V. For 1 < i < n, we denote
W; =W n {uvy,...,v;}). This is a subspace of W, and W,, = W since S generates V.
We will show by induction on i, for 1 < i < n, that W; is finite-dimensional.

For i = 1, the space W is a subspace of ({v1}). This means that either W, = {0y}
or Wi = {tv, | t e K}. In either case, W is finite-dimensional.

Assume that ¢ > 2 and that W,_; is finite-dimensional. Let T;_; be a finite generating
set of W;_;. Now consider W;. If W; = W;_4, this inductive assumption shows that W;
is finite-dimensional. Otherwise, let w e W; — W,_;. We can write

w = 1107 + - + L,

for some t; € K, since w € {{vy,...,v;}). We have t; + 0 since otherwise we would get
w € W;_1, which is not the case.
Now let v be any element of W;. We can write

v =x101 + -+ T, zj € K.
Then we get
v — —ZU) = (l’l — —Zt1>1}1 + -+ (Z)’Ji_l — —Zti_1>vi_1 € Wi—l-
L l;
So, in particular, v — x;¢; ! is a linear combination of Tj—_;, and hence v is a linear
combination of T;_; u {w}. Since v € W; was arbitrary, this means that W; is generated

by T;_1 u {w}, which is finite. So W; is also finite-dimensional. This concludes the
induction step.

Now we come back to our proof. Since W is finite-dimensional, it has a basis S. The
set S is linearly independent in V', and hence by Theorem 2.7.1 (2), there is a basis S” of
V' containing S. This shows that

0 < dim(W) = Card(S) < Card(S’) = dim(V).
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If there is equality dim(W) = dim(V'), this means that Card(S) = Card(S’), and hence
that S = S since S ¢ S’. Then we get W = (S") = V. Finally, the equality dim(W) = 0
means that W contains no non-zero element, so W = {0y }. O

DEFINITION 2.8.3 (Rank). Let V; and V5 be vector spaces, with V5 finite-dimensional.
Let f : V4 —> V5 be a linear map. The rank of f is rank(f) = dimIm(f). If A is a
matrix, then rank(A) = rank(f4).

THEOREM 2.8.4. Let V; and V4 be finite-dimensional vector spaces. Let f : Vi — Vs
be a linear map. We have

(2.13) dim(V;) = dim Ker(f) + dim Im(f) = dim Ker(f) + rank(f).

PROOF. Let d = dim Ker(f) and n = dim(V}), so that d < n. Let S; = {v1,...,v4}
be a basis of Ker(f). By Theorem 2.7.1 (2), there exists Sy = {vgy41,...,v,} such that
S =5] U Sy is a basis of V.

Consider T' = {f(vgs1), - - -, f(vn)} © Vao. We will show that T is a basis of Im(f) with
n — d elements, which will show that

dimIm(f) = dim(V;) — dim Ker(f),

which is the desired formula (2.13).
To check the property, consider W = {S), which is a subspace of V; with dimension
n — d (since Sy is linearly independent and generates it). Consider the linear map
g : W —Im(f)

defined by g(v) = f(v) for v € W. It is indeed well-defined, since f(v) € Im(f) for all
v e V. We claim that g is a bijective linear map, from which n—d = dim(W) = dim Im(f)
follows.
First, ¢ is injective: suppose v € Ker(g). Since v € W, we have
V= Tg410d+1 + -+ Tplp

for some z; € K, d+1 <i < n. But then f(v) = g(v) = 0y, so v € Ker(f) = {S1), so we
also have
V=2T1V1 + -+ TqUy
for some z; € K, 1 <7 < d. Therefore
Ov = zv1 + -+ + TqUa — Ta41Va41 — ** * — TpUn.
But 57 U S5 is linearly independent, and so we must have x; = 0 for all ¢, which implies
v =0. So Ker(g) = {0y, }.
Second, g is surjective: if w € Im(f), we can write w = f(v) for some v € V}; then we
write
v="=tiv+ -+,
for some t; € K, and we get
w = f(v) = f(tivy + - +tqva) + f(tar1va + -+ Lyvn) = 0y + f(V) = f(V))
(since tyvy + - - - + tqvg € (S1) = Ker(f)), where
V' =ty Vg1 + o F thv, € WL
This means that w = g(v’) € Im(g), so that Im(g) = Im(f), and g is surjective. O
COROLLARY 2.8.5. Let Vi and Vy be finite-dimensional vector spaces with dim(V;) =
dim(Vy). Let f : Vi — V4 be a linear map. Then [ is injective if and only if f is
surjective if and only if f is bijective.
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ProoOF. This is because f is injective if and only if Ker(f) = {0y, }, which is equivalent
with dim Ker(f) = 0, and in turn (2.13) shows that this is equivalent with dim Im(f) =
dim(V;). Under the assumption that dim(V;) = dim(V3), this is therefore the same as
dim(V3) = dim Im(f), which means that Im(f) = V5 (since it is a subspace of V5), and
this in turn means that f is surjective.

So injectivity is equivalent to surjectivity, and therefore either is equivalent to bijec-
tivity. O

COROLLARY 2.8.6. Let V; and Vs be finite-dimensional vector spaces and f = Vi — Vs
be a linear map. We have

rank(f) < min(dim(V}), dim(V%)),
and furthermore
rank(f) = dim(V}) < f is injective,
rank(f) = dim(Vs) < f is surjective.

PROOF. Since rank(f) = dimIm(f) and Im(f) < V4, it follows from Proposition 2.8.2
that rank(f) < dim(V3), with equality if and only if Im(f) = V5, which is exactly the
same as surjectivity of f.

For the kernel, by (2.13), we have

dim(V7) = rank(f) + dim Ker(f),

and therefore rank(f) = dim(V}) — dim Ker(f) < dim(V}), with equality if and only if
dim Ker(f) = 0, which means if and only if Ker(f) = {0y, }, namely if and only if f is
injective (Proposition 2.4.4 (2)). O

COROLLARY 2.8.7. Let Vi and V5 be finite-dimensional vector spaces and f : Vi — Vy
be a linear map.

(1) If dim(V;) < dim(Va), then f is not surjective.

(2) If dim(V}) > dim(V3), then f is not injective. In particular, if dim(V;) > dim(V5),
then there exists a non-zero vector v € Vi such that f(v) = Oy,.

Proor. If dim(V;) < dim(V3), then rank(f) < dim(V;) < dim(V3), so f is not
surjective by Corollary 2.8.6.

If dim(V;) > dim(V3), then rank(f) < dim(V3) < dim(V}), so f is not injective by
Corollary 2.8.6. O

We have seen that isomorphic vector spaces have the same dimension (Lemma 2.8.1).
The next result shows that conversely, if two spaces have the same dimension, there exists
an isomorphism between them.

PROPOSITION 2.8.8. Let Vi and Vs be K-vector spaces with the same dimension. Then
there exists an isomorphism f : Vi, — V.

PROOF FOR FINITE-DIMENSIONAL SPACES. Let n = dim(V;) = dim(V5). We begin
with the special case V; = K™. Let T' = {vy,...,v,} be a basis of V5. Define the linear
map gr : K" — V3 by

131
9T< : ) =101 + -+ tyUp,
tn
as in Proposition 2.6.6. By Proposition 2.6.6 (3), this map g is an isomorphism, since
T is a basis of V5.
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For the general case, consider bases S and T of V| and V5, respectively. We have linear
maps gr : K" — V5 and gs : K" — Vi, constructed as above. Both are isomorphisms,
and hence

grogs Vi — Vs
is an isomorphism (Proposition 2.3.8). O

REMARK 2.8.9. In general, there are many isomorphisms V; — V5. Also, there exist
of course linear maps f : Vi — V5 which are not isomorphisms, for instance f(z) = Oy,
for all z € V.

2.9. Matrices and linear maps

We will now show how to use matrices and bases to describe arbitrary linear maps
between finite-dimensional vector spaces.

DEFINITION 2.9.1 (Ordered basis). Let V' be a finite-dimensional K-vector space of
dimension d > 0. An ordered basis of V' is a d-tuple (vy,...,v4) such that the set
{v1,...,v4} is a basis of V. Hence an ordered basis is in particular an element of V.

REMARK 2.9.2. For instance, the following are two different ordered bases of K?:

()G ()6

On the other hand, the 3-tuple

o= (()-()- ()

is not an ordered basis because it has more than 2 components, although {vi,ve,v3} =
{v1, v} is a basis of K2

DEFINITION 2.9.3 (Matrix with respect to a basis). Let Vi and V; be two finite-
dimensional vector spaces with dim(V;) = n and dim(V5) = m. Let f : V4 — V5 be a
linear map.

Let By = (e1,...,¢e,) and By = (f1,..., fm) be ordered bases of V; and V5, respec-
tively.

The matrix of f with respect to B; and B,, denoted

Mat(f; By, Bs),

is the matrix A € M,, ,(K) with coefficients (a;;)1<i<m such that the j-th column of A is

1<j<n
the vector
alj
e K™
Clmj
such that
fle;) = auifo + - + tmjfoms 1<y <n.

EXAMPLE 2.94. (1) Let V; = V5, By = By, and f = Idy,. Then f is linear (Proposi-
tion 2.3.8 (1)) and Mat(Idy,; By, B1) = 1,,, the identity matrix of size n.

(2) Let Vi = K", Vo = K™, A = (a;;) a matrix in M,,,,(K) and f = fa : Vi — V}
the associated linear map given by fa(z) = Ax.

Consider the ordered bases

Bl:<€l7"'aen)7 BQZ(f17"'7fm)7
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where {e;} is the basis of Example 2.6.5 (3), and {f;} is the same basis for K™, so for
instance

1
0

fi= ]

0

We know that f4(e;) is the j-th column of A (see (2.1)). In the basis By, this is simply

m

Zaijfia

i=1

and hence the j-th column of Mat(f4; By, Bs) is the same as the j-th column of A. In
other words, we have

Mat(fA, Bla BQ) = A.

However, one must be careful that this is only because of the specific choice of bases!
For instance, take m = n = 3, and consider instead the ordered bases

Bi = <€17€3762)7 Bé = (63,62,61).

Let A be the matrix

BN

[
~ =~ =
co Ot N
O© O W

The above shows that
Mat(fA, Bl, BQ) = A

Now we compute Mat(fa; By, B}). We have

= 9e3 + bey + 3eq,

O O W

(
1

fA(Gl) = |4 =763+4€2+61, fA(eg) =
7

fales) = = 8es + beg + 2eq,

co Ut N

and therefore

Mat(fa; By, By) = + A

— e
w O ©
N Ot GO

The most important facts about the matrix representation of linear maps is that: (1)
it respects all important operations on linear maps; (2) it determines the linear map.
Precisely:

THEOREM 2.9.5. Let Vi, Vi, V3 be finite-dimensional vector spaces with dim(V;) = n,
dim(Vy) = m and dim(V3) = p. Let B; be an ordered basis of V; for 1 < i < 3. For any
linear maps

R )
we have
Mat(g o f; B1, Bs) = Mat(g; Bz, Bs) - Mat(f; B1, Bs).
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PrOOF. We write By = (eq,...,e,), Ba = (f1,..., fm) and By = (vy,...,vp).
Let A = Mat(f, B17 Bg), B = Mat(g, BQ, Bg) and C' = Mat(g o f, Bl,Bg). Write

A= (aij)i<ism, B = (bri)i<k<p, C = (Crj)1<ksp
1<j<n 1<is<m 1<j<n

For 1 < j < n, the j-th column of A is determined by

m
ej) = ZGijfi7
i=1

and the j-th column of C' is determined by

(g0 f)(ej) zckﬂ/k

But

-
I
—_

= Zaz‘jg(fi)

p
s Z brivp = Z (Z b;ﬂa”>vk,

=1 k=1 k=1 1i=1
and therefore we have .
Crj = 2 bkiaij.
=1
This precisely means that C' = BA (see Theorem 2.2.1). O

THEOREM 2.9.6. Let Vi and Vy be two finite-dimensional vector spaces with dim(Vy) =
n and dim(Va) = m. Let B; be an ordered basis of V;. The map

T Homk (V1,V2) —  Mpa(K)
B1,Bs f — Mat(f; Bl; BQ)

s an isomorphism of vector spaces.
In particular:
(1) We have dim Homk (V1, Vo) = mn = dim(V;) dim(V%).
(2) If two linear maps fi and fy coincide on the basis By, then they are equal.

PROOF. We write

Blz(el,...,en), B2:<f17---7fm)-

The linearity of the map T, p, is left as exercise. To check that it is an isomorphism,
we prove that it is injective and surjective (one can also directly compute the dimension
of Homg (V1, V2) to see that it is equal to mn = dim M,, ,(K), and then we would only
need to check injectivity).

First, we show that the map is injective. So suppose that f € Ker(Tg, p,), so that
Mat(f; B1, Ba) = Op,. This means by definition that f(e;) = Oy, for 1 < j < n. But
then

ftier + -+ +tpe,) = Oy,
for all ¢; € K, by linearity, and since B; is a basis of Vj, this means that f(v) = 0
for all v € Vi, or in other words that f = 0 as element of Homg(V;,V5). Therefore
Ker(Ts, B,) = {0} so Tg, B, is injective (Proposition 2.4.4 (2)). Note that the injectivity
implies the last part of the statement: indeed, to say that f; and f5 coincide on Bj is to
say that fi(e;) = fa(e;) for 1 < j < n, which means that the matrices of f; and f, with
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respect to By and By are the same, i.e., that T, p,(f1) = T,.B,(f2), so that injectivity
implies f1 = fg.
Second, we prove surjectivity. Let A = (a;;) € M, ,(K) be given. We define vectors

i=1
We then define a map

fVi—
by

f(t161 + -+ tnen> = Z tjwj

for all t; € K. This is well-defined, since any element of 1} has a unique expression as a
linear combination of the e;’s.
For any v; and v, in V;, expressed as

v =tie; + -+ tpep, Vg = S1€1 + -+ + Spép
with ¢; and s; in K, and for any =1, x5 € K, we have
101 + ToUe = (T1ly + Ta81)eq + -+ + (X1l + a8y )en.

Therefore, we have

f(z1v1 + xo09) Z Ttj + ToSj)w; = 14 thwj + xQZ sjwj = x1f(v1) + x2f(v2).
Jj=1 J J
This means that f is linear, so f € Homg (V}, V2).
Now we compute the matrix 7'(f) = Mat(f; By, Bs). By definition we have f(e;) = w;
for 1 < j < n, so that (2.14) shows that the j-th column of T'(f) is the vector

ayj

amj
This is the j-th column of A, and hence T, p,(f) = A. So A € Im(Tp, p,). Since this is
true for all A, this means that T is surjective. O

REMARK 2.9.7. It is important to remember how the surjectivity is proved, because
one is often given a matrix and one has to construct the associated linear map!

COROLLARY 2.9.8. Let Vi and V5 be finite-dimensional K-vector spaces and f
Vi — V5 a linear map. Let By and By be ordered bases of Vi and Va respectively.
Then f is bijective if and only if Mat(f; By, Bs) is invertible.
We then have
Mat(ffl; BQ, Bl) = Mat(f, Bl) Bz)il

PROOF. Let n = dim(V;), m = dim(V3).
(1) Suppose that f is bijective. Then n = m (Lemma 2.8.1), and Theorem 2.9.5 shows
that

Mat(f~'; Ba, By) - Mat(f; B, Ba) = Mat(f~" o f; By, B1) = Mat(Idv;; By, By) = 1,,,
and
Mat(f; By, B2) - Mat(f~'; By, By) = Mat(f o f~'; By, By) = Mat(Idy,; Bs, Bs) = 1,,,
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so that Mat(f; By, B) is indeed invertible with inverse Mat(f~!; By, By).

(2) Suppose that the matrix A = Mat(f; By, Bz) is invertible, and let B be its inverse.
Since f4 : K" — K™ is bijective, it is an isomorphism (Proposition 2.3.11) so that
n = m (Lemma 2.8.1). By the surjectivity part of Theorem 2.9.6, there exists g €
Homg (V5, V1) such that Mat(g; B2, B1) = B. We then get by Theorem 2.9.5 the relations

Mat(f 0 g; BQ, BQ) = AB = 1n = Mat(IdV2, BQ, BQ),
Mat(g o f, Bl, Bl) = BA = 1, = Mat(ldvl; Bl, Bl)

The injectivity statement of Theorem 2.9.6 implies that fog = Idy, and go f = Idy,,
which means that f is a bijection with reciprocal bijection g. By construction, we get

Mat(f~'; B, By) = Mat(g; B2, B;) = B = A~
O

The following lemma shows how to use matrix computations to compute a linear map,
given its representation as a matrix with respect to fixed bases.

LEMMA 2.9.9. Let Vi and Vy be finite-dimensional K-vector spaces and f : Vi — Vs
a linear map. Let By = (ey,...,e,) and By = (f1,..., fm) be ordered bases of Vi and V;
respectively and A = Mat(f; By, Bs).
For v eV, such that
W = Gn@0 3= °°° aF Up@pq

we have
o) = enffi o001 Sl
where
S1 i1
=A
S (79

PROOF. Let A = (a;;). Since f is linear, we have

f)=tif(er) +--- +tnf(en)

Replacing f(e;) with the linear combination of the basis By given by the columns of the
matrix A, we get

This means that

where

7=1
But the vector
s1 2o gt
= e K™
Sm 21 Gmyt;



is precisely the vector

(see Example 2.2.4) hence the result. O

DEFINITION 2.9.10 (Change of basis matrix). Let V' be a finite-dimensional K-vector
space. Let B and B’ be ordered bases of V. The change of basis matrix from B to B’
is the matrix Mat(Idy; B, B"). We denote it also Mg p.

EXAMPLE 2.9.11. (1) Let n = dim(V'). We have Mp 5 = 1,, for any ordered basis B
of V' (Example 2.9.4 (1)).
(2) Let V = K", and let

a11 A1n

Qn1 Apn

and
B = (e1,...,€n),
the basis of Example 2.6.5 (3). Then

ayp - Qin
MB,B’ =
an1 - Qpp
since
ayj
: = Q156 + -+ Qpj€n
Qpj

for1 <j<n.

PROPOSITION 2.9.12. Let V be a finite-dimensional K-vector space.
(1) For any ordered bases B and B’ of V', the change of basis matriz Mp g is invertible
with inverse

(2.15) Mgy = Mp 5.
(2) For any ordered bases B, B, B" of V', we have
(216) MB,B” = MB’,B” MB,B’ .

PRrROOF. (1) The linear map Idy is bijective, with its inverse equal to Idy. Therefore
Corollary 2.9.8 shows that Mg 5 = Mat(Idy; B, B) is invertible with inverse the matrix
Mat(IdV; B/, B) = MB’,B-

(2) We apply Theorem 2.9.5 to V; = Vo = V3 =V, with g = f = Idy and B; = B,
By = B and B3 = B”. Then go f = Idy, and we get

Mat(Idy; B, B") = Mat(Idy; B/, B") - Mat(Idy; B, B'),

which is exactly (2.16), by definition of the change of basis matrices. O
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PROPOSITION 2.9.13. Let Vi and V4 be finite-dimensional K-vector spaces and f :
Vi — Vs a linear map. Let By, B} be ordered bases of Vi, and By, B be ordered bases

of Vo. We have

(2.17) Mat(f; By, By) = Mg, g, Mat(f; B, By) Mp: p, -
In particular, if f : Vi — Vi is a linear map, we have
(2.18) Mat(f; B, B}) = AMat(f; By, B))A™"

where A = MBl,Bi'
PrOOF. We consider the composition
i 5o S8
Bj B By B
and the ordered bases indicated. The composite linear map is f. By Theorem 2.9.5, we
get the matrix equation
Mat(f; By, By) = Mat(Idv,; B, By) Mat(f; By, By) Mat(Idy,; By, B),

which is exactly (2.17).
In the special case Vo, =V}, and By = By, B} = B}, this becomes

Mat(f; By, By) = Mat(Idy;; By, By) Mat(f; By, B1) Mat(Idv,; By, By).
By Proposition 2.9.12, the matrix Mat(Idy,; By, B]) = Mp, p; = A is invertible with

inverse A~! = Mp: g, = Mat(Idy,; By, B1), so the formula becomes

Mat(f; B}, B)) = AMat(f; By, B))A™".

EXAMPLE 2.9.14. Consider a real number ¢ and the matrix

M — (cos(t) —sin(t)) £ My, (C).

sin(t)  cos(t)
Let f : C* — C? be the linear map f(z) = Mz. Then M is the matrix of f with

respect to the ordered basis
1 0
2= ((0)-()

of C? (namely, M = Mat(f; B, B)).

Consider the vectors
; 1 1

We claim that B’ is an ordered basis of C?. We will check this at the same time as
computing the change of basis matrix A = Mp p and its inverse Al = Mg . To
compute A, we must express the vectors v in B as linear combinations of elements of B’;
if this succeeds for all v in B, this implies that the elements of B’ generate C?, and since
there are two, this means that B’ is an ordered basis.

So we must find complex numbers (a, b, ¢, d) such that

(- () (1)
§)-()-+()
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We see that this is possible with @ = b = 1/2 and ¢ = —d = 1/(2i). So B’ is an ordered

basis and
1/2  1/(2i
L G )]

To compute Mp/ g, we use Example 2.9.11 (2): this implies that

1 1
MB’,B = (Z —Z) .

(We can also check by hand that this is the inverse of A). We now compute the matrix
N representing f with respect to the bases (B, B’). By (2.18), we get

v vt (V2 @Y (ol iy (1LY,

The product of the second and third matrices is

(Cos(t)—isin(t) cos(t)+isin(t)) _ (e_“ eitit).

sin(t) + i cos(t) sin(t) — i cos(t) ie”  —ie

Multiplying by the first matrix we get

(e‘“/Q +e /2 et/2 — eit/Z) (e_“ 0 )
N - - it .

/2 —e7/2 )2+ €/2 0 e

2.10. Solving linear equations

We explain in this section the Gauss Elimination Algorithm that gives a systematic
approach to solving systems of linear equations, and interpret the results in terms of the
image and kernel of a linear map fs : K" — K.

The justification of the algorithm will be quite brief, because from our point of view it
is a tool, and in general the results that it gives can be checked in any concrete case. For
the purpose of this course, it is more important to know how to handle the computations
correctly for small systems than to understand the full details (especially with respect to
numerical stability, etc).

In this section, we will denote by C; and R; the i-th column and j-th row of a matrix,
which will be clear in context.

DEFINITION 2.10.1 (Extended matrix). For a matrix A € M, ,(K) and b € K™, we
denote by (A,b) the extended matrix in M, ,,+1(K) where b is the (n + 1)-st column.

DEFINITION 2.10.2 (Leading zeros). For a row vector v = (t1,....t,) € K, =

M, ,(K), we denote by N(v) the number of leading zeros of v: for 0 < i < n, we
have N(v) = i if and only if

th=---=1%=0, tiv1 ¥+ 0,
with the conventions that
N(0) =n, N()=0ift; 0.
ExAMPLE 2.10.3. To clarify the meaning, observe the following cases:
N((1,2,3,4)) =0, N((0,1,0,0,0,3,0,4)) =1
N((0,0,0,1)) = 3.
Moreover v = 0 if and only if N(v) = n.
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DEFINITION 2.10.4 (Row Echelon matrices). (1) A matrix A € M,,,(K) is in row
echelon form (abbreviated) REF if, for 1 < <m — 1, we have
N(Ri+1) = N(R;),

and N(R;11) > N(R;) unless R; = 0, where we recall that R; denotes the i-th row of A.

(2) For 0 < k < n, a matrix A € M,,,(K) is in k-partial row echelon form
(abbreviated) k-pREF if the matrix formed with the & first columns of A, taken in order,
is in REF, with the convention that A is always in 0-pREF.

EXAMPLE 2.10.5. (1) The following matrices are REF:

010 2 1 3 4
0003,020,(38_05102)
0000 0 0 12

but the following are not:
L0 23 1 2 011 2
012231 {33) {1000
0 —1.0 0
The first matrix is 1-pREF, the others are only 0-pREF.
(2) Let m = n, and suppose that A is upper-triangular, with non-zero diagonal

coeflicients:
a11

0 - 0 ay,
with a;; = 0if ¢ > 7, and a;; £ 0 for 1 <¢ < n. Then A is REF.
(3) Suppose n = 1; then a column vector is REF if and only if it is of the form

t
0

0
for some ¢t € K (which may be zero or not).

(4) Suppose n = 2; then a matrix with 2 columns is REF if and only if

t wu
0 v
A=10 o

with:
. t+0,
eort=0andwv=0.
We now consider two types of elementary operations on an extended matrix (A, b).

DEFINITION 2.10.6 (Elementary operations). (1) (Row exchange) For 1 <i,j <m,
we define (A’, V) = exch; ;((A,b)) to be the extended matrix with R, = Ry if k ¢ {i, j},
and R = R;, R = R; (the i-th row and the j-th row are exchanged).

(2) (Row operation) For 1 < ¢ + j < m and t € K, we define (A, V) =
row; ;:((A,b)) to be the extended matrix with R; = Ry, if k £ j, and R; = R; —tR;.
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EXAMPLE 2.10.7. (1) For instance

12 3 b 12 3 b
exchg,3<456b2)= 78 9 by
78 9 by 45 6 b

(note that the last additional column is also involved in the operation).
(2) For row operations:

12 3 b 1 2 3 by
row2737t< 45 6 b ): 4 5 6 by
78 9 b T—At 8—5t 9—6t by— byt
12 3 b 1—7t 2—8t 3-9t by —ths
rowm( 45 6 b ): 4 5 6 by
78 9 b 7 8 9 bs

LEMMA 2.10.8. Suppose (A', V) is obtained from (A,b) by a sequence of elementary
operations.

The solution sets of the equations Ax = b and A'x = V' are the same.

There ezists a matric B € My, ,(K) such that b = Bb.

PrOOF. It suffices to check this for a single elementary operation. For a row exchange,
this is easy because we are only permuting the equations.

Now consider (A’, ') = row; ;;((A,b)). Only the j-th equation is changed. The “old”
pair of i-th and j-th equations is

;171 + -+ AinTp = bz

AjaT1 + o AT = by
The “new” pair is

a; 171 + -+ Qi n Ty = bl

(CL]‘J — tai71)l'1 + -+ (aj,n — tCLi7n)ZL‘n = bj — tbi.

These two pairs of equations are equivalent.

Finally, we give explicit matrices so that (A’,0’) = B(A,b) for both operations. We
only check the result in a small case, leaving the general one for the reader.

(1) For row exchange, consider the matrix B obtained from 1,, by exchanging the i
and j-columns. Then B works. For instance, for m =n =3, and i = 1, j = 3, we have

0 01 a b c b g h 1 b3
01 0f|d e f bo)=|d e f b
1 0 0/ \g h © b3 a b ¢ b

which is what we want.
(2) For the row operation row; ;;(A,b), the matrix B = 1,, — tE;; works (where Ej;
is the usual matrix first defined in Example 2.5.8 (3)). For instance, for rowss.((A4,0))
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with m = n = 3 as above, we have

a b ¢ b 1 0 0 a b ¢ b
(13 — tEgyg) d e f b2 = 0 1 0 d e f bg
a b 1 by
= d € f b2 5
g—td h —te Z—tf bg—tbg
as we want. ]

We now explain the basic step of the Gaussian Elimination Algorithm. The input
is an extended matrix (A,b) such that A is k-pREF for some k& < n. The output is an
extended matrix (A’,b'), obtained by a finite sequence of elementary operations, such
that A" is (k + 1)-pREF. We not give full justifications.

o Let A®) be the matrix formed from the first k& columns of A. Let j > 0 be the
integer such that R; is the last non-zero row of A,

e Consider the coeflicients a; 11 of A for i > j (on the k+ 1-st column, on or below
the j-th row); if all these coefficients are zero, then A is alread a (k + 1)-pREF
matrix, and we take (A’,0') = (A,b).

e Let [ > j be such that a; ;41 + 0; exchange the i-th and the I-th rows (elementary
operation)

e Assume that a; 1 # 0 (which is the case after exchanging, but we don’t want
to complicate the notation). Then perform the row operations

a.
/ i+1,k+1
Q5 k41

Am, k+1
/ m,K+

A5 k41

to get the new matrix (A’, V).

If the algorithm goes to the last step, then (A’ V) has the same first k-columns as
(A,b) and the same first 7 rows. Moreover, the coefficient a;, , is non-zero, and those
below aj, ., for [ > i are zero. This implies that the first £ + 1 columns of A" are REF.

ExAMPLE 2.10.9. (1) Let

12 -4 5 b
(Ab)=1(3 7 0 —1 b
27 1 6 b

We start with & = 0. There is no need to exchange rows since the coefficient a;; is
non-zero. We therefore perform the row operations

R, =R,—3R,, R,=R;—2R,

which gives the first new extended matrix

12 —4 5 by 12 -4 5 by
0 7—3-2 —3(-4) —1-3-5 by—3b |=[0 1 12 =16 by —3h
0 7—2-2 1-2(—4) 6-2-5 by—2b 03 9 —4 by—2

which is 1-pREF.
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Again there is no need to exchange the rows. We perform the row operation rows ;3
and get the new matrix

12 4 5 by 12 -4 5 by
01 12 —16 by — 3b; — (o1 12 —-16 b —3b
0 0 9—3-12 —4—3(—16) bs — 2b; — 3(by — 3by) 0 0 —27 44 by—3by+ Th

which is REF.
(2) Consider the extended matrix

01 2 b
o3 7 b
A =1g 2 7
04 —2 by

It is already 1-REF. We do not need to exchange rows to continue. The row operations
give

01 2 by 01 2 by

00 7-3-2 by—=30i| |00 1 by—23b
00 7—2-2 b3—20;] |0 0 3 b3g—2h
00 —2—-4-2 by—4b 0 0 —10 by—4b

which is 2-REF. Again on the third column we do not need to exchange rows, and we get

01 2 by 01 2 by

00 1 by — 3by oo 1 by — 3by
000 by—2b—3(by—3b;) |~ [0 0 0 b3—3by+7h
0 0 0 by—4b, + 10(by — 3by) 0 0 0 by+10by — 34b;

which is REF.

Note that it is a good idea during these computations to check them sometimes.
This is relatively easy: at any intermediate stage (A”,b”), if one takes for b one of the
column vectors of the original matrix, the corresponding value of b” must be equal to the
corresponding column vector of A”.

There remains to solve a system Ax = b. We consider the REF system A'x = ¥/
associated and the matrix B with & = Bb. Let r be the integer with 0 < r < m such
that there are r non-zero rows of A’ (these will in fact be the first r rows).

DEFINITION 2.10.10 (Free column). Let A’ be a matrix in REF. We say that the j-th
column of A’ is free if the following holds: either the j-th column is 0, or else if we denote

k= max{i | Q5 =+= 0},
then there exists an integer 1 < [ < j such that ag + 0.

For instance, the first column may only be free if it is zero.

ExAMPLE 2.10.11. (1) Let

0 23 40 17
A=|10 0 0 0 7 2
000O0O0 O
Here we have r = 2; the columns C, C3, Cy and Cg are free.
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(2) Let m = n, and let A be upper-triangular, with non-zero diagonal coefficients:

a1

0 - 0 ay,
with a;; = 0if ¢ > j, and a;; # 0 for 1 <7 < n. Then none of the columns of A are free.
We come back to a general matrix A and extended matrix (A,b). Let f = fa be the

linear map associated to A. Let (A’, ') be the outcome of the algorithm with A’ in REF.
Let B be the matrix such that (A’,0) = B(A,b), in particular v’ = Bb.

THEOREM 2.10.12 (Solving linear systems). (1) The image of f is of dimension r, so
the rank of A is r. The image of f is the space of all b € K™ such that Cb = 0, where
C e My—rm(K) is the matriz with m —r rows given by the last m —r rows of B. A basis
of Im(f) is the set of all columns C; of the original matriz A such that the j-th column
of A’ is not free.

(2) The kernel of f is of dimension n — r, which is also the number of free columns.
A basis is obtained as follows: for each free column C} of A', there is unique vector
v; € Ker(fa) with j-th row equal to 1, and with i-th row equal to 0 for all i + j such that
C; is free. Then {v; | C; free} is a basis of Ker(f).

We give a short proof, without justifying all steps in detail. The result will be il-
lustrated in examples later, and for this lecture, the goal is to be able to exploit it in
concrete cases.

PRrROOF. (1) The image of f is the set of all b such that Az = b has a solution, or
equivalently of those b such that A’z = b’ = Bb has a solution. Since the last m — r rows
of A" are zero, the last m — r equations of the system A’x = Bb are of the form 0 = Cb.
Therefore, it is necessary that C'b = 0 for a solution to exist. Conversely, assume that
this condition is satisfied. If we fix all variables x; to be 0 when the j-th column is free,
the system becomes a triangular system with the remaining variables. The r-th equation
determines the value of the variable z; where j is the largest index of a non-free column,
then the (r — 1)-st equation determines the value of the previous, one, etc, and we find a
solution by going backwards.

Moreover, for the matrix A’, this solution shows that the image of f4, has the non-free
columns C7 of A" as a basis. But the restriction of fz to Im(f) is an isomorphism from
Im(f) to Im(fa). Therefore a basis of Im(f) is

{B~'C} | €} non free} = {C; | C} non free.}.

(2) Since rank(f) = r by (1), Theorem 2.8.4 shows that dim Ker(f4) = n —r, the
number of free columns.

When solving the equation Az = 0, or equivalently A’z = 0 (since &' = 0 when b = 0),
we see that we can fix arbitrarily the unknowns z; for j such that Cf is a free column,
and that for any such fixed choice, there exists a solution. This means that the linear
map

g : Ker(fa) — K"
defined by sending (z;) to (%) fee 15 surjective. Since the two spaces have dimension
n —r, it is an isomorphism. The vectors v; described in the statement are precisely those
such that g(v;) has one coefficient equal to 1, and all others 0. The set {g(v;)} is therefore
a basis of K"™", and therefore {v;} is a basis of Ker(fa). O
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The following examples not only illustrate the result (explaining its meaning), but
also verify the claims in specific cases.

ExAMPLE 2.10.13. (1) Let

0 2341 17 b
(A,b)=[0 0 0 0 7 2 by
00 0O0O0 0 b
It is already REF, so B = 13 and (' is the third row of B, namely

C=(001).
The corresponding system of equations is

2;62 +3$3 +4$4 +5 +17$6 Ibl
7ZE5 +2I6 = b2
0 = bs

A necessary condition for the existence of a solution is that b3 = Cb = 0. Assume that
this is the case. Then fix 1 = 23 = 4 = ¢ = 0. The conditions for a solution with
these values is
21’2 +Ts = bl
Trs = by,

which has the solution
5135:62/7, Z’QZ%(bl—l’5)=b1/2—b2/14,

or

0
by/2 — by/14
0
0
by
0

So the image is exactly the space where b3 = 0. A basis of this space is indeed given by
the two non-free columns of A" = A, namely

2

(o) -2+

0

To compute the kernel, take by = by = b3 = 0. Fix arbitrarily the variables x1, x3, x4,
xg. Then we have a solution if and only if

2ry +x5 = —3x3 — 4y — 1724
Trs = —2xg,

which has a unique solution

2£L'6
7 )

Ty = — To = 5(—3I3 - 41’4 - 17276 - x5)
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as before. So the kernel is the set of all vectors v of the form

X1

%(—3353 — 4z, — #x(;)
_ 3
V= v
Te
A basis is
1 0 0 0
0 —3/2 —2 47
0 1 0 0
U1 = 0 , Ug = O , U3 = 1 , Uy = O
0 0 0 —2/7
0 0 0 1

Indeed, we have
V = T1VU1 + T3V + T4U3 + T4,
which shows that {vy,ve, v3,v4} generates the kernel, and if
T1V1 + T3V + x4U3 + TeU4 = 0,

looking at the rows 1, 3, 4 and 6 shows that 1 = 3 = x4 = x¢ = 0, so this set is also
linearly independent.

(2) Consider m = n, and let A be a matrix such that the associated REF matrix A’
is upper-triangular with non-zero diagonal coefficients:

aq
/
0 asy

A =
0 -~ 0 a

with aj; = 0 if i > j, and a; 0 for 1 < i < n. The number of non-zero rows is r = n,
and none of the columns of A" are free. This shows that f is surjective. Since m = n, this
means that f is an isomorphism (Corollary 2.8.5), or in other words that A is invertible.
(In particular the kernel of f is {0}). Moreover, it shows that the columns of A form a
basis of K".

We might want to compute the inverse of A. This can be done by solving the linear
system A’z = b, which will give a unique solution z = Db = DBb for some matrix
D e M, ,(K), and then z is also the unique solution to Az = b, so that DB = A™'.

(3) Let

12 -4 5 b
(A =137 0 —1 b
2 7 1 6 b

as in Example 2.10.9 (1). We saw that the associated REF matrix A’ is given by

12 -4 5 by
Av)y=[0 1 12 —16  by—3b,
0 0 —27 44 by —3by+ Thy

41



Here we have r = 3, which means that Im(f) is K3, or in other words that f is surjective.
There is one free column of A’, the fourth one. So a basis of Im(f) is

—4

1\ /2
{ 3. (7], [ o }.
2

7 1

Let b be an arbitrary vector in K3. To find a vector x € K* with f(z) = Az = b, we solve
the equation A’z = b': this gives the system

1 +2x9 —4x3 +Dry =b;
X9 +12x3 —16x4 = —3b; + by
—271’3 +44l’4 = 71)1 — 3b2 + b3.

One sees that we can freely choose x4, and then determine uniquely the values of x, x5,
x3. This corresponds to the fact that the solution set is of the form

{wog+ 2’ | o' € Ker(f)}

for any fixed solution xy of Axy = b (see Proposition 2.4.4 (4)). Precisely, we get

1
——(7b1 — 3b2 + bg - 441’4)

27
b b 4b 32x
$2=—3b1—b2+161’4—12$3:31—54‘?3— 94

751 10b2 28b3 i 2331‘4

I3 =

o7t 27 27

$1:bl—2$2+4$3—5$4:

The kernel of f is of dimension 1. To obtain a generator we consider a vector of the
form

T

T2

I3
1

Vyq4 =

(since the fourth column is free) and solve the equation Az = 0, or equivalently A’z = 0.
This can be done using the formula above with b; = by = b3 = 0: we find

—151/27

v=| 32/9
44/27

(4) As an example of the situation of Example 2, take

3
6
10

A=

~ =
oo Ut DO

We will compute the inverse of A. We begin by applying the Gaussian Algorithm to
obtain the associated REF form of the extended matrix, indicating on the left the row

42



operation that we perform:

Ry 1 2 3 b1
(A, b) wo Ry —4R; |0 —3 —6  —4by + by
Rs—TR,y \O —6 —11 —T7by + b3

Ry 1 2 3 b1
NN R2 0 —3 -6 *4b1 + bg

Ry —2R, \O 0 1 by —2by+0s

This REF form is indeed upper-triangular with non-zero coefficients on the diagonal. To
find the inverse A~! we solve for Az = b, or equivalently for A’z = ¥, that is

T +2.CB2 —|—3ZE3 Zbl

—3.’13'2 —61’3 = —4b1 + bg
T3 = bl — 2[?2 + bg,
which gives
2 4
xIr = —21’2 — 31’3 + bl = —gbl — gbg + bg
1 2b 116
To = —g(—4b1 + by + 6$3) = —?1 + TQ — 2[)3

T3 = b1 —2b2 +b3,

which means that

-2/3 —4/3 1
At =1-2/3 11/3 -2
1 -2 1

A concrete consequence of the Gauss Algorithm is a very useful matrix factorization
for “almost all” square matrices.

DEFINITION 2.10.14 (Regular matrix). A matrix A € M, ,(K) is regular if the
Gaussian Elimination to the REF form A’ described above can be run only with row
operations of the type R; = R; — tR; with j > ¢ (in particular without any exchange of
rows).

REMARK 2.10.15. Warning! Some people use the adjective “regular” to refer to
matrices which are invertible. This is not our convention! A matrix can be regular
according to the previous definition even if it is not invertible.

The examples we have seen were all of this type, and indeed “random” choices of
coefficients will lead to regular matrices.

DEFINITION 2.10.16 (Triangular matrices). Let A = (a;j) € M, ,(K). The matrix A
is upper-triangular if a;; = 0 if 7 > j, and A is lower-triangular if a;; = 0 if j > i.

ExXAMPLE 2.10.17. (1) Note that there is no condition about the values of the diagonal
coefficients, which may be zero or not. The matrices

123 0 s
05 0], (40
009

1 0 0
050,(_132)
1 -39
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are lower-triangular.

(2) If a matrix A = (a;;) € M, ,(K) is both upper-triangular and lower-triangular,
then it is a diagonal matrix: a;; = 0 unless ¢ = j.

(3) Let A be a REF matrix in M, ,(K). Then A is upper-triangular: the condition
that ¢ — N(R;) is strictly increasing unless the row is 0 implies that N(R;) > ¢ — 1, so

Note that the converse is not true: for instance the matrix

1 11
00 3
00 4
is upper-triangular but is not in REF.

LEMMA 2.10.18. (1) The matriz product BA of matrices B and A in M, ,(K) which
are both upper-triangular (resp. lower-triangular) is upper-triangular (resp. lower-
triangular). Moreover, if A = (a;;), B = (b;;) and C = (¢;;), then we have ¢;; = bja;; for
all 7.

(2) An upper-triangular (resp. lower-triangular) matriz A is invertible if and only if
ai; £0 for 1 <i<n. In that case, A~ is upper-triangular (resp. lower-triangular) and
the diagonal coefficients of A~ are a;;'.

PrOOF. We consider only the upper-triangular case.
(1) We have the formula

n
Cij = Z bik;
k=1

for all 2 and j. If ¢« > j, then for any k between one and n, either i > k or k > ¢ > 7,
so either by, = 0 or ai; = 0 since A and B are upper-triangular. So ¢;; = 0if 7 > j. On
the other hand, for i = j, then for 1 < k < n, we have i > k or k > j unless k =i = j.
Therefore
Cii = biia;.

(2) The matrix A is REF. We know that all columns are non-free if the diagonal
coefficients are all non-zero (Example 2.10.13 (2)), and that A is invertible in that case.

Conversely, if there is a j such that a;; = 0, and j is the smallest such integer, then
the j-th column of A is free (because either j = 1, and the first column of A is zero,
or else a;j_;;—1 + 0). So Theorem 2.10.12 implies that Ker(f4) + {0}, so that A is not

invertible.
Assume that a; # 0 for all 2. To compute the inverse of A, we need solve the system

anxy +-0 + tapr, =b
ATy +--- +a2,T, = by
ApnTy = bn

with unknowns z;. We see that we get formulas of the type

T :%+Cl2b2+"'+clnbn

T, = —b,
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(for some coefficients ¢;; € K) which means that the inverse matrix of A that expresses =
in terms of b is also upper-triangular, namely it is

ag 0121
- 0 agp
0 - 0 ot

nn

The diagonal coefficients are indeed 1/a;;.

This might seem a bit unrigorous, so here is another argument by induction on n.
The case n = 1 is clear. So suppose that A € M, ,,(K) is upper-triangular, and that we
know the property for matrices of size n — 1. The equations

Az =0
can be restated as
anzi +-c e Fapt, =b
Az =b
where A € M,,_1,_1(K) is the matrix
a22 ... ... a2n
0 ass --- as
0 -+ 0 ay,

and & = (2;)a<j<n, b = (b;)a<j<n (this is the translation of the fact that only the first
equation in the original system involve the variable x;). Since A is upper-triangular
with non-zero diagonal coefficients, by induction, there is a unique solution ¥ = A1) =
(Zj)2<j<n, and the diagonal coefficients of the inverse matrix A~ are Vass, ..., 1/ap,.

But then the unique solution to Az = b is

1 ~ ~ ~
r = (_(bl — Q19T — * - — alnxn)7x27 e ,In>.
a1

So A is invertible, and the inverse is upper-triangular: it is

—1
-1 _ (@1
= (8 )

in block form. The first diagonal coefficient is 1/a;; because Z;, 7 = 2, is a function of

bj, j = 2, only. O

PrROPOSITION 2.10.19 (LR decomposition). Let A be a regular matriz.

(1) There exists an upper-triangular matriz R and a lower-triangular matriz L = (1;;)
with l;; = 1 for all i, such that A = LR.

(2) The matriz A is invertible if and only if R is invertible. If that is the case, then
L and R are unique.

PRrOOF. (1) Consider the REF form A’ of A and the matrix B such that BA = A’
Then A’ is upper-triangular, and because no exchanges were made, the matrix B is a
product of matrices 1, — tEj; with j > ¢, which are lower-triangular (see the proof of
Lemma 2.10.8 and the description of the algorithm: when there is no exchange, we always
perform operations R; v~ R;—tR; with j > 4, in which case Ej; is lower-triangular). This
means that B is lower-triangular as a product of lower-triangular matrices. Moreover,
because all intermediate matrices 1,, — tE;; have all diagonal coefficients equal to 1, the
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same is true for B, and then for its inverse B~!, which is also lower-triangular by the
previous lemma. So we get A = B~'A’, and L = B~!, R = A’ has the claimed properties.
(2) Since A = LR and L is invertible (because the diagonal coefficients of L ar equal
to 1 and Lemma 2.10.18 (2)), we see that A is invertible if R is. And since R = L™ A,
we see that conversely R is invertible if A is.
Assume that A is invertible and regular. To check uniqueness of L and R, assume
that

LlRl - L2R2
with L; lower-triangular with diagonal coefficients 1 and R; upper-triangular (note that
here R; does not refer to a row of a matrix). Since the matrices Ly and Ry are invertible,
as we observed, and
Ly'Ly = RoRy L.
The left-hand side is lower-triangular with coefficients 1 on the diagonal. The right-hand
side is upper-triangular. By Example 2.10.17 (2), this means that L,'L; is diagonal,
and since the coefficients are 1, this means that L2_1L1 = 1,, or L; = Ly. But then

LRy = L1 Ry implies Ry = Ry also by multiplying by the inverse of L. O
ExAMPLE 2.10.20. (1) Let A be the matrix of Example 2.10.13 (4):
1 2 3
A=1|4 5 6
7 8 10

We obtained the REF form

r 2 3 by
(A, b) > (A/, b,) = 0 -3 —6 —4b1 + b2
0 0 1 by —2by+0s

From the last column of (A’,b), we have

10 0
B=|-4 1 0
1 -2 1
We can compute the lower-triangular matrix B! by solving for b the system Bb = V'
by =10
—4b;  +by =l
by —2by +bs =1
This gives
by =1b)
by = 4b) + b,
by = Tb} + 20, + b,
so that
1 00
B'=1[410
7T 21
The LR decomposition of A is then
10 0\ /1 2 3
A=14 1 0|0 -3 —6
72 1/\0 0 1



(2) Proposition 2.10.19 does not extend to all matrices. For instance, the (non-regular)

matrix
0 1
<1 1) S MQ,Q(K)

does not have an LR decomposition, because this would mean an identity

()-8~ ('l

for some coefficients (¢, a,b, d) € K*. But this equality would imply that a = 0 and then
we would get the contradiction 1 = 0 from the first coefficient on the second row.

2.11. Applications

We next discuss the applications of Gaussian Elimination to the solution of many
concrete problems of linear algebra.

Consider the following problems involving finite-dimensional vector spaces V; and V5
and a linear map f : Vi — V5!

(1) Determine the kernel of f;

(2) Determine the image of f;

(3) Determine the rank of f;

(4) If f is bijective, find the inverse of f;

(5) For a basis or finite generating set S of V; and a vector v € V;, express v as a
linear combination of elements of .S

(6) For a subset S of Vj, determine the subspace generated by S, in particuler,

determine whether S is a generating set;

(7) For a finite subset S of Vi, determine whether S is linearly independent;

(8) For a linearly independent subset T" of Vi, find a basis of V; containing T,

(9)

10)

3
4
5

For a generating set T" of V4, find a basis of V; contained in T

( For a subspace W of Vi, given as the kernel of a linear map, determine a basis
of W, and in particular, determine the dimension of W,

(11) For a subspace W of Vi, given by a generating set, determine a linear map f
such that W = Ker(f);

(12) For subspaces Wy and W of V;, determine the intersection Wy n Wa.

We will show that all of these questions can be reduced to the problem of resolving
systems of linear equations, as described in the previous section.

We begin with a discussion of what it means to “determine” a subspace W of a vector
space V', as is often required in the list of problems. There are actually two equally
important ways this might be considered to be solved:

(a) Give a basis (vy,...,vx) of W. This gives an easy answer to the question: “What
are some elements of the subspace W77 Indeed, any linear combination of the basis
vectors is in W, and no other vector.

(b) Find another vector space Vi and a linear map V' — Vj such that W = Ker(f).
This is useful because, if the linear map is given with concrete formulas, it will be easy to
compute f(v) for v € V, and in particular it will be easy to answer the question: “Does
a vector v € V' belong to the subspace W or not?”

Depending on the problem to solve, it might be more important to have a description
of the first, or of the second kind. Problems (10) and (11) of the list above can be
interpreted as saying: “given a description of one kind, find one of the other kind.” If
we can solve these, then other problems where one has to “determine” a subspace can be
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solved by providing either a description of type (a) or of type (b), since we can go back
and forth.

We first show how one reduces all problems of the list above to systems of linear
equations in the special case where V; = K" and V5, = K™. Then we will quickly explain
how bases are used to reduce the general case to that one. (Note that we do not attempt
to describe what is the most efficient solution...)

(1)
(2)
(3)
(4)

(5)

Determine the kernel of f: express f = fa for some matrix A = (a;;) € M, ,,(K),
and apply Theorem 2.10.12 (2).

Determine the image of f: express f = fa for some matrix A = (a;;) € M, ,,(K),
and apply Theorem 2.10.12 (1).

Determine the rank of f: express f = fa for some matrix A = (a;;) € My, ,(K),
and apply Theorem 2.10.12 (1).

If f s bijective, find the inverse of f: express f = fa for some matrix A =
(a;j) € M, ,(K), reduce it to REF form and express the solution = of A’z = ¥/
as a linear map of b.

For a basis or finite generating set S of Vi and a vector v € Vi, express v as a
linear combination of elements of S: let S = {vy,..., v} (with k > n since this
is a generating set); solve the system

t101+"'+tkvk:1),

which is a linear system with n equations (corresponding to the coordinates of
v) and k unknowns.
For a finite subset S of Vi, determine the subspace generated by S: let S =

{v1,...,v}; consider the linear map gg : K¥ — K" such that
i1
gs( : > =tv1 + -+ U
(7%

then compute the image of gs (Problem (2)); we have then (S) = Im(gs). (Al-
ternative: to find a basis of (S), check if S is linearly independent (Problem (7)
below); if not, remove from S a vector v € S such that

ve S —{v}),

until a linearly independent set is found; it is then a basis of (S).)
For a finite subset S of V1, determine whether S is linearly independent, and if

not, find a non-trivial linear relation between elements of S: if S = {vy,..., vk}
with
a1;
v; = o, 1<i<k
Qpj

solve the linear system of equations

ayxry + -+ apzy =0

Ap1T1 + -+ QT =0

with n equations and k£ unknowns z1, ..., zy; then S is linearly dependent if and
only if there exists a solution (x;) where not all z; are equal to 0; a corresponding
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non-trivial linear relation is
T1vy + -+ 10 = 0.

(8) For a linearly independent subset T of Vi, find a basis of Vi containing T: assume
T = {vy,...,v}; let

Iy
V41 =
Tn
where the x; are unknown; find (z;) such that (vq,...,v,41) are linearly indepen-

dent (Problem (7)); then continue until a linearly independent set of n elements
is found. (Alternatively, if k& < n, choose the vector vy, “at random” and check
the linear independence for such a specific choice, and if it fails, pick another
random choice, etc).
(9) For a generating set T of V1, find a basis of Vi contained in T: find a basis of

the subspace generated by 7' (Problem (6)).

(10) For a subspace W of Vi, given as the kernel of a linear map g : Vi — KF,
determine a basis of W: determine the kernel of the linear map (Problem (1)).

(11) For a subspace W of Vi, given by a finite generating set S of W, determine a

linear map f such that W = Ker(f): write S = {vy,...,v;} for some vectors
Qay;
Uj =
Q5

and let A be the matrix (a;;) € M, ,(K). The linear map f4 is simply the map

t

N Bl S W e ol 1

172
and has image equal to W. Apply Theorem 2.10.12 (1) to compute the image
of fa: one finds that W is the set of vectors b € K™ such that Cb = 0 for
some matrix C. The linear map g : b — Cb is then a linear map such that
W = Ker(g).

(12) For subspaces Wy and Wy of Vi, determine the intersection Wi n Wa: express

W, and W, as the kernels of linear maps f; and fo (Problem (11)), with f; :
Vi —> K9%. Then W) n Wy = Ker(f) where

f . ‘/1 N Kd1+d2

is given by

f(0) = (f1(v), fo(v));
compute this kernel (Problem (1)).

ExAMPLE 2.11.1. We illustrate some of these calculations with the following problem:
compute, by giving a basis and writing it as the kernel of a linear map, the intersection
Wi n Wy < R* where
-2

w O =

Wy =<

)

=~ O =
Ot O = =
NS

-1
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and

1 0 2
3 1 5
Wo={ o 21| =3P
1 6/ \ 4
Let

1 -2 1 b 1 0 2 b
10 11 by 13 1 5 b
Anb) =13 o 55| W= 5 4 3,
~1 4 5 by 1 =6 4 by

be the corresponding extended matrices, so W; is the subspace generated by the columns
of A;. We reduce (A;,b) and (A, b) to REF. First for (Ay, b):

R, 1 -2 1 by R, 1 -2 1 b
(Ay,b) R, 0 1 1 by . R 0 1 1 by
b Ry —3R, |0 6 2 by—3b Ry —6Ry |0 0 —4 —3b; — 6by + by
Ry+ Ry 0 2 6 by+b Ri—2R, \O O 4 by — 2by + by
R, 1 -2 1 by
. R 0 1 1 by

R3 0 0 —4 —3b1 — 6by + b3
Ri+ R3\0 O 0 —2b; —8by + bg + by

This means that W;, which is the image of the linear map f4 : K3 — K%, is also the
subspace

b1
b
wi = { || ~2by — 8by + by + by = 0.
by
Next for (A, b), where we note that we will use an exchange of rows:
Rl 1 0 2 b1 Rl 10 2 bl
(A b)WRQ—BRl 0 1 —1 —=3by+by — Ry 01 —1 —3by + by
» Ry+2R; |0 —1 1 2by+by Ry+Ry |0 0 0 —by+by+bs
Ry— Ry \O -6 2 —b+b Ry+6Ry \O 0 —4 —19b; + 6by + by
Ry (1 0 2 by
Ry |0 1 —1 —3by + by
Ry |0 0 —4 —19b; + 6by + by
Rs;\O 0 O —b1 + by + b3
Hence
by
by
W2={ b | —b1+b2+b3=0}
3
by
We can now describe Wy n Wy as a kernel: it is Ker(f), where
b1
f( by )_ —2by — 8by + b3 + by
b3 N —by + by + b3 ’
by
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To find a basis of Wi n Wy (in particular, to find its dimension), we reduce to REF the
matrix
-2 -8 11
A= (—1 11 0)
such that f = f4. We find
(A,b) = -2 -8 1 1 b — R,y -2 =8 1 1 by
= o1 1 10 by Ro—Ri/2\ 0 5 1/2 —1/2 —b,/2+ by

This is in REF form and the free columns are the third and fourth. So by Theorem 2.10.12
(2), there is a basis with two vectors (vs, v4) with

— O QU0

for some real numbers (a,b,c,d); in particular dim(W; n W5) = 2. The corresponding
systems of equations for these vectors to belong to Wi n Wy = Ker(f) are

—2a -8 +1 =0 —2¢c =8 +1 =0
5 +1/2 =0 bd —-1/2 =0
which we solve to find
9/10 1/10
—1/10 1/10
V3 = 1/ Vyg = /0
0 1

(Note that, for peace of mind, it might be useful to check that these vectors do belong to
Wy n Wy, to detect computational errors.)

Finally, what should one do to solve problems similar to the ones described above for
other vector spaces than K"”? The method is always the same: one fixes bases of the
vector spaces involved, and then translate the problem to K" using the coordinates with
respect to the bases. After solving the problem in K", one translates the result back to
the original vector space, using the following facts:

PROPOSITION 2.11.2. Let Vi and Vs be finite-dimensional vector spaces and f : Vi —
Vo a linear map. Let

Blz(el,...,en), Bgz(fl,...,fm)

be ordered bases of Vi and Vy respectively, and let A = Mat(f; By, Bs).
(1) The dimension of Ker(f) and of Ker(fa) are the same; we have

3}
Ker(f) = {tlel +ottueneVi | [ : |e Ker(fA)}.
tn
(2) The rank of f and of fa, and the rank of A, are equal; we have
S1
n(f) = {sifi+- +smfaeVa | | 1 |emm(fa)}
Sm
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PRrOOF. (1) By Lemma 2.9.9, we get

131
Ker(f) = {tlel tortpeneVi | [ ]e Ker(fa)}
tw

and since the right-hand side has dimension dim Ker(f4) (because the linear map

ty
—tieg + -+ lhe,
tn

is an isomorphism), the equality of dimensions follow.
(2) Similarly, Lemma 2.9.9 gives the equality

S1
n(f) = {sifi+ -+ smfueVa | | 0 |emm(inl,

Sm

and since the right-hand side has dimension rank(f4), we get the equality of dimensions.

O
We illustrate this principle with a simple example.
ExAMPLE 2.11.3. For n > 0, let
Vo={P=ay+ax+ - +a,2" € R[X] | a; € R}.

This is a finite-dimensional vector space with basis B,, = (P, ..., P,) where P,(z) = 2
(by definition, these functions generate V,, and by Example 2.6.5 (5), they are linearly
independent).

Consider the linear map

P— (z+2)P.

We ask to determine the kernel and image of f. To do this we use the bases B3 and Bj.
The computations

f(R)=2+2=2P+ D, f(P)=2P+P5,
f(P) =2P, + Ps, f(P3) =2P;+ Py

show that the matrix Mat(f; B3, By) is

s

I
COo O RN
cCo R NO
o~ N Oo O
O OO
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We transform the matrix to REF:

R, 2 00 0 by R, 2 00 0 by
Ro—iRi |0 2 0 0 —by/2+by R, 0200 —bi/2+4b
(A,b) w~> Ry 0120 bs v Ry — 2Ry |0 0 2 0 by/4—by/2 + bs
R, 0012 by R, 0012 by
Rs 0001 bs Rs 0001 bs
R, 2 00 0 by
Ry 020 0 —b1/2 + by
> R3 O 0 2 0 b1/4—bg/2+b3
Ri—3R3 |0 0 0 2 —by/8+by/d—b3/2+ by
Rs 0001 bs
R, 2 000 by
Ry 02 00 —b1/2—|—bg
s Ry 0020 bi/4 —by/2 + by
Ry 00 0 2 —bl/8+bg/4—b3/2+b4
Ry —31R;\0 0 0 0 b/16 — bo/8 + bs/4 — by/2 + bs.

This shows that the rank of f4 is 4, and since there are no free columns, that f, is
injective. The same is then true for f. Moreover, since the vector b = (b;) corresponds
in the basis B, to the polynomial
Q=0+ +bsPyeVy,
we obtain the characterization
Im(f) ={Q(z) = ap + a1z + - + ayz* €V} | aop/16 — a1/8 + aq/4 — az/2 + ay = 0}.
We could have guessed this result as follows: if @ = f(P) = (z + 2)P, then we get
Q(—2) = 0, so the image of f must be contained in the subspace
W={QeVy| Q(-2) =0}
But note that for Q(z) = ag + a1 + - - - + asx?*, we have
Q(—2) = ag — 2(11 + 4@2 — 8@3 + 16@4 = 16(@0/16 - a1/8 + CL2/4 — a3/2 + CL4),

so that the space Im(f) that we computed using the REF form is in fact exactly equal
to W.

This illustrates another important point: if a linear map is defined “abstractly” on
some vector space that is not K", it might well be that one can compute its image
and kernel “by pure thought”, and not by a complicated implementation of the Gauss
Algorithm.

53



CHAPTER 3

Determinants

3.1. Axiomatic characterization

The determinant of a matrix A € M, ,,(K) provides a single number det(A) € K such
that A is invertible if and only if det(A) 4 0. Moreover, there is an explicit formula for
det(A) in terms of the coefficients of A. This is quite wonderful at first sight, but in fact it
is mostly a theoretical tool: except for very small values of n, the computation of det(A)
using this formula is absolutely impossible; for instance, for n = 70 (which corresponds
to rather small matrices from the point of view of actual numerical analysis), this would
require > 10'%° operations! There are faster methods (the Gauss Algorithm gives one),
but these will usually solve completely the linear system Ax = b, not only determine
whether it is always solvable with a unique solution!

Nevertheless, determinants are important to investigate many theoretical aspects of
linear algebra, and their geometric interpretation appears in multi-variable calculus.

We present the determinants, as is customary, in an axiomatic manner: stating a
list of properties that completely determine the determinant. Then we will prove the
existence and uniqueness statements.

We first have two definitions.

DEFINITION 3.1.1 (Multilinear map). Let V' and W be vector spaces over K. Let
n = 1 be an integer. A map

f:vr—w
is called multilinear if, for every i with 1 < i < n, and for every (vy,...,v,) € V", the
map V — W defined by
U= f('Ula' -5 Vi—1,U,Vip 15 - - avn)

is linear. If n = 2, one says that f is bilinear, if n = 3 that it is trilinear.

In other words, to say that f is multilinear means that for any ¢ with 1 < i < n, and

for any vectors vy, ..., v;_1, v;, U}, Viy1, ..., U, and any elements t, ' € K, we have
/!
f(Ub CIE avi—lytvi +tviavi+l7 e avn) = 2ff(vla ey V-1, U4y Uggen,y s 00 7Un)+
/ /
tf(vla"'7/Ui717’Ui7,Ui+17'” 7Un)-

In particular, if f is multilinear, we have
flvr,...,0,) =0
if there exists some j such that v; = 0, and
Fo1, . 01, 05, Vi, ooy ) = Ef (V1,000 U).

EXAMPLE 3.1.2. Consider V = W = K. The multiplication map m : R?> — R such
that m(x,y) = xy is bilinear: we have

m(t1x1 + a2, y) = tiz1y + taxey = tym(z1,y) + tam(xs, y)
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and similarly m(z, t1y1 + tay2) = tym(z, y1) + taom(x, y2). More generally, for n = 1, the
map

f:K'—K

such that f(z1,...,z,) = x1---x, is multilinear.

DEFINITION 3.1.3 (Symmetric, alternating multilinear maps). Let V' and W be vector
spaces over K. Let n > 1 be an integer, and let

f:vVr—w
be a multilinear map.

(1) The map f is said to be symmetric, if f(vy,...,v,) is not changed when two
arguments v; and v; are exchanged:

f(Ul, ... ,’Un) = f(’Ul, ey U1, U5, Vg1, - o253 V=1, U3y Vg1, - v ,Un)
for all (vq,...,v,) € V™.
(2) The map f is said to be alternating, if f(vi,...,v,) = Oy whenever two argu-

ments at least are equal, namely, whenever there exists ¢ 4 j such that v; = v;.

LEMMA 3.1.4. Let f : V™ — W be an alternating multilinear map.
(1) The value of f changes sign when two arguments v; and v; are exchanged:
f(l)l, Ce ,’Un) = —f(’Ul, N ,vi_l,vj,viﬂ, ce ,Uj_l, vi,vjﬂ, N 7Un)
for all (vy,...,v,) € V™ and all i % j.
(2) If there is a linear relation
t1v1+---+tnvn :OV

with not all t; zero, then f(vy,...,v,) = Ow.
(3) Let 1 <i<n andlett; e K for 1 <j<mn. Denote

w = Z tjUj.
JFi
Then
f(vlw -y V-1,V + W, Vg, - - 7vn> = f(vlw c 7vn)7
or in other words: the value of f is unchanged if one of the arguments v; is replaced by
v; + w, where w is a linear combination of the other arguments.

PRrROOF. (1) Consider

1, 01, 0+ U, Vi, U1, Vs U U, )

Since f is alternating, this is equal to Oy,. On the other hand, using the linearity with
respect to the i-th and j-th argument, we get

Ow = f(Ul, cee ,Un) + f(Ub ey Vi—1, V5, Vi1, - o o3 Vj—1, Vg Vg, - )
+ f(’Ul, ey Vi1,V V541 -4t 7Uj—laviyvj+17 .. )
+ f(v1, .00, Vst U, Vig s -, Ui, Uy Vg, - - ),

and the last two terms are also zero by the alternating property.
(2) Suppose that ¢; + 0. Then we get

Vi = — Z %'Uj,

1<j<n g
J¥t
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and by multilinearity
t:
f(vla s 7Un) = - Z t_jf(vla ey U1, V5, Vg1, - - 7Un) = OW
1<j<n
J*i
by applying the alternating property to each of the values of f, where the j-th and i-th
arguments are the same.

(3) By multilinearity, we have

Fo1, o 01,0+ W, 01, 0,) = (U1, V1, U Vi, e Up)
+ f(V1, e V1, W,y Vi, ey Uy).
The element w satisfies
1'1,U*th1)j = 0,
J¥t
so by (2) the second term is equal to Oy . O

REMARK 3.1.5. For K = Q, or R or C, or most other fields, one can in fact that
the property (1) as definition of alternating multilinear maps. Indeed, if (1) holds, then
when v; = v; with 7 + j, we get by exchanging the i-th and j-th arguments the relation

flor, ..o ) = =f(vr, ..., 0,),
and for such fields, it follows that f(vy,...,v,) =0, so that f is alternating.
However, the general theory of fields (see Chapter 9) allows for the possibility that this
relation is always true (this is the case for the field Fy with two elements, for instance).
In full generality, the “correct” definition of an alternating map is that in Definition 3.1.3.

EXAMPLE 3.1.6. (1) The map f : K® — K such that

floy, ..o xn) =212y
is multilinear and symmetric.
(2) If n = 1, then any linear map is both symmetric and alternating.

THEOREM 3.1.7 (Existence and uniqueness of determinants). Let K be a field, and
let V' be a finite-dimensional vector space with dim(V) =n > 1. Let B = (eq,...,e,) be
a fixed ordered basis of V' and let tg € K be a fized element of K.

There exists a unique alternating multilinear map

Dpy, - V' — K
such that Dp 4, (e1,...,e,) = to.

For a specific choice, we obtain the determinant:

COROLLARY 3.1.8. Let K be a field, let n > 1 and let V = K" be the n-dimensional
vector space of column vectors of size n. There exists a unique alternating multilinear
map

det : V" — K
such that, for the standard basis of K", we have
1 0 0
det( Oy, (1},....[: )zl.
. . 1

PRroOOF. It suffices to take for B the standard basis of K", and t; = 1, so that
det = Dp; where D is the map of Theorem 3.1.7. |
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DEFINITION 3.1.9 (Determinant of a matrix). Let K be a field and let n > 1 be an
integer. The determinant of matrices is the map

det : M,,(K) — K

defined by det(A) = det(CY,...,C,), where the vectors C; € K" are the columns of the
matrix A.

In principle, all properties of determinants should be computable from the defining
properties of Theorem 3.1.7, since this results shows that there is a unique map with
the stated properties. We illustrate this in Section 3.4, which the reader can read now if
desired. In the two intermediate sections, we will treat the example of n = 2 and then
prove the existence and uniqueness in general.

As a matter of notation, one also denotes the determinant of a matrix A = (a;;) by
writing the matrix between “straight brackets”: for instance, we write

(s 0) =1t

c d
3.2. Example

We illustrate and motivate a bit the construction of the next section by working out
the formula for n = 2 from scratch.
For simplicity, we take V' = K? and the standard basis B = (ej, e5) with

(). »- ()

but we do not fix t;. We can interpret V2 as the space of 2 x 2 matrices by looking at
columns.
We first assume that a map
det : V2 — K
has the properties of Theorem 3.1.7, and will find a unique possible formula for it. We
will then check that this formula does indeed define an alternating bilinear map with

det(B) = to.
()6

Consider how to compute
a c
(b) = aey + bey, (d) = ceq + des,

and use linearity with respect to the first argument to get

det((Z) , (2)) = det(ae; + bey, cey + des)

= adet(eq, ce; + des) + bdet(eq, ce; + des).

We write

For each of these two expressions, we use linearity with respect to the second argument
to get

det((Z) , (2)) — a(cdet(ey, e1) + ddet(ey, e3)) + b(cdet(ez, e1) + ddet(es, €3)).

The only determinants that remain have some basis vectors as arguments! But by as-
sumption we should have det(ej,es) = to, and since det is assumed to be alternating,
we have det(ej,e;) = det(es,e2) = 0. And again because det is alternating, we have
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det(eg, €1) = — det(eq, e2) = —tg (Lemma 3.1.4 (1)). So the determinant can only be the

map given by the formula
det((Z) ) <§>> = (ad — be)ty.

Now conversely, let’s define f : V2 — K by this formula. We will check that it is
indeed alternating and bilinear, and that f(B) = t.

The last condition is immediate. For bilinearity with respect to the first argument,
we have

aq a9 C B t1a1 + tQCLg C
(n <b1) iz (b2> ’ <d>> - f<<t1b1 +t2b2> ! (d))
= t0<(t1a1 + tgag)d - (tlbl + t2b2>0)
= tlto(ald — blc) + tQto(agd — bgC)

() () +er( (). (9)

Similarly, we check the bilinearity with respect to the second argument.
To check that f is alternating, we just compute

f((Z) , (Z)) — to(ab — ab) = 0.
We conclude:

PROPOSITION 3.2.1. The determinant for M +(K) is given by
a b

det((i Z))Z ¢ d

3.3. Uniqueness and existence of the determinant

‘zad—bc.

We will prove Theorem 3.1.7 in this section. Some readers may prefer to first read the
next section, which proves the most important properties of the determinants, without
referring to any specific construction, but using instead the properties of Theorem 3.1.7
that make it unique.

For the uniqueness of the determinant, we can proceed essentially as in the previous
section.

We write B = (eq,...,€e,). Then we assume that D : V" — K has the properties
of Theorem 3.1.7.

Let vy, ..., v, be elements of V. We write

Uj = aljel S R anjen.

We want to show that D(vy,...,v,) is determined by the multilinearity, the alternating
property, and the condition D(B) = t.

We use linearity with respect to each argument in term; this will lead to a big expres-
sion for D(vy,...,v,) as a sum of n™ different terms of the type

(31) Ay, 1Aky,2 * akn’nD<€k1, Ce ,ekn),

where each index k; is between 1 and n. Among these terms, all those where there exist
v # j with k; = k; will be zero because D is alternating, and there would be twice the
same argument. So D(vq,...,v,) must be the sum of these expressions where the map
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is injective. Since this maps sends the finite set {1,...,n} to itself, this means that it is
a bijection of {1,...,n} into itself.

The integers (ki, ..., k,) are not necessarily in order. But each integer from 1 to n
appears in the list, since the map i — k; is surjective. By exchanging the k;-st argument
with that where k; = 1, and repeating, using the consequence of the alternating property
from Lemma 3.1.4 (1), we see that for each term (3.1), there is a sign € € {—1,1} such
that

D(eg,,...,ex,) =cD(e1,...,e,) = to.

Hence we find that D(vy,...,v,) can indeed take only one value if we assume the basic
properties of Theorem 3.1.7. This proves the uniqueness.

Now we consider existence. There exist a number of different proofs of the existence
of the determinant. One idea is to write down the formula that arises from the previous
argument, and to check that it works (as we did for n = 2).

We will use a slightly different idea that requires less notation. We proceed by induc-
tion on n. For n = 1, and B = (e;) a basis of V| the function

DB,to (tel) = tot
satisfies the properties of Theorem 3.1.7. Now assume that the maps of Theorem 3.1.7
exist for vector spaces of dimension n — 1 and all ¢ty € K. Define a vector space V; to be
the subspace of V' with basis By = (ex)2<i<n. S0 dim(V}) =n —1. Let f : V — V] be
the linear map such that
fltrer + -+ +tpe,) =taes + -+ + tpe, € V1.
By assumption, there exists an alternating multilinear map
Dy : VP —K
with D;(B;) = to. Then, writing as before
Vi = a1i€1 + 0+ Apiln,

we define D : V" — K by

n

(3.2) D(vy,...,v,) = Z(—l)iflauDl(f(vl), coy foisy), fUig), -0y fon)),

i=1
where the i-th term in the sum omits the i-th vector f(v;).

EXAMPLE 3.3.1. Consider V = K?. Then V; is isomorphic to K?, and the determinant
Dy is given by the previous section. This means that (for to = 1) we define

of(B)-(5)- (=2 (G)- (D =) (D o))
=a(ei — fh) —d(bi — ch) + g(bf — ce)
= aei + dhc + gbf — ceg — fha — ibd.

Coming back to the general case, we claim that this map D has all the properties we
want. First, we get
D(el, ey en) = 1 . D1(62, Ce ,€n) = Dl(Bl> = to
since a;; = 1 and ay; = 0 for 4 > 2 in that case and f(vs) = vo,..., f(v,) = vp.
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Next we check multilinearity, for instance with respect to the first argument (the
others are similar). For any
vy =dajer + o+ alen,

and any t1, t; € K, we get

D(tﬂ)l + tgvi, Vo, ... ,’Un) = (t1a11 + tz(llll)Dl(f( ), ey f(Un))+

o —

2 i alle f(tﬂ)l—l—tg’l)i),u.,f<Ui),..-7f(Un)),

(where the hat indicates that f(v;) is omitted in the argument list in the last sum). Using
the linearity of f and the multilinearity of D; with respect to the first argument, this is
equal to

t1<CL11D1(f<U2)>-- Z ) ran Dy (f (v )7m7,f(vn))>

n

o (aalD1<f<v2>, o P )+ DD T Dy (F@) - F (00 S (00)

i=2
= tlD(Ul,UQ, C ,Un) + tQD(Ui,UQ, R ,Un).
Finally we check that D is alternating, which will complete the induction step and

the proof of Theorem 3.1.7. We consider the case where v; = vy, the others being similar.
We first consider ¢ > 3 and the i-th term in (3.2) for D(vq, vy, vs,...,v,). This is

(_1)i_1@1iD1(f(U1)a f(Ul), cee f(Uifl), f(UiJrl)? ce f(vn))a

with f(v;) omitted. Since D, is alternating, this is equal to 0.
If 7 = 1, we obtain

(=)' tan Dy (f (v1), f(vs), ..., f(on)) = annDi(f(v1), f(vs), ..., f(vn)).

Similarly, for ¢ = 2, we get

(=)' a1 Dy (f(v1), f(vs), ..., f(on)) = —anDy(f(v1), f(v3), ..., f(va).

The sum of these two terms is 0, so D(vy,v1,v3,...,0,) = 0.
The basic identity used in the proof is worth stating separately for matrices.
PROPOSITION 3.3.2. Let n > 1. Let A be a matriz in M, ,(K). For1 < k,l <n

we denote by A%V the matriz in M,,_,,,_1(K) obtained from A by removing the k-th row
and [-th column.
For 1 < k < n, we have the formula

det(A) = Y (—1)""ay; det(A*),
i=1
called expansion of the determinant with respect to the k-th row.

PROOF. For k = 1, this is (3.2). The general case can be done similarly, taking care
of the signs. O

ExAMPLE 3.3.3. Let n = 3, and consider k£ = 2. Then the formula is

11 Q12 413
Q21 Q22 QA23| = —d21
31 Aaz2 ass

ail aig
ag1 ass

ailr as
ag1 ass

a2

3
+ 929
as2

— 23
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3.4. Properties of the determinant

In this section we deduce the fundamental properties of the determinant directly from
Theorem 3.1.7, without using any specific features of any construction of the determi-
nants.

THEOREM 3.4.1. Let K be a field and n = 1. The determinant

det : M, (K) — K

has the following properties:
(1) For any matrices A and B, we have

det(BA) = det(B) det(A) = det(A) det(B) = det(AB).

(2) We have det(A) = 0 if and only if A is not invertible, if and only if the columns
of A are linearly dependent, if and only if the columns of A do not form a basis of K™.
If A is invertible, then det(A™') = det(A)™!

PRrROOF. Let Bj be the standard basis of K" with column vectors forming the identity
matrix 1,,.
(1) Fix a matrix B € M, ,,(K). We consider the two maps

dp : My, (K) — K, dg : Mpn(K) — K,

defined by

dp(A) = det(BA), diz(A) = det(B) det(A).
We view these maps as defined on V", where V = K", where we interpret a matrix A as
the list of its column vectors.

The map d’y is multilinear and alternating (it is a constant times the determinant),
and d'5z(1,) = det(B) det(1,) = det(B), so that dy = Dp, 4, with to = det(B).

The map dp is also multilinear: indeed, dg = det omp, where mg : V" — V" is
the map corresponding to multiplication by B on the left. This map is linear, hence the
composite is multilinear.

The map dp is alternating: indeed, if A has two columns equal, then mp(A) also does
(since the columns of BA are the products of B with the columns of A, see Example 2.2.4
(2)). Hence dg(A) = det(mp(A)) = 0.

It follows from Theorem 3.1.7 that dgp = Dp,,, with t; = dp(1,) = det(B) = t.
Therefore the maps dp and dz coincide, which means that

det(BA) = det(B) det(A)

for all A e M, ,(K). Since this is valid for all B, we get the result.

(2) Assume first that A is not invertible. This means that the linear map f4 is
not surjective (Proposition 2.3.11 and Corollary 2.8.5), and therefore that the n column
vectors (C1,...,C,) of A, which generate the image of f4, cannot form an ordered basis
of K”. So they cannot be linearly independent and there exist elements of K, not all 0,
such that

tCy + -+ 6,0, =0,

Then Lemma 3.1.4 (2) shows that det(A) = 0.
Now suppose that det(A) = 0. Then A cannot be invertible: if it were, there would
exist a matrix B with BA = 1,,, and then (1) implies that

det(B) det(A) = det(BA) = det(1,) = 1,
which is a contradiction. So A is not invertible.
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Finally, for a matrix A € M, ,(K), we already know that A is not invertible if and
only if the columns of A do not form a basis of K™, and since there are n elements, this

is if and only if the columns of A are not linearly independent.
From 1 = det(1,) = det(AA™!) = det(A) det(A™1), we get det(A™1) = det(A)~L. O

ExXAMPLE 3.4.2. For instance, for any invertible matrix A and any matrix B, we get
det(ABA™) = det(B),
and if A and B are invertible, then
det(ABA'B™!) = 1.

COROLLARY 3.4.3. Let K be a field and n > 1. For A = (a;;) upper-triangular (resp.
lower-triangular), we have
det(A) = ay;1 -+ - apn,

the product of the diagonal coefficients.

PrRoOF. We first consider upper-triangular matrices. We then use induction on n.
For n = 1, we have det(a) = a, and there is nothing to prove. Assume now that the

statement holds for upper-triangular matrices of size n — 1.
Let

a11

0 -+ 0 ap,
be upper-triangular. We denote by A; the matrix

22

A = 0  ass

0 o 0
which is upper-triangular of size n — 1. By induction we have
det(A1) = ags - anp,
and it suffices therefore to prove that
det(A) = ay; det(Ay)

to conclude.
In fact, we claim that for any matrix B € M,,_; ,,—1(K), we have

(3.3) det((a(l)l %)) _ 4y, det(B)

where @’ = (a1;)2<i<n, and where we write the matrix in block form.
To prove (3.3), we first note that it is true if a;; = 0, since both sides are then zero.
/
Suppose then that a;; + 0. Write C; the columns of the matrix (aél %) Then by
w f—

Lemma 3.1.4 (3), applied successively with w = —aj/a1,C4, ...,
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get

0 B ail
- det(cl’ 02 o &Ol’ 03 - mCl) LR Cn - mCl)

all ail all

o a1q 0
= det (( 0 B) )
By linearity with respect to the first column, we get

det((a(l)1 g)) = and(B),

where d : M, ,—1(K) — K is the map

d(B) = det((é g))

The map d is multilinear (viewing M,_1,_1(K) as (K" !)""! using the columns of
a matrix, as usual). It is alternating, since if B has two columns equal, then so does

det((““ a )) — det(Cy, Cy — 920y, Cy, .., Ch)

the matrix <(1) g) Finally, we have d(1,_;) = det(1,) = 1. We conclude from The-

orem 3.1.7 that d(B) = det(B) for all matrices B € M, ,-1(K). Hence we conclude
that

det(<“5l %)) _ and(B) — ay det(B),

proving (3.3).
Now consider lower-triangular matrices. Again by induction on n > 1, it suffices to
prove that

(3.4) det((aal,l g)) — a1 det(B)

for any a;; € K and any matrix B € M,,_1,_1(K), where o’ = (a;1)2<i<n denotes an
arbitrary (fixed) vector in K.

As a function of B, the left-hand side of (3.4) is directly seen to be multilinear and
alternating, because the determinant is (it is important that the coefficients on the first
row, except maybe for a1y, are zero, because it means that if two columns of B are equal,

then two columns of Cla1/1 g are equal). Finally, we compute for B = 1,,_; that

a 0 n
det(( al,l 1n1)> = ay det(1,) + ;aﬂ det(e;, ea,...,6)

= ai

by using the multilinearity with respect to the first column and the alternating property.

So we must have
a 0
det(( alll B)) = a1 det(B)

for any B € M,,_1,-1(K), by uniqueness in Theorem 3.1.7. OJ

This corollary provides what is often the quickest way to compute a determinant in
practice, using the Gauss Elimination Algorithm.
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COROLLARY 3.4.4. Let A € M, ,(K), and let A" = (aj;) be a REF matriz obtained
from A by the Gauss Algorithm. Then det(A) = (—1)*det(A’) where k is the number
of exchange of rows during the reduction of A to A’. Since A’ is upper-triangular, this
means that

det(A) = (=1)*a}, - -

ProOOF. By Lemma 2.10.8, the elementary operations in the steps
A=Ag o Al v oo Ap = A
leading to A’ can be represented by
A1 = BrAy

for some matrix By. Therefore det(Ay,1) = det(By) det(Ag), and in particular we obtain
the formula for det(A) provided: (1) we have det(By) = —1 if the step Ay v Agiq is
an exchange of rows; (2) we have det(By) = 1 if the step Ay v~ Aji1 is a row operation
R; = R; —tR;.

In the first case, Lemma 2.10.8 shows that Bj is the matrix obtained from 1, by
exchanging two columns; but then by the alternating property of Lemma 3.1.4 (1), we
have det(By) = —det(1,) = —1.

In the second case, Lemma 2.10.8 shows that B, = 1, — tE;; with j + ¢. This
matrix is either upper-triangular (if j > i) or lower-triangular (if j < ), and its diagonal
coefficients are equal to 1. Therefore Corollary 3.4.3 shows that det(1, —tE;;) =1. O

REMARK 3.4.5. If there is no exchange of rows in the REF reduction then the LR de-
composition (Proposition 2.10.19) gives A = LR with L lower-triangular with coefficients
1 on the diagonal, and R upper-triangular (and is in fact the REF matrix associated to
A). Then det(A) = det(R) by Corollary 3.4.3.

We considered matrices as elements of V" for V' = K" the space of column vectors.
We might also have viewed M, ,(K) as W™, where W = K,, = M; ,(K) is the space of
row vectors. By Theorem 3.1.7, there exists a unique map

det’ : Mon(K) — K

which is an alternating multilinear map of the rows of a matrix A € M, ,(K), and such
that det’(1,) = 1, where we view 1, as the sequence of n successive row vectors

((1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)).

EXAMPLE 3.4.6. For n = 1, we have det’'(a) = a = det(a). For n = 2, we can
computer det’ as in Section 3.2 (note that we already know that det’ exists). Write
fi=1(1,0), and fo = (0,1), so that (fi, f2) is a basis of Ky. Then

(2 1)

det’(afi + bfa, cfi + df2)
= acdet’(f1, f1) + addet'(f1, fo) + bedet'(fs, f1) + bd det'(fs, f2)

—ad—bc—det<<‘; Z))

The fact that det = det’ for n = 1 and n = 2 extends to the general case. To prove
this, it is useful to also consider the transpose of a matrix, which reverses the roles of
columns and rows.
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DEFINITION 3.4.7 (Transpose). Let n > 1 and m > 1 be integers. For A = (a;;) €
M, »(K), we denote by ‘A the transpose of A, which is the matrix in M, ,,,(K) with
A = (a;).

In other words, the column vectors of A are the row vectors of *A.

EXAMPLE 3.4.8. (1) Let A = (g —48 ;) Then
2 0
tA=14 -8
1 2

(2) Let Ejj € M, ,(K) be the usual matrix with a single coefficient 1 on the i-th row
and j-th column (see Example 2.6.5 (4)). Then 'E;; = E;; € M, »(K).

LEMMA 3.4.9. The transpose map My, ,(K) — M, ,,(K) is linear and is an isomor-
phism.

PROOF. The linearity is easy to check. Moreover we have {(*A) = A, so that the
transpose is a bijection, with reciprocal bijection given by the transpose on M, ,,,(K). O

PROPOSITION 3.4.10. Let n > 1 be an integer. We have det(A) = det(*A) = det'(A)
for any A e M, ,(K).

PROOF. We begin by proving that det’(A) = det(*A) for any matrix A € M, ,,(K).
Indeed, because the transpose exchanges rows and columns, the map d : M, ,(K) — K
defined by d(A) = det(*A) is a multilinear map of the rows, and it is alternating, since
if a matrix A has two equal rows, then ‘A has two equal columns, so that det(*A) = 0.
Since '1,, = 1,,, we have d(A) = 1. So by the unicity of det’ from Theorem 3.1.7, we have
d = det’.

Now, we check that det’ = det. First of all, arguing as in Theorem 3.4.1 (but using
B — det/(BA), because multiplication on the right by a fixed matrix corresponds to
operations on the rows instead of columns), we obtain the property

det’(AB) = det’(A) det'(B),
for any A and B in M,, ,(K). Then, proceeding as in Corollary 3.4.3 and Corollary 3.4.4,
we get
det’(4) = (-1)*d}; -~ ay,,

where A" = (aj;) is the REF reduction of A, k being the number of exchanges of rows in
the reduction. This means that det’(A) = det(A). O

Further properties of the tranpose (and a “theoretical” interpretation) will be found
in Chapter 8.

3.5. The Vandermonde determinant

The following determinant, known as the Vandermonde determinant, is both a very
good example of computing determinants and an important result for many applications.
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ProOPOSITION 3.5.1 (Vandermonde determinant). Let n > 1, and let ty, ..., t, be
elements of K. Let A = (") 1<i<n. Then we have

1<j<n
det(A) = ] (t;—t),
1<i<j<sn
with the convention that the product, which is empty, is equal to 1 if n = 1. In particular,
we have det(A) = 0 if and only if two or more of the elements t; are equal.

For instance, in the cases n = 2 and n = 3, this corresponds to the following deter-
minants:

- 1t ¢
‘1 tl =ty —t1, |1 t2 3] = (ts—t2)(ts — t1)(t2 — t1).

2 1 t3 t2

3 3

PRrOOF. We proceed by induction on n. For n =1 or n = 2, the result is clear. Now
suppose the formula holds for Vandermonde determinants of size n — 1. Let A = (¢] e
M, (K).

We subtract the first row from the second row; this leaves unchanged the determinant
(Lemma 3.1.4, (3), and Proposition 3.4.10, since we apply a transformation of the rows)
SO

1 t e =t

0 to—t; --- ty bt
det(A) =1 ts -+ 57"

1 tn o tzfl

We repeat with the third row, replaced by R3 — R;, and so on, up to the n-th row, and
obtain

1 t ¢t

0 to—t; --- tyt—ygnt
det(A)=|. = 4 . |

0 t,—t --- 71—yt

Note that for ¢ > 2 and 57 > 1, we have
-t = (=t 7 -t

(with the convention that the second factor is just 1 for j = 1). Hence by the multilinearity
with respect to the rows, applied to the second, third, etc, up to the n-th row, we get

1 # t?*l
0 1 to+ty - 524 g2

det(A) = (ts — 1)+ (tn — 1)
0 1 tp+ty - V24 402
By the formula (3.3) used in the proof of Corollary 3.4.3, this is the same as
1 todty - 0724 g2
1ty +ty - 724 g2
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The second column here is
ta +t1 ty 1
: =1 ]+h]|:
b + 1 tn 1

So, by Lemma 3.1.4 (3), we get

1ty B4tta+t2 o 024 72
det(A) = (t2 —t1) -+ (ta — 1) | :
1ty 2 +tt, +12 0 V2 g2

Then the columns Cj of this new matrix satisfy the relation

t3
Cs —t2C) —t,Cy = |
t2

so that (Lemma 3.1.4 again) we have

1oty t2 - 0724 g2
det(A) = (to —t1) -+ (tn — 1) | :
1 t, 2 - 24 g2

Repeating with each successive column, we get

1ty t2 - 572
det(A) = (L2 —t1) -+ (L, — 1) | :
1 t, t2 - "2

The last determinant is the Vandermonde determinant of size n — 1 associated to
(ta,...,t,). By induction we get

det(A) = (o —t1) - (ta—1) [ t;—t)= [[ @t

2<i<j<n 1<i<j<n

which concludes the induction. O

3.6. Permutations

DEFINITION 3.6.1 (Permutation). Let n > 1 be an integer. A permutation of n
elements is a bijection
o:{l,....n} —{1,...,n}.
We denote by S,, the set of all permutations of n elements. We also denote by o7 or o -7
the composition ¢ o 7 of two permutations, and often call it the product of o and 7, and
by 1 the identity map on {1,...,n}, which is a permutation of n elements. We say that
the inverse permutation o~! is the inverse of o in S,,. We also write

% =17, " =717 (for n > 1, n times), 7" = (7)™

The following proposition summarizes known properties of composition, and of the
number of bijections of a set with n elements.
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PROPOSITION 3.6.2. Let n > 1 be an integer.
(1) The product on S, and the inverse satisfy the rules:

o1(0903) = (0102)03, oot =1=0"0, c-l=1-0=0
for all permutations o, oy, 03, 03 N S,.
(2) The set S, is finite and Card(S,) = n!.

EXAMPLE 3.6.3. It is often useful to represent a permutation ¢ by a matrix with two

rows, where the columns are (O‘ZZ)) for 1 <4 < n. Consider for instance the permutation

1 23 45
341 5 2

(ie, 0(1) =3, ..., 0(5) = 2). Then P, is the matrix

00100
00001
1 00 00O
01 000
00010

We can associate a matrix in M, ,(K) to a permutation of n elements.

DEFINITION 3.6.4 (Permutation matrix). Let n > 1 be an integer and o a permutation
of n elements. Let B = (ey, ..., e,) be the standard basis of K" (see Example 2.6.5 (3)).
The permutation matrix P, associated to o is the matrix with column vectors

60(1)7 s 760'(n)7

or in other words the matrix of the linear map K" — K" that maps e¢; to e,(; for
1<i<n

PROPOSITION 3.6.5. Let n > 1 be an integer. We have P, = 1,,. Moreover we have

PO'T = PO'PT

for all ¢ and 7 in S, and any permutation matriz is invertible with P;' = P,-1.

PROOF OF PROPOSITION 3.6.5. It is clear that P, = 1,,. We next show that P,, =
Py P;. The i-th column of P,; is e,.(;). The i-th column of P, P; is P, Pre; = Prer;) =
€o(r(i)) = €or(i)- SO the two matrices are the same.

It follows that
P,P.v=P,,1=P =1,,
and similarly P,-1 P, = 1, so that P, is invertible and its inverse if P,-1. O
DEFINITION 3.6.6 (Signature). Let o be a permutation of n elements. The signature

sgn(o) is the determinant of P,. It is a non-zero element of K and satisfies

sgn(1) =1, sgn(o7) = sgn(o)sgn(r), sgn(o~!) = sgn(o)~t.

The properties stated in the definition follow from Proposition 3.6.5 and from the fact
that det(AB) = det(A) det(B).

DEFINITION 3.6.7 (Transposition). Let n > 1 and let ¢ + j be two integers such that
1 <,7 < n. The transposition 7, ; € S,, exchanging ¢ and j is the bijection defined by

Ti,j(i) = Ti,j(j) =1, Ti,j(k> =kif k ¢ {7’7]}
The inverse of 7; ; is 7; ; itself.
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The permutation matrix P, is obtained from 1, by exchanging the i-th and j-th
columns, or by exchanging the i-th and j-th rows. In particular, since the determinant
is an alternating function of the columns of a matrix, we have

(3.5) sgn(7;;) = det(Pr, ;) = —det(1,) = —1.

It turns out that transpositions, although they are very simple, can lead to information
about all permutations, because of the following lemma:

LEMMA 3.6.8. Letn >1 and o € S,,. There exists m = 0 and transpositions
Tlye ooy Tm
such that
O' e 7'1 o .. Tm7

with the convention that for m = 0, the product of transpositions is 1.

PrROOF. We prove this by induction on n. For n = 1, ¢ = 1 is the only element of
S,, and is the case m = 0. Assume the statement holds for S,,_;.

Let o € S,,. Consider k = o(n). Let 7 = 7, . Then the permutation oy = 70 satisfies
Tto(n) = 7(k) = n. Therefore the restriction of oy to {1,...,n — 1} is an element of
Sn—1. By induction, we find m > 0 and transpositions 7, ..., 7, (exchanging elements
of {1,...,n — 1}) such that

TO=T1 T
Multiplying on the left with 7, and using 72 = 1, we get
O=TT " Tnm.

g

EXAMPLE 3.6.9. Intuitively, this just says that we can re-order a list of n numbers
by a finite sequence of exchanges involving only two numbers.
For instance, consider the permutation o of 7 elements given by

1 23456 7
36 25 17 4)°
To express it as a product of transpositions, we can proceed as follows:

2 3 45 6 7 (start)
71,3
T2,6
73,6
T4,5
75,6
Te,7

oL W W W L
SO O N
OO N R
ST O W
N S, IS,
I R NN
INOPS RN IEN RN N

i.e., we have
0 = T1,372,673,674,575,676,7-
(For instance, by composition, we get indeed 7 — 6 — 5 +— 4, etc).
Here is an example of using transpositions to deduce information about all permuta-
tions.
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PROPOSITION 3.6.10. Let n > 1 be an integer and o € S,,.

(1) The signature of o is either 1 or —1; precisely, if o is a product of m > 0
transpositions, then sgn(o) = det(P,) = (—1)™.

(2) The REF of the permutation matriz P, is 1,,, and can be obtained by row exchanges
only. We have det(P,) = (—1)™, where m = 0 is the number of row exchanges involved.

PRrOOF. (1) If 0 = 7;; is a transposition, we already saw in (3.5) that sgn(r; ;) = —1.
Let then m > 0 and 7, ..., 7, be transpositions such that

O=T1"Tp
(Lemma 3.6.8). Then the multiplicativity of the determinant shows that sgn(c) =
det(P,) = (—1)™.
(2) Write again ¢ = 7y - -+ 7,,. Then P, is obtained from 1, by m exchanges of rows,
so the REF matrix is 1,,. We get

P,=P, ---P

Tm

and therefore det(P,) = (—1)™. O

Permutations and their signatures provide a “formula” for the determinant:

PROPOSITION 3.6.11 (Leibniz formula). Let n > 1 be an integer and let A = (a;;) €
M, »(K). Then we have

(3.6) det(A) = 2 SgN(0)A10(1) - Uno(n)-

o€ESy

ProOOF. Let d : M, ,(K) — K be the map determined by the right-hand side
of (3.6). We will show that this satisfies the conditions of Theorem 3.1.7.

First we compute d(1,). The coefficients a;; of 1,, are zero unless i = j, so that in the
sum, we will get

A15(1) " " Anpg(n) = 0

unless o(1) = 1, ..., o(n) = n, which means unless o = 1. Then sgn(1) = 1, so we get
d(1,) = 1.

For multilinearity, consider the k-th argument, and let A" be the matrix with coeffi-
cients a;; where the k-th column is given by

/
a;, = t1a, + tabig,

and aj; = a;; if j # k (this corresponds to linearity with respect to the k-th column).
Then

d(A’) = Z sgn(0)ais(1) - - Gi1,0(i-1) (tlaia(i) + thio(i))ai+1,a(i+1) * lpg(n)

o€eS,

=1 Z sgn(0)a15(1)  * * Wi1,0(i-1)Gio () Vit1,0(i+1) * * * Ono(n)
o€S,

+to 2 Sgﬂ(lf)am(l) CAi—1,0(i—1) Abo (i) Ai4-1,0(i+1) * * * Ano(n)
o€eS,

— t1d(A) + t2d(B)

where B is the matrix with the same columns as A, except that the k-th is (b;,). This
proves the multilinearity of d with respect to columns.
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Now suppose that the k-th and [-th columns of A are equal with k& < [. This means
that for 1 < i < n, we have

(37) Qi = Qg
In the definition of d(A), we separate those o € S,, with sgn(c) = 1 and the others, so

that

d(A) = Z A15(1) " Ano(n) — Z A15(1) " " Apo(n)-

UESn UESn
sgn(o)=1 sgn(o)=—1

Let 7 be the transposition exchanging k and [. If o satisfies sgn(o) = 1, then sgn(ro) =
—1. Moreover, since 72> = 77 = 1, any o with sgn(c) = —1 can be expressed as o = 70,
with o7 = 70 such that sgn(o;) = 1. This means that we can in fact write

d<A) = Z (ala(l) ©Ono(n) — Alro(1) " an,ra(n)) .

0€Spsgn(o)=1
But for 7 such that o(i) ¢ {k, [}, we have
@i o(i) = Wiro(i),

while, according to (3.7), for i = o7!(k), so that o(i) = k, we have

Qio(i) = Ao=1(k),k = Ao=1(k)l = Ao=1(k),r(k) = Qi,ro(i)>
and for i = o7 1(1), we get

Qjo(i) = Qo=1(1),0 = Ao=1(1),k = Ao=1(1),7(1) = Gi,ro(i)-
So for each o € S,, with sgn(o) = 1, we deduce that

A15(1) " " Ano(n) = A1,90(1) " * * On,go(n)s

and hence finally that d(A) = 0.
U

EXERCISE 3.6.12. Using the formula (3.6), try to prove all properties of Section 3.4,
using only the properties of the signature in Definition 3.6.6.
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CHAPTER 4

Endomorphisms

4.1. Sums and direct sums of vector spaces

DEFINITION 4.1.1 (Sums of subspaces). Let V' be a K-vector space, and let (V;);c; be
any vector subspaces of V. The sum of the subspaces V;, denoted >V}, is the vector
space generated by the union of the subspaces V;. If I = {1,...,n}, we also write

dDVi=Vi+-+ V.

LEMMA 4.1.2. The space >, V; is the space of all vectors v € V' that one can express
in the form

(4.1) v = Z Vs,

el
where v; € V; for each i and v; = 0 except for i in a finite subset J < I, that may depends
on v.

PROOF. Let S be the union of the subspaces V;, so that >, V; = (S), and let W be the
set of all vectors of the form (4.1). All vectors in W are expressed as linear combinations
of the vectors v;, which belong to S, so that they belong to (S). Hence W < (S).

Conversely, let v be an element of . V;. By definition, we have

v=1tiwy + -+ Wy,

for some m > 0, with ¢, € K and w,, € S for all k. For each k, since w;, € S, there exists
an index i(k) such that wy, € Vi), and hence t,wy, € V() also (since each V; is a subspace
of V). For each i, let v; be the sum of tywy for all those k such that i(k) = i. Then
v; € V;, and what we observed shows that v is the sum of the vectors v;, so that v belongs
to W. Hence (S) < W, and we conclude that there is equality. U

If I ={1,...,n} for some n > 1 (as will very often be the case), this means that the
elements of V| + - -- 4+ V,, are all vectors of the type

U+ Uy
where v; € V;.

EXAMPLE 4.1.3. (1) Let S < V be a generating set of V', and for v € S, let W, be
the space generated by v (the set of all tv where ¢t € K). Then the sum of the subspaces
W, is equal to V', by the very definition of a generating set.

(2) Let n > 1 be an integer and let V' = C". Consider the subspaces of V' given by

131
W1={ : |t1+-~+tn=0},
tn
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and

Wy =<{vgy, where wvy=

Then W7 + Wy = V. Indeed, by the lemma, it suffices to show that if v € C", we can
write v = v + vg, where vy € Wy and ve € Wy, To do this, let v = (¢;)1<i<n. Define

1
t=—(t1+--+t,) € C,
n

and v; = v — tvg. Then the coordinates of vy are (t; —t,...,t, —t), with sum equal to
th+--+t, —nt=0.

Hence v, € Wj. Since tvy € Ws, the decomposition v = vy + tvg shows that v € Wi + W.

(3) The following simple facts (left as exercises) show in particular that the notation
Vi + -+ V, must be taken with some care: it does not always behave like a sum of
numbers:

e We have V) + Vo = V4 + Vj for all subspaces V; and V;, and (V) + V) + V3 =
Vi + (Vo + Vi) for all subspaces Vi, V; and Vi;

e We have V1+V; = Vj for all V] < V; more generally, if V, < Vi, then Vo+ V) = Vi;

e We have V + V; =V and V] + {0} = V] for any subspace V;;

o If Vi + V5 = V) + Vi, then it does not follow that V, = V3 (see Example 4.1.14
(2) below)!

REMARK 4.1.4. Using the Gauss Algorithm, one can compute the sum of finitely
many subspaces Vi, ..., V,, of a finite-dimensional vector space V as follows:

e Find ordered bases B; of V;;
e Compute the subset generated by the union of the B;, as described in Applica-
tion 6 of the Gauss Elimination algorithm.

DEFINITION 4.1.5 (Direct sum). Let V' be a K-vector space, and let (V;);e; be any
vector subspaces of V. We say that the sum of the subspaces V; is direct, or that the
subspaces are linearly independent if any relation

Z/UZ':O

for some v; € V;, where only finitely many v; are non-zero, implies that v; = 0 for all 7.
In this case, we denote by
DV

el
the sum of the spaces V;. If I = {1,...,n}, we write also
V-V,
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PROPOSITION 4.1.6. Let V' be a K-vector space, and let (V;);e; be any vector subspaces
of V.. Let W be the sum of the V;’s.

(1) The subspaces V; are in direct sum if and only if, for any i € I, there is no non-
zero vector v € V; that belongs to the sum of the other spaces (V;);xi. In particular, if
I = {1,2}, two subspaces V| and Vy are in direct sum if and only if Vi n Vy = {0}.

(2) If the subspaces V; are in direct sum, then any v e W is in a unique way the sum
of vectors v; € V;, in the sense that if

V= Z v, = Z W,
i€l i€l
with v; and w; in V;, and only finitely many are non-zero, then v; = w; for all 7.

(3) If the subspaces V; are in direct sum, and if v; € V; are non-zero vectors, then the

subset {v;} of V' is linearly independent.

PROOF. (1) Suppose the spaces are in direct sum, and fix i € . If a vector v € V;
belongs to the sum of the spaces V; with j ¢y, we get

V= Z 'Uj
J¥io
for some vectors v; € V;. But then, putting v;, = —v, we get
Z Uy = 07
el

hence by definition of the direct sum, it follows that —v = v;, = 0, so v is zero. Conversely,
assume the condition in (1), and let v; € V; be vectors, all zero except finitely many, such

that
Z vV, = 0.
el
For each ig, we deduce
—Vip = ZUJEZV}?
g0 j+io

so that the assumption implies that v;, = 0. Hence all v; are zero.
(2) We suppose that the spaces are in direct sum. If

Zvi =Zwi,

iel iel
then we have
Z(Ui - wl) = 07
el

hence v; = w; for all 7.
(3) To prove that {v;} are linearly independent, let t;, for i € I, be elements of K,
with ¢t; = 0 for all but finitely many ¢, such that

Then t;v; € V; and since the spaces are in direct sum, this means that t;v; = 0 for all .
This implies ¢; = 0 since we assumed that the vectors are non-zero. U
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EXAMPLE 4.1.7. (1) Let V be finite-dimensional and let B be a basis of V. If By, ...,
B,, are disjoint subsets of B with union equal to B, and if V; is the subspace generated
by B;, then the spaces V; are in direct sum and

@ vi-v

1<isn

Indeed, suppose that v; € V; are such that
v+ -+ v, =0.

Each v; is a linear combination of the vectors w € B;; expressing them in this way, the
equation becomes a linear combination of vectors of B that is zero; then each coefficient
is zero, which means that v; = 0 for all 7.

(2) Let n = 1 and let V = K" and W, and W5 be the subspaces in Example 4.1.3.
Then Wy and Wy are in direct sum. Indeed, if v € W n Wy then v = (t,...,t,) with
ty +---+1t, =0, and all ¢; are equal, which means that ¢; = 0 for all 7.

(3) Let V.= M, ,,(K) and let W, (resp. W_) be the space of upper-triangular (resp.
lower-triangular) matrices. Then V' = W; 4+ W5, because any matrix A = (a;;) can be
writen A = B + C where B = (b;;) and C' = (¢;;) with
and B is then upper-triangular while C' is lower-triangular.

However, the sum W, + Wj is not direct, since the intersection W7 n W5 is the space
of diagonal matrices.

DEFINITION 4.1.8 (External direct sum). Let (V;);e; be K-vector spaces. The space
V' = {(vi)ier | vi =0 for all i except finitely many}
with the zero element 0 = (0y; );c; and the operations
t- (vi)i = (tvg)s, (vi)i + (wi)i = (vi + wi)s

is a vector space, called the external direct sum of the spaces V;. It is also denoted

D Vi or [HV

el el

If I is finite, one also writes

C—B Vi= Vi = prodierVi.

el iel

REMARK 4.1.9. One must be careful that the notation @ V; is ambiguous if all the
spaces V; are subspaces of a given vector space V! We will carefully distinguish between
the sum as subspaces and the “external” direct sum, but not all books do so...

It is left as an exercise to check that this space is a vector space.

LEMMA 4.1.10. If V; are finite-dimensional vector spaces for 1 < i < n, then the

external direct sum
V = Vi

1<i<n

is finite-dimensional and has dimension
dim(V4) + - - - + dim(V;,).
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PRrOOF. For each i, let B; = {v;; | 1 <j < dim(V;)} be a basis of V;. Let ¢;: V; = V
be the map
wi(v) =(0,...,0,0,0,...,0) Vi x -+ x V; x -+ x V,.
This map is linear (exercise) and injective, since its kernel is immediately seen to be {0}.
Let B < V be the set of all vectors ¢;(v; ;) where 1 <i <mnand 1< j <dim(V;). We
claim that it a basis of V. Indeed, for any (v;)1<i<n € V, we can write

v =(v1,0,...,0) + (0,v9,0,...) + -+ (0,0,...,0,v,) = p1(v1) + -+ + pn(vn)

in V| and then since v; is a linear combination of the elements of B;, we obtain a linear
combination of vectors in B representing v. Therefore B is a generating set for V.
Moreover, it is linearly independent since (vq,...,v,) = 0 in V if and only if v; = 0 for
all 7, and since B; is a basis. Precisely, assume that

n
=1

in V; looking at the i-th component of this equality, we get

dim(V;)
tijpi(vi) =0
1

j=

dim(V;)
tijvij =0,
j=1
which implies ¢; ; = 0 for all j, since B; is a basis of V;; this holds for all ¢, and therefore
the elements of B are linearly independent.

Finally, the cardinality of B is dim(V;) + - - - + dim(V},), since @;(v;x) = ©;(v;;), for
l<i<nandl<j<dim(V;), 1 <! <dim(V;) imply that implies that i = j (otherwise
the vectors “live” in different factors of the product) and then that v, = v;; because ;
is injective. O

PROPOSITION 4.1.11. Let Vi and Va be subspaces of a vector space V. We have

dim(V; 4+ V3) + dim(V; n V3) = dim(V}) + dim(V3),

and Vi and Vy are in direct sum if and only if Vi n'Vy = {0}, if and only if dim (V) + V3) =
dim(V;) + dim(V5).

Proor. We prove this only when V; and V5, are finite-dimensional, although the
statement — properly interpreted — is valid in all cases.
Consider the external direct sum

W=VidV, =V x 1.
Define a map f: W — V by
f(v1,v9) = v + va.
It is linear. Therefore we have
dim Im(f) = dim(W) — dim Ker(f)

(Theorem 2.8.4). However, the image of f is the set of sums v; + vy where v; € V;,
and is therefore the sum V) + V5. The previous lemma also shows that dim(W) =
dim(V}) 4+ dim(V5). It remains to prove that dim Ker(f) = dim(V; n V%) to conclude. But
indeed, if f(vy,v9) = 0, we get v; = —v9, so that vy € Vo nVj and vy € V] N Va; conversely,
if v e Vi nVs, then (v, —v) € Ker(f). The linear map g: V; n Vo — Ker(f) such that
g(v) = (v, —v) is therefore well-defined, and it is an isomorphism since (v, v9) +— vy is an
inverse. Hence dim Ker(f) = dim(V; n V3), as expected. O
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DEFINITION 4.1.12 (Complement). Let V' be a vector space and W a subspace of V.

A complement W’ of W in V', or complementary subspace of W in V, is a subspace
of V such that the sum of W and W’ is direct and W @ W' = V.

In particular, if V' is finite-dimensional, then a complement of W must have dimension
dim (V') — dim(W) by Proposition 4.1.11.

LEMMA 4.1.13. Let V' be a vector space and W a subspace of V. There always ezists
a complement of W. In fact, if S is a basis of W, there exists a subset S of V' such that
S U S is a basis of V', and the subspace W' generated by S’ is a complement of W,

PROOF. Let S be a basis of W. Then S is linearly independent in V', so there exists,
as claimed, a subset S” of V' such that S U S’ is a basis of V' (Theorem 2.7.1 (2)). We
now check that the subspace W’ generated by S’ is indeed a complement of .

First, W and W' are in direct sum, since if we have

w+w =0

with w € W and w’ € W', writing these as linear combinations of S and 5" will imply
that each coefficient is zero, hence also w = 0 and w’' = 0. So W + W' =W @ W'. But
since S U S’ is a basis of V', we have W + W’ =V hence W @ W' = V| as claimed. [

EXAMPLE 4.1.14. (1) For a subspace W of V| a complement of W is equal to {0} if
and only if W = V.

(2) One should be careful that in general there are many complements of a given
subspace! In other words, one cannot “simplify” in a direct sum: the equation V =
Vi® Vs = Vi @ Vs does not imply that V, = V3. For instance, let V = K2, and let V; be

the space generated by the vector e; = . A complement of V; has dimension 1, so it

1
0
a

b)' Because of Proposition 4.1.11, we have V; @ V5, = K?

is generated by a vector v = (

if and only if V; n V4 = {0}, and this happens if and only if b & 0. So all vectors (Z)

with b # 0 generate a complement of V;.

(3) Let Vi < V be a subspace such that dim(V;) = dim(V) — 1. Then a complement
Vy of Vi has dimension 1. It is generated by a single non-zero vector v, € V., and
the necessary and sufficient condition for the one-dimensional space Vo = (vy) to be a
complement of V] is that vy ¢ V;. Indeed, if vy ¢ V7, the space V; + V5 contains V; and a
vector not in V7, so its dimension is strictly larger than that of V;, and this means that
dim(V; + V5) = dim(V;) + 1 = dim(V'), which by Proposition 4.1.11 means that V; and
V5 are in direct sum, so that V5 is a complement of V. Conversely, if V; + V5, =V, then
9 cannot be an element of V].

4.2. Endomorphisms

As already mentioned in Example 2.4.2 (2), an endomorphism of a vector space V' is a
linear map from V to V. The space of all endomorphisms of V' is a vector space denoted
Endk (V). If V is finite-dimensional, then dim(Endg (V') = dim(V')2.

Endomorphisms are important for many reasons in applications. In physics, for in-
stance, they are crucial to quantum mechanics, because observable quantities (e.g., energy,
momentum) are represented by endomorphisms of certain vector spaces. Mathematically,
the essential feature is that composing endomorphisms leads to other endomorphisms
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(similar to the composition of permutations being another permutation): if V' is a K-
vector space and f, g are elements of Endk (1), then fog is also an element of Endk (V).
We often call f o g the product of f and g, and write simply fg = fog. We have
f(gh) = (fg)h for any endomorphisms of V. We write

2= ff, f"=fo--of (for n =1, n times).

We will often write simply 1 for the identity map Idy, which is an element of Endg (V).
Soweget 1-f=f-1=fforany fe€ Endg(V).

PROPOSITION 4.2.1. Let V be a K-vector space. For any f, g, h € Endk(V'), we have

flg+h)=fg+fh,  (f+gh=fh+gh
where the + refers to the addition of endomorphisms.

PRrOOF. Let fi = f(g + h) and fo = fg + fh. For any vector v € V', we have by
definition

filv) = f((g+ h)(v)) = flg(v) + h(v)) = fg(v)) + f(R(v)) = fg(v) + fh(v) = f2(v),
since f is linear. Therefore f; = f;. Similarly one checks that (f + g)h = fh+ gh. O

REMARK 4.2.2. In contrast with permutations, there is in general no inverse for an
endomorphism!

DEFINITION 4.2.3 (Commuting endomorphisms; stable subspaces). Let V be a K-
vector space.

(1) Let f and g be endomorphisms of V. One says that f and ¢ commute if fg = gf.

(2) Let f be an endomorphism of V' and W a subspace of V. One says that W is
stable under f, or a stable subspace for f, if f(W) c W, ie., if f(w) belongs to W
for any w € W. In that case, the restriction of f to W is an endomorphism of W, that
we will often denote f|W, and call the endomorphism of the stable subspace W
induced by f.

REMARK 4.2.4. Be careful that in general the restriction of an endomorphism to a
subspace W is not an endomorphism of W, because the image of a vector w € W might
not belong to W!

In terms of matrices, it is relatively easy to “see” that a subspace is a stable subspace.

LEMMA 4.2.5. Let V be a finite-dimensional vector space and f an endomorphism of
V. Let W be a subspace of V and let By be an ordered basis of W and B = (By, By) an
ordered basis of V.. Then W is stable under f if and only if the matric A = Mat(f; B, B)

has the form
(A X
e ( 0 Dl)

where 0 is the zero matriz with dim(W) columns and dim(V') — dim(W) rows. Then Ay
is the matriz of the endomorphism f|W of W.

PROOF. A matrix A is of the stated form if and only if, for the basis vectors v in By,
we have f(v) € By. By linearity, this condition is equivalent with asking that f(v) e W
for all v € W, namely with the condition that W is stable for f.

If that is the case, the definition of matrices representing a linear map shows that
AO = Mat(f|W, 807BO>' |

78



Now we define important invariants related to endomorphisms. The first is the rank,
which is the dimension of the image. Other invariants are specific to endomorphisms.
First we have a definition:

DEFINITION 4.2.6 (Trace of a matrix). Let n > 1 be an integer and A = (a;;)1<ij<n €
M, »(K). The sum
Z (7%
i=1

of the diagonal coefficients of A is called the trace of A, and denoted Tr(A).
The map A — Tr(A) is a linear map from M, ,,(K) to K.
LEMMA 4.2.7. For A and B in M, ,(K), we have Tr(AB) = Tr(BA).

PRrROOF. If we write A = (a;;) and B = (b;;), then AB is the matrix with coefficients

n
Cij = Z ik
k=1

while BA is the matrix with coefficients

n
dij = Z bir ;.
k=1

Therefore we have

TI(AB) = ZCZ'Z' =

=1 7

n

Z aikbki = Z Z bkiaik = Z dkk = TI‘(BA)

1k=1 k=1i=1 k=1

n

g

PROPOSITION 4.2.8. Let V be a finite-dimensional vector space over K. Let f: V —V
be an endomorphism of V.

(1) For any ordered basis B of V', the determinant of the matriz Mat(f; B, B) is the
same.

(2) For any ordered basis B of V', the trace of the matriz Mat(f; B, B) is the same.

Be careful that in these statements, we consider the matrices representing f with
respect to the same bases!

PROOF. Let B’ be another ordered basis of V. Let X be the change of basis matrix
Mg p. Denote A = Mat(f; B, B) and A’ = Mat(f; B’, B'). We then have A’ = XAX ™!
by Proposition 2.9.13. Then (1) follows because det(X AX 1) = det(X) det(A) det(X) ™!
det(A) by Theorem 3.4.1. And (2) follows from the previous lemma by writing

Tr(A') = Te(X(AX ™)) = Tr((AX ) X) = Tr(A).
O

DEFINITION 4.2.9 (Trace and determinant of an endomorphism). For a finite-
dimensional vector space V and f € Endk(V), the trace Tr(f) of f is the trace of
the matrix representing f with respect to an arbitrary ordered basis of V', and the de-
terminant det(f) of f is the determinant of the matrix representing f with respect to
an arbitrary ordered basis of V.
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PROPOSITION 4.2.10. Let V' be a finite-dimensional vector space.

(1) The map f — Tr(f) is a linear map from Endk (V) to K. It satisfies Tr(1) =
dim(V') and Tr(fg) = Tr(gf) for all f, g € Endg (V).

(2) The determinant map f — det(f) from Endk (V') to K satisfies

det(fg) = det(f)det(g),

and det(f) £ 0 if and only if f is bijective, if and only if f is injective, if and only if f
18 surjective, in which case we have
1

™) = G

Proor. We fix an ordered basis B of V.

(1) To avoid ambiguity, denote by Tr': M, ,,(K) — K the trace map for matrices.
The previous proposition implies that Tr(f) = Tr'(Mat(f; B, B)) for all f, or in other
words we have

Tr = TI', OTB,B
with the notation of Theorem 2.9.6. Since the trace of matrices Tr’ is linear and the map
Tpp: f — Mat(f; B, B) is linear (Theorem 2.9.6), the trace is linear on Endg (V) by
composition.
We have Tr(1) = Tr(Idy) = Tr(1,) = n (see Example 2.9.4 (1)). Moreover, by the
previous lemma, Theorem 2.9.5 and Lemma 4.2.7, we get

Tr(fg) = Tr(Mat(fg; B, B)) = Tr(Mat(f; B, B) Mat(g; B, B))
= Tr(Mat(g; B, B) Mat(f; B, B)) = Tr(Mat(gf; B, B)) = Tr(gf).
(2) Similarly, we have det(f) = det(Mat(f; B, B)) for all f, and therefore
det(fg) = det(Mat(f o g; B, B)) = det(Mat(f; B, B) Mat(g; B, B)) = det(f) det(g)

by Theorem 2.9.5 and Theorem 3.4.1. The last part follows then from Corollary 2.9.8,
Corollary 2.8.5 (that shows that for endomorphisms, injectivity, surjectivity and bijectiv-
ity are equivalent) and the formula det(X ') = det(X)™! for X invertible. d

Endomorphisms can be represented by a matrix by choosing an ordered basis of V. A
fundamental observation is that these matrices usually depend on the basis, whereas we
saw that certain properties (e.g., the value of the determinant) do not. This dependency
means that it makes sense to try to find a basis such that the matrix representing f is as
simple as possible.

EXAMPLE 4.2.11. Let t € R. Consider the space V = C? and the endomorphism

f(v) = Mv where
_ (cos(t) —sin(t)
M= (sin(t) cos(t) € M2(C)
as in Example 2.9.14. The matrix of f with respect to the standard basis of M is simply
M. 1t is not a particularly simple matrix (e.g., for computing M" if n is large by just
computing the products). But we saw in Example 2.9.14 that, with respect to the basis

7= ((;)- (%))

of V', the matrix representing f is

e”™ 0
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This is a much simpler matrix! In particular, it is very simple to deduce that
efint 0
N" = ( 0 ez’nt) .
for any n € Z.

DEFINITION 4.2.12 (Similarity). Let A and B be matrices in M,, ,,(K). One says that
A is similar to B over K , or that A is conjugate to B over K, if there exists an
invertible matrix X € M,, ,(K) such that B = XAX .

REMARK 4.2.13. We will often just say “A is similar to B”, when K is clear, but it is
important to note that (for instance) two matrices may be similar over C, but not over

Q.

By Proposition 2.9.13, if f is an endomorphism of a vector space V' of dimension n,
then the matrices representing f with respect to various ordered bases of V' are all similar.
In general, similar matrices share many important properties — for instance, they have
the same determinant and traces, as above.

LEMMA 4.2.14. The following properties are true:

(1) A matriz is similar to itself;

(2) If A is similar to B, then B is similar to A;

(3) If A is similar to B and B is similar to C, then A is similar to C.

PROOF. (1) is clear. For (2), note that if B is similar to A, we have B = XAX 1,
and then A = X 'BX so that A is similar to B, and for (3), if B = XAX ! and
C =YBY ! then we get C' = (YX)AX 'Y = (YX)A(Y X)L d

REMARK 4.2.15. One summarizes these facts by saying that the relation “A is similar
to B over K” is an equivalence relation on the set M, ,,(K). For any A € M, ,(K), the
set of matrices similar to A is called the conjugacy class of A over K. Note that any
matrix belongs to a single conjugacy class.

Because of (2) in particular, one can say that two matrices A and B are similar
without ambiguity. Then we see from Proposition 2.9.13 that A and B are similar if and
only if there exists an endomorphism f of K" such that A and B represent f with respect
to two ordered bases of K".

4.3. Eigenvalues and eigenvectors

We will study how to understand how endomorphisms “work” by trying to find “nice”
representations of them. This will mean that we search for a basis of the underlying vector
space for which the matrix of f is as simple as possible. If f is the endomorphism f4 of
K", this means finding a matrix B similar to A that is as simple as possible.

DEFINITION 4.3.1 (Eigenvector, eigenspace, eigenvalue). Let V' be a vector space over
K and t € K. An eigenvector of f with eigenvalue t is a non-zero vector v € V' such
that f(v) = tw.

If  is an eigenvalue of f, then the {-eigenspace Eig, , of f is the set of all vectors v
such that f(v) = tv. It is a vector subspace of V. The dimension of the eigenspace is called
the geometric multiplicity, or sometimes simply multiplicity, of ¢ as an eigenvalue of
f.

The set of all eigenvalues of f is called the spectrum of f.

If n >1and A e M,,(K), we speak of eigenvalues, eigenvectors, eigenspaces and
spectrum of A to mean those of the endomorphism f4: v — Av of K.

81



WARNING. An eigenvector must be non-zero! It is not enough to check f(v) = tv to
deduce that ¢ is an eigenvalue. On the other hand, 0 always belongs to the t-eigenspace

of f.

One point of an eigenvector is that if v is one, then it becomes extremely easy to
compute not only f(v) = tv, but also f*(v) = t*v, and so on...

By definition, if v belongs to the t-eigenspace of f, we have f(v) = tv, which also
belongs to this eigenspace. So the t-eigenspace Eig, ; is a stable subspace for f. By defi-
nition, the endomorphism of Eig, ; induced by f on the ¢-eigenspace is the multiplication
by t on this space.

REMARK 4.3.2. In quantum mechanics, eigenvalues are especially important: when
making an experiment on a quantum system, the measurement of some observable quan-
tity (energy, momentum, spin, etc), which is represented by an endomorphism f, is always
an eigenvalue of f. Hence, for instance, the observable energy levels of an hydrogen atom
are among the possible eigenvalues of the corresponding endomorphism.

EXAMPLE 4.3.3. (1) The number ¢ = 0 is an eigenvalue of f if and only if the kernel
of f is not {0}, or in other words, if and only if f is not injective (equivalently, if V' is
finite-dimensional, if and only if f is not an isomorphism); the corresponding eigenvectors
are the non-zero elements of the kernel of f.

(2) Let V= R[X] be the vector space of polynomials with real coefficients. Consider
the endomorphism f(P) = P’, where P’ is the derivative of P. Then the kernel of f is
the space of constant polynomials, so 0 is an eigenvalue for f with eigenspace the space
of constant polynomials. This is in fact the only eigenvalue: if ¢ + 0 and P’ = tP, then
we must have P constant because otherwise the degree of P’ is the degree of P minus 1,
whereas the degree of tP is the same as that of P.

Consider on the other hand the endomorphism g(P) = X P. Then g has no eigenvalue,
since if P + 0, the degree of XP is deg(P) + 1, and either tP = 0 (if ¢t = 0) or
deg(tP) = deg(P) for t € R.

(3) The eigenvalues depend on the choice of the field! A matrix in M, ,(Q) might
have no eigenvalues, whereas the same does have some when viewed as a matrix with real
of complex coefficients (see Example 4.3.18 (4) below, for instance).

REMARK 4.3.4. Using the Gauss Algorithm, one can compute the eigenvalues and
eigenspaces of an endomorphism f of a finite-dimensional vector space V' of dimension n
as follows:

e Fix an ordered basis B of V' and compute the matrix A = Mat(f; B, B);

e Consider an arbitrary element t € K, and solve the linear system Az = tx for
re K"

e The result will be a condition on ¢ for the existence of a non-zero solution x € K";
those t which satisfy this condition are the eigenvalues of A and of f;

e For each eigenvalue ¢ (we will see below that, in this setting, there are only
finitely many), find the (non-zero) subspace W < K" of solutions of Az = tx;
then use the basis B and Proposition 2.11.2 to “transport” the solution space
W of this equation to a subspace W' of V.

PROPOSITION 4.3.5. Let V' be a vector space and f an endomorphism of V. The
eigenspaces Eig, ¢ of [ for the eigenvalues t of f are in direct sum.

In particular, if vy, ..., vy, are eigenvectors of f corresponding to different eigenvalues
t1, ..., tm, then the vectors {vy, ..., v,} are linearly independent in V.

82



PROOF. Let S « K be the spectrum of f. To check that the eigenspaces Eig, , for
t € S are in direct sum, let v; € Eig, ¢, for t € 5, be vectors such that v; = 0 for all but
finitely many t and
Z'Ut = 0.

We must show that v; = 0 for all ¢. If this is not the case, there exists a smallest integer
m > 1 for which there is a relation of this type with exactly m non-zero vectors v;. Let t,
..., tm be corresponding (distinct) eigenvalues. So v;, + 0. Applying f to the equation

Uy + vy, =0,

we get by definition
vy, + -+ tpvy, = 0.
We multiply the first equation by ¢; and subtract the result from this relation. It follows
that
0-vy + (t2—t1)vg, + -+ + (t — t1)vy, = 0.
Writing wy, = (t; — t1)vy, for 2 <i < 'm, we obtain m — 1 non-zero vectors (since t; + t;)
in Eig, , with
Wy, + -+ wy, =0,
This contradicts the choice of m as the smallest integer for which such a relation exists.

So we must indeed have v, = 0 for all ¢.
The final statement follows then from Proposition 4.1.11. O

LEMMA 4.3.6. Let V' be a finite-dimensional vector space and f € Endg (V).
(1) Suppose ty, ..., t,, are distinct eigenvalues of f with eigenspaces Vi, ..., Vi, of

dimensions ny, ..., ny,. Then the spaces V; are in direct sum, and if By, ..., B,, are
ordered bases of V1, ..., Vi, and B’ is an ordered basis of a complement W of V1®- - -®V,,,
then (By, ..., By, B') is an ordered basis of V' and the matriz representing f in this basis
has the block-form
t11,, 0 0 --- 0 *
0 tl,, 0 --- 0 *
0 0 0 - tnl,, =*
0 o 0 --- 0 A

for some matriz A in My q(K), where d is the dimension of W.
(2) Conversely, if there exists a basis B of V' such that the matriz of f in the basis B

18
t11n, 0 o --- 0 *
0 toly, 0 - 0 *
0 0 0 - twl,, *
0 0 o --- 0 A

for some t; € K and positive integers n; = 1, then t; is an eigenvalue of f with geometric
multiplicity at least n;.

PROOF. (1) By the previous proposition, the eigenspaces are in direct sum. By
Lemma 4.1.13, there exists a complement W in V of Vi1 ®---®V,,, and hence an ordered
basis B’ of W. It is elementary and left as an exercise that (By,. .., By, B') is an ordered
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basis of V. Let A = Mat(f; B, B). For the vectors in By, we have f(v) = t1v, so the cor-
responding columns have coefficients ¢; on the diagonal, and 0 everywhere else. Similarly
for By, ..., B,,. This gives the stated form.

(2) For the converse, if B is a basis where the matrix of f has the form indicated, let
B; be the vectors in B corresponding to the columns where the diagonal ¢;1,, appears.
For any vector v € B;, we have f(v) = t;v, so t; is an eigenvalue of f, and the space
generated by B;, which has dimension n;, is contained in the ¢;-eigenspace. U

EXAMPLE 4.3.7. (1) For instance, if K = R, dim(V') = 7 and t; = —2 is an eigenvalue
with geometric multiplicity 3 and ¢, = 7 is an eigenvalue with geometric multiplicity 2,
the matrix representing f with respect to a basis of the type described in this lemma has
the form

—2 0 0 0 0 a1 Q17
0 —2 0 0 0 o6 Qo7
0 0 -2 0 0 a3 Q37
0 0 0 7© 0 ay aur
0 0 0 0 « as6 Q7
0 0 0 0 0 Qe Qg7
0 0 0 0 0 Qrg Q77

for some coefficients a;; in R.

(2) In the converse statement, note that without knowing more about the “remaining
columns”, one can not be sure that the geometric multiplicity of the eigenvalue t; is not
larger than n;.

DEFINITION 4.3.8 (Diagonalizable matrix and endomorphism). Let V' be a vector
space and f an endomorphism of V. One says that f is diagonalizable if there exists
an ordered basis B of V' such that the elements of B are eigenvectors of f.

Ifn>1and Ae M,,(K) is basis, one says that A is diagonalizable (over K) if the
endomorphism f, of K" is diagonalizable.

ExAMPLE 4.3.9. Diagonalizability is not restricted to finite-dimensional spaces! Con-
sider the space V' = R[X] and the endomorphism

f(P(X)) = P(2X)

for all polynomials P, so that for instance f(X? —3X + 7) = 4X? — 6X + 7. Then f
is diagonalizable: indeed, if we consider the ordered basis (P;);=o of V where P, = X
we have f(P;) = 2'X* = 2'P;, so that P; is an eigenvector for the eigenvalue 2°. So there
exists a basis of eigenvectors.

On the other hand, the endomorphisms P +— P’ and P — X P are not diagonaliz-
able, since the former has only 0 has eigenvalue, and the corresponding eigenspace has
dimension 1, and the second has no eigenvalue at all.

PRrROPOSITION 4.3.10. Let V' be a finite-dimensional vector space and f an endomor-
phism of V. Then f is diagonalizable if and only if there exists an ordered basis of B of
V' such that Mat(f; B, B) is diagonal.

If A e M,,(K), then A is diagonalizable if and only if A is similar over K to a
diagonal matriz, namely to a matriz B = (b;;) with b;; = 0 if i + 7.

Proor. If f is diagonalizable, then the matrix representing f in an ordered basis of
eigenvectors is diagonal, since f(v) is a multiple of v for any basis vector. Conversely, if
the matrix A = (a;;) representing f in an ordered basis B is diagonal, then for any v € B,
we get f(v) = a;v, so that each vector v of the basis is an eigenvector.
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For the second, recall that the matrix representing f4 in a basis B of K" is X AX 1,
where X is the change of basis matrix from the standard basis to B. So the first part
shows that f4 is diagonalizable if and only if there exists X invertible with XAX !
diagonal. O

PROPOSITION 4.3.11. Let V' be a finite-dimensional vector space and f an endomor-
phism of V. Then t € K is an eigenvalue of f if and only if det(t - Idy — f) = 0. The
t-eigenspace of f is the kernel of t - 1dy — f.

PROOF. By definition, v satisfies f(v) = tv if and only if (¢ - Idy — f)(v) = 0, or
equivalently if v € Ker(¢ - Idy — f). This shows that ¢ is an eigenvalue of f if and only if
the kernel of ¢ - Idy — f is not {0}, and that the eigenspace is then this kernel. Finally,
since an endomorphism g¢ is injective if and only if det(g) + 0 (Proposition 4.2.10), it
follows that ¢ is an eigenvalue if and only if det(¢ - Idy — f) = 0. d

DEFINITION 4.3.12 (Characteristic polynomial). The function ¢ — det(t - Idy — f) is
called the characteristic polynomial of the endomorphism f. It is denoted chary, so
that char(t) = det(t - Idy — f).

For any eigenvalue ¢y of f, the algebraic multiplicity of f is the multiplicity of %,
as a zero of chary, i.e., the largest integer k& > 1 such that there exists a polynomial g
with

char(t) = (t — to)*g(t)
for all t € K, or equivalently the integer £ > 1 such that

charg(ty) = -+ = char;kfl)(tg) =) chargck) (to) * 0.

In practice, one can compute the characteristic polynomial of f by fixing an ordered
basis B of V, computing the matrix A representing f with respect to B, and then we
have

chary(t) = det(t1, — A).
For a matrix A, the function t — det(t1, — A), which is the characteristic polynomial of
the linear map f4, is also called the characteristic polynomial of A.

LEMMA 4.3.13. The characteristic polynomial is indeed a polynomial; it has degree
n = dim(V'). More precisely, there are elements cy, ..., ¢, in K such that

(4.2) chars(t) = t" + c, 1t" '+ + et + o
for all t € K. We have in particular
co = (=1)"det(f),  cp1=—"Tr(f).

PROOF. Let B be an ordered basis of V', and A = Mat(f; B, B) so that, as explained,
we have chars(t) = det(tl, — A) for all t e K. Write A = (a;;)1<ij<n- Then the matrix
t1, — A has coefficients b;; where

bii =1 A s bij = —Q4j if 4 =+: j
Using (3.6), we have
chary(t) = det(B) = Z sgn(0)bis(1) -+ bpo(n)-
€Sy

This is a finite sum where each term is a product of either an element of K (if o (i) & 1)
or a polynomial t — a;; (if o(i) = i). So each term is a polynomial of degree at most n,
and therefore the sum is also a polynomial of degree at most n.
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To compute the precise degree, note that
(4.3) sgn(0)b10(1) * * * bno(n)

is a polynomial of degree at most equal to the number F(o) of integers i such that o(i) = ¢
(since these correspond to factors b;(;) of degree 1. So the terms of degree n correspond
to permutations with o(i) = ¢ for all 4, which means that this is only the case of the
permutation o = 1.

Moreover. we claim that if o # 1, then the degree of (4.3) is at most n — 2. Indeed,
if the degree is = n — 1, this would mean that there exist n — 1 integers 1 < ¢ < n with
o(i) = i. Let j be remaining integer between 1 and n. Since o is injective, for any i # j,
we have i = o(i) & o(j). So o(j) must also be equal to j, which means that o = 1.

Since the term (4.3) for o = 1 is

(t — CLH) e (t — ann)
the conclusion is that
char(t) = (t —aqn) -+ (t — ann) + P(t)

where P has degree at most n — 2. So the characteristic polynomial has the form (4.2).

We compute the coefficient ¢y by noting that ¢y = char(0) = det(—A) = (—1)" det(A)
(because of multilinearity applied to the n columns of —A). To compute ¢,_1, we compute
the coefficient of " in (t — a11) -+ (t — dypn), and this is —ay; — - -+ — apy, which means
that ¢, 1 = —Tr(f). O

THEOREM 4.3.14 (Existence of eigenvalues). Let K = C and n > 1. Any endomor-
phism f of a vector space V' over C of dimension dim(V') = n has at least one eigenvalue.
In addition, the sum of the algebraic multiplicities of the eigenvalues of f is equal to n.

In particular, if Ae M, ,(C) is a matriz, then there is at least one eigenvalue of A.

PROOF. Because of Proposition 4.3.11 and Lemma 4.3.13, an eigenvalue of f is a root
of the characteristic polynomial chary; this polynomial is of degree n > 1, and by the
fundamental theorem of algebra, there exists at least one ¢ € C such that charg(¢) = 0. O

REMARK 4.3.15. This property is very special and is not true for K = Q or K = R,
or when V' has infinite dimension. In fact, it is equivalent to the fundamental theorem
of algebra because any polynomial P € C[X] with degree n > 1 is the characteristic
polynomial of some matrix A € M, ,(C), so that eigenvalues of A correspond exactly to
zeros of P.

PROPOSITION 4.3.16. Let V' be a finite-dimensional K-vector space of dimension n >
1 and f an endomorphism of V. If the characteristic polynomial has n distinct roots in
K, or in other words, if the algebraic multiplicity of any eigenvalue is equal to 1, then f
15 diagonalizable.

Proor. This is because there will then be n eigenvectors corresponding to the n
distinct eigenvalues; these are linearly independent (by Lemma 4.3.6 (1)), and the space
they generate has dimension n, and is therefore equal to V' (Proposition 2.8.2), so there
is a basis of eigenvectors of f. O

Note that this sufficient condition is not necessary. For instance, the identity endo-
morphism is obviously diagonalizable, and its characteristic polynomial is (¢ — 1)", which
has one eigenvalue with algebraic multiplicity equal to n.
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REMARK 4.3.17. If K = C, then for “random” examples of matrices or endomor-
phisms, the condition indicated will be true. So, in some sense, “almost” all matrices are
diagonalizable.

However, this is certainly not the case of all matrices (if the dimension is > 2). We
will discuss later in Chapter 7 how to find a good replacement (the “Jordan form”) for
diagonalization. that applies to all matrices.

ExaMPLE 4.3.18. (1) For V of dimension 2, the characteristic polynomial of f €
Endk (V) is
chary(t) = t* — Tr(f)t + det(f).

If K = C, we see that f is diagonalizable if Tr(f)? —4det(f) & 0. If K = R, we see that
f has at least one eigenvalue if and only if Tr(f)? —4det(f) > 0, and is diagonalizable if
Tr(f)? — 4det(f) > 0.

(2) For A =1, (or f =1dy), the characteristic polynomial is (¢ — 1)".

(3) For an upper-triangular matrix

a11 Q12
0 a
A 22 | 7
0 0 ann
we have
t—an —ap
0 t _ a/22 e v
CharA(t) = . . . . = (t — CL11> SR (t — CLnn>
0 ce 0 t—au

so that ¢ is an eigenvalue of A if and only if ¢ is one of the diagonal coefficients a;;. If
the diagonal coefficients a;; are all different, then A is diagonalizable. The converse is
however again not true.

The geometric multiplicity of an eigenvalue ¢ is in general not equal to the algebraic
multiplicity, which is the number of indices such that a;; = t. For instance, let t; € K
and consider

A- (’5(‘; t10> & My (K).

The only eigenvalue of A is t = ty, with algebraic multiplicity equal to 2, and the charac-
teristic polynomial is (¢t — ty)?. However, if we solve the linear system A (";j) =t (;)
to find the ty-eigenspace of f4, we obtain

tox +y = tox

{toy = toy

which is equivalent to y = 0. This means that the 1-eigenspace is the space of vectors
(g , which is one-dimensional. In particular, there is no basis of eigenvectors, so A is

not diagonalizable.

(4) Here is a very classical example of using eigenvalues to solve a problem a priori
unrelated to linear algebra. Consider the Fibonacci sequence (F},),>1 where Fy = 0,
Fy=1and F,,» = F,,;1 + F, for all n > 0. In particular, F, = 1, F3 = 2, etc. The goal
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is to find a formula for F,, (from which one can, in particular, easily answer questions
such as: how many digits does F,, have when n is large?).
We first find a matrix representation of F,. Let

(0 1\ (R B
A= (1 1) = (Fl FQ) S MQQ(C).

A simple induction shows that for n > 1, we have the formula
n __ Fn—l Fn
A" = ( F, FnH) ‘
So we are led to the problem of computing the coefficients of A™. The idea is to diagonalize

A (if possible), because it is easy to compute the powers of a diagonal matrix. The
characteristic polynomial of A is

P(t) =t* — Tr(A)t + det(A) = t* — ¢ — 1.

It has discriminant 5 and two real roots

14++/5 1-4/5
2 T T

(note that if we view A as an element of Ms5(Q), then the spectrum is empty, since wy
and wy are not in Q). Therefore A is diagonalizable. We find eigenvectors of A by solving

the equations Av; = wyv; and Avy = wovs, and find easily that

1 ) 1 .
v = (wl) € ElgwhA, Vg = <w2> € Elgw%A

(this can be checked:
f(vr) = (1 —I—wl) (w%) w1y,

because w} = w; + 1, etc.)
In the basis B = (v1,vq), the matrix representing f4 is the diagonal matrix

(W 0
D_<O CL)Q)‘
n_ (wi 0
D *<O wg)

for any n > 1. The change of basis matrix X from the standard basis to B is computed
by expressing the standard basis vectors in terms of v; and vy; we find

w2 1
X — w2 —w1 w1 —w2
w1 _ 1
w2 —w1 W1 —w2

Wa w1 1
(% Vo = o)
Wo — w1 Wo — Wy

A=XDX,

w1 =

Note that

e.g., we have

So this means that

and then by induction we get
A" =XD"X!
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for all n > 1 (for instance, A2 = XDX1- XDX ! = XD2X~! and so on). Computing
the product and using

leads to the formula

W' — Wl
Fn _ 1 2
W1 — Wa

In general, we have seen that the geometric and algebraic multiplicities are not equal,
but there are nevertheless some relations.

PROPOSITION 4.3.19. Let V' be a finite-dimensional vector space of dimension n = 1
and let f € Endg (V).

(1) Let to be an eigenvalue of f. Then the algebraic multiplicity of to is at least the
geometric multiplicity of tg.

(2) If K = C, then the endomorphism f is diagonalizable if and only if, for all
eigenvalues to of f, the algebraic and geometric multiplicities are equal.

PROOF. (1) Let m = dim(Eig,, ;) be the geometric multiplicity of ¢ as an eigenvalue of
f, and let By = (vy,...,v,) be an ordered basis of the t-eigenspace. Let B = (By, By) be
an ordered basis of V. The matrix representing f with respect to B is partially diagonal:

to 00 -~ 0 =
0 &% 0 --- 0
Mat(f; B, B) = :
0 0 0 - ty =
0 0 0 0 A
where A is some matrix of size Card(B;) = dim(V') —m = n — m. Then
t— 1o o 0 - 0
0 t—t 0 --- 0 *
Mat(tldy — f; B, B) = : :
0 0O 0 - t—1o *
0 o 0 -- 0 tl_,—A

is also partially diagonal. Using m times the formula (3.3), it follows that
chars(t) = (t — to)™char4(t).

So the algebraic multiplicity of #, is at least m.
(2) Assume K = C. If f is diagonalizable, then we obtain

n

chary(t) = | [(t - t:)

i=1
where (t1,...,t,) are the diagonal coefficients in a diagonal matrix representing f in a
basis (vq,...,v,) of eigenvectors. It follows that, for any eigenvalue t;, the algebraic

multiplicity is the number of indices ¢ with ¢; = ¢;, and the corresponding eigenspace is
generated by the v;’s for the same indices . In particular, the algebraic and geometric
multiplicities are the same.

Conversely, assume that the algebraic and geometric multiplicities are the same. Since
K = C, the sum of the algebraic multiplicities is n (Theorem 4.3.14); therefore the sum of
the dimensions of the different eigenspaces is also equal to n, and since these are linearly
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independent, this means that putting together thebases of the eigenspaces of f, we obtain
a basis of V. Hence f is diagonalizable. U

4.4. Some special endomorphisms

We consider some extremely special but important classes of endomorphisms.

DEFINITION 4.4.1 (Projection, involution, nilpotent endomorphism). (1) Let X be
any set and f: X — X any map. One says that f is an involution if fo f =Idy. If X
is a K-vector space and f is linear, we say that f is a linear involution.

(2) Let V' be a K-vector space. A projection of V' is an endomorphism p of V' such
that pop = p.

(3) Let V be a K-vector space and f an endomorphism of V. One says that f is
nilpotent if there exists an integer £ > 0 such that f* = fofo---of =0. If Ais a
matrix, we say that A is nilpotent if there exists & > 0 such that A*¥ = 0, or equivalently
if the endomorphism f4 of K" is nilpotent.

EXAMPLE 4.4.2. (1) The identity map is an involution on any set X; on X =
{1,...,n}, any transposition is an involution. The linear map associated to the per-
mutation matrix of a transposition is a linear involution.

(2) Let V- = M, ,(K). The transpose map A — ‘A on V = M, ,(K) is a linear
involution. Let X be the set of invertible matrices in V; the map A — A~! is an
involution on X, but it is not linear (the set X is not a vector space anyway).

(3) Let X = C; the complex conjugate map c: z — Z is an involution. If X is viewed
as a real vector space, then c is a linear involution, but if X is viewed as a complex vector
space, it is not (since c(iz) = —iz).

(4) Let V be the space of all functions from [—1,1] to C. For f € V, define j(f) to
be the function z — f(—x). Then j: V — V is a linear involution.

(5) Let V be a K-vector space and let W and W5 be subspaces such that V' = W;@Ws.
For any v € V|, we can then write v = w; + wo for some unique vectors w; € W; and
wy € Wy. Therefore we can define a map p: V' — V by p(v) = w;. This map is linear,
because of the uniqueness: for v and v" in V and ¢, ' € K, if we have v = w; + wy and
v = w] + wh, then tv + t'v' = (twy + t'w)) + (twe + t'w)), with tw; + t'w] € W; and
twy + t'wh € Wy, so that p(tv + t'v') = twy + t'w| = tp(v) + t'p(V').

The map p is a projection of V: indeed, since p(v) € Wy, the decomposition of p(v)
in terms of Wy and Ws is p(v) = p(v) + 0, and get p(p(v)) = p(v). We say that p is the
projection of V' on W1 parallel to Wy, or the projection with image Wy and kernel Wy
(see below for the justification of this terminology).

(6) Suppose that V' = K" and f = fs where A = (a;;) is upper-triangular with
diagonal coefficients equal to 0:

0 app

0 0 923
A=

o --- 0 An-1m

0 0 0

(in other words, we have a;; = 0 if ¢ > j). Then f, is nilpotent, and more precisely, we
have f} = fan = 0.

To prove, we claim that for 1 < k < n—1, the image of f% is contained in the subspace
Wy of K™ generated by the first n — k basis vectors of the standard basis of K”. Indeed,
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the point is that the form of the matrix shows that for 1 < i < n, the vector fa(e;) is a
linear combination of ey, ..., e;_1, so belongs to W;_;. Then we get Im(f4) < W since
W, < Wy for i = 1. Then the image of f% is contained in the image of the first n — 1
basis vectors under f4, which is contained in W5, etc. This gives the stated claim by
induction. Now the image of fg_l is contained in W,,_1, which is the space generated by
e1. But the matrix shows that f4(e;) = 0, and hence the image of f7 is {0}.

The next proposition deals with involutions.

PropPOSITION 4.4.3. Let K be a field of characteristic different from 2, for instance
Q, R or C.

Let V' be a K-vector space and j a linear involution of V. Then the spectrum of j
is contained in {—1,1} and V is the direct sum of the 1-eigenspace of j and the —1-
eigenspace of 7. In particular, 7 is diagonalizable.

PRrooOF. If t is an eigenvalue of j and v a t-eigenvector, then from applying j to the
relation j(v) = tv, we get v = (joj)(v) = tj(v) = t*v, so that (1 —¢*)v = 0. Since v = 0,
we have t? = 1 so t is either 1 or —1.

The 1-eigenspace is V; = {v € V | j(v) = v} and the (—1)-eigenspace is V_; = {v €
V' | j(v) = —v}. They are in direct sum (as explained in the first part of Lemma 4.3.6).
To check that Vi @ V_; =V, we simply write

(4.4 v = 50+ () + 50— i),

and observe that since j is an involution, we have

i3+ 30 = 36) + 7(0) =

i(50—50) = 560~ @) = ~5 (0~ (),

(7(v) +v),

N | —

N | —

sove Vi +V_,.
Taking an ordered basis B; of V; and an ordered basis B_; of V_1, we see that
(B1, B_1) is an ordered basis of V' formed of eigenvectors of j, so j is diagonalizable. [

The following proposition gives a “geometric” description of the set of all projections
on a vector space V.

PROPOSITION 4.4.4. Let V' be a vector space. Let Xy be the set of all projections
p € Endk (V) and let Xy be the set of all pairs (Wi, Ws) of subspaces of V' such that
Wy @ Wy =V, ie., such that Wi and Wy are in direct sum and their sum is V.

The maps
- {Xl — X
p+— (Im(p), Ker(p))
and (cf. Example 4.4.2 (5))

F X2 - X1
2 (W1, Ws) — the projection on Wy parallel to Wo

are well-defined and are reciprocal bijections. Moreover Im(p) = Ker(Idy — p).

PROOF. We first check that Im(p) = Ker(Idy — p). Indeed, if v € V and w = p(v),
then we get p(w) = p?(v) = p(v) = w, so that the image of p is contained in Ker(Idy —p).
Conversely, if p(v) = v, then v belongs to the image of p.
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Now we check first that F) is well-defined, which means that (Im(p), Ker(p)) be-
longs to X,. Since Im(p) = Ker(Idy — P), the sum of Im(p) and Ker(p) is the sum of
eigenspaces corresponding to different eigenvalue of p, and therefore it is a direct sum
(Proposition 4.3.5). Moreover Im(p) + Ker(p) = V because we can write any v € V as

v =p(v) + (v =pv))

where the first term belongs to Im(p) and the second satisfies p(v—p(v)) = p(v) —p?(v) =
0, so that it belongs to Ker(p).

It remains to check that the compositions Fjo F; and Fyo F are the respective identity
maps.

First, if p € X1, then g = Fy(Fi(p)) is the projection to Im(p) parallel to Ker(p); this
means that for v € V| we have ¢(v) = w; where

V= Wi + Wo

with w; € Im(p) and wy € Ker(p). But then p(v) = p(w;) = wq, so we have ¢ = p. This
means that Fyo F} = Idy,.

Finally, for (Wy,Ws) € Xy, we have Fy(Fy(Wyi,Ws)) = (Im(p), Ker(p)) where p is
the projection on Wj parallel to W5. By definition, the image of p is contained in W7,
and in fact is equal to Wy, since p(w;) = w; for all wy; € Wy, which shows the converse
inclusion. And by construction, we have p(v) = 0 if and only if v = 0 + wy with wy € W,
which means that Ker(p) = Wy, So Fi(Fy(Wy,Ws)) = (Wi, Ws), which means that
F1 o F2 = IdXQ. D

PROPOSITION 4.4.5. Let V' be a K-vector space and p a projection of V.

(1) The spectrum of j is contained in {0, 1} and V is the direct sum of the kernel Vi of
p and the 1-eigenspace of p. In particular, p is diagonalizable. Moreover, the 1-eigenspace
Vi of p is the image of p.

(2) The linear map q = Idy —p is a projection with kernel equal to the image of p and
image equal to the kernel of p.

PRrROOF. (1) If ¢ is an eigenvalue of p and v a t-eigenvector, then from p(v) = tv we
deduce that p*(v) = t?v, so that (t —t?)v = 0, and hence ¢(1 —#) = 0. So the spectrum is
contained in {0, 1}. The 0-eigenspace is of course the kernel of p. The previous proposition
shows that Ker(Idy — p) = Im(p), so that the 1-eigenspace (if non-zero) is the image of
p. Since Im(p) @ Ker(p) = V, this means that p is diagonalizable: if By is a basis of
Im(p) = Ker(Idy — p) and B is a basis of Ker(p), then By u By is a basis of V' made of
eigenvectors of p.

(2) We can compute

¢* = (Idy —p)o(Idy —p) = (Idy —p) —po(Idy —p) =Idy —p—p+p°> =1dy —p = ¢,

so that ¢ is a projection. We see immediately that the kernel of ¢ is the 1-eigenspace of
p, hence is the image of p, and that the image of ¢, which is its 1-eigenspace, is the kernel
of p. O

PROPOSITION 4.4.6. Let V' be a finite-dimensional K-vector space and let f be a
nilpotent endomorphism of V.. Let n = dim(V'). Then f™ = 0. More precisely, for any
vector v+ 0 in V, and k = 0 such that f*(v) =0 but f*(v) =0, the vectors

(v, f(v),---, [ (V)
are linearly independent.
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In Proposition 7.2.3 below, we will obtain a much more precise description of nilpotent
endomorphisms, and this will be a key ot the Jordan Normal Form.

ProOOF. First, the second statement is indeed more precise than the first: let £ > 1
be such that f* = 0 but f*! # 0; there exists v # 0 such that f*~1(v) # 0, and we
obtain £ < n by applying the second result to this vector v.

We now prove the second claim. Assume therefore that v # 0 and that f*(v) = 0 but

1 (v) £ 0. Let tg, ..., ty_1 be elements of K such that
to+ -+ e ff ) = 0.
Apply f*71 to this relation; since f*(v) = -+ = f?*72(v) = 0, we get

B () = 0PN w) + taf () 4+ e fRR () = 0,

and therefore ¢; f*~1(v) = 0. Since f* !(v) was assumed to be non-zero, it follows that
t; = 0. Now repeating this argument, but applying f*~2 to the linear relation (and using
the fact that t; = 0), we get to = 0. Then similarly we derive by induction that t; = 0
for all 7, proving the linear independence stated. U
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CHAPTER 5

Euclidean spaces

5.1. Properties of the transpose

The following properties of the transpose of matrices will be reviewed and understood
more conceptually in the chapter on duality, but they can be checked here quickly.

ProproOSITION 5.1.1. Let K be a field.
(1) For Ae My, .(K), B e M,,,(K), we have
{(BA) ='A'B e M, ,,(K).
(2) A matriz A € M, ,(K) is invertible if and only if ‘A is invertible, and we have
(A) =(A),

PROOF. (1) is a direct computation from the definition.
(2) We know that det(A) = det(*A), so A is invertible if and only if *A is. Moreover
from

tAt(A—l) _ tA—lA _ t]-n _ 1n7
we see that the inverse of ‘A is the transpose of A~ O

5.2. Bilinear forms

DEFINITION 5.2.1 (Bilinear form). Let V' be a K-vector space. A linear form on V/
is a linear map V' — K. A bilinear form b on V is a bilinear map V x V — K.

As in Definition 3.1.3, a bilinear form b is symmetric if b(vy,vy) = b(vy,vq) for vy
and vy in V, and it is alternating if b(v,v) = 0 for all v e V.

In other words, a bilinear form is a map with values in K such that
b(sv1 + tvg, w) = sb(vy, w) + th(vy, w), b(v, swy + twy) = sb(v,wy) + tb(v, ws)
for all s and ¢t € K, and all vy, v9, v, w, wq, we in V.
If b is alternating then from b(z + y,z + y) = 0, we deduce that b(x,y) = —b(y, x).
EXAMPLE 5.2.2. (1) For any linear forms A; and A, the product
b(vy,v2) = A1(v1)Aa(v2)

is a bilinear form. It is symmetric if A\; = Ay (but only alternating if \; = 0 or Ay = 0).
(2) The set Bil(V') of all bilinear forms on V' is a subset of the space of all functions
V xV — K; it is in fact a vector subspace: the sum of two bilinear forms is bilinear
and the product of a bilinear form with an element of K is bilinear. Moreover, the sets
Bil*(V') and Bil*(V') of symmetric and alternating bilinear forms are subspaces of Bil(V').
(3) Let V' be the vector space over C of all complex-valued continuous functions on
[0,1]. Let
bi(f1, f2) = 11(0) f2(0)

and
ba(fo, fo) = J f1() Folw)da
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for f; and fo in V. Then b; and by are symmetric bilinear forms on V. On the other
hand, the bilinear form b3(f1, f2) = f1(0)f2(1) is not symmetric.

(4) Let V = K2. Define
() (1)) = ot - e

Then b is an alternating bilinear form on V.
(5) Let n > 1 be an integer and let V = K**. For v = (t;)1<i<on and w = (8;)1<i<on,
define
b(v,w) = t153 — tas1 + -+ 4 tan_152n — tanSan—1.
Then b is a bilinear form (because each map v — t; or w — s; is a linear form, and b

is a sum of products of two linear forms, so that Examples (1) and (2) imply that it is

bilinear). It is moreover alternating, as one sees immediately.
(6) Let f1, fo: V4 — V5 be linear maps. For any b € Bil(V5), define

bf17f2 (U> w) = b(f1<v)v f2(w))

Then by, ¢, is a bilinear form on V;, and the map

Bil(f1, fa): b+ by, 1,

is a linear map from Bil(V3) to Bil(V}).
(7) Let V = K" and let A € M, ,(K). For x € V, the transpose 'z is a row vector in
K,,; we define

b(z,y) ="zAy

for z and y € K”. Then b is a bilinear form. Indeed, this product is a matrix in M; ; (K),
hence an element of K. We have

b(x,tys + sya) = "wA(tyr + sy2) = "w(tAys + sAys) = tb(z, y1) + sb(z, y2)
and similarly b(tzy +sza,y) = tb(x1, y) +sb(z2,y). In terms of the coefficients a;; of A, one

checks (see the proof of Proposition 5.2.3 below) that for z = (2;)1<i<n and y = (y;)1<j<n
in K", we have

b(x,y) = ) airy;.

/[:7.].

In particular, if A = 1,, is the identity matrix, we obtain

b(ZE, y) = 2 TilYi-
i=1
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PROPOSITION 5.2.3. Let V' be a finite-dimensional space.
(1) For any ordered basis B = (v1,...,v,) of V, the application

: Bil(V) — M, ,(K)
"0 = (b(vs, v5))1<i,j<n

is an isomorphism. In particular, dim Bil(V) = dim(V)?.

metric if and only if 'Bp(b) = Bp(D).
(2) For any x = (t;) € K" and y = (s;) € K", we have

b(Z ti’l)i, Z Sj'l}j) = Z b(Ui, 'Uj)tiSj = tiL’Ay
( J ]

The bilinear form b is sym-

where A = Bp(b).
(3) If B and B’ are ordered bases of V' and X = Mp p is the change of basis matriz,
then for all b € Bil(V) we have

Br(b) = "X Br(b)X.

PRrROOF. (1) The linearity of Op is easy to check. We next check that this map is
injective. If Sp(b) = 0, then b(v;,v;) = 0 for all ¢ and j. Then, using bilinearity, for any
vectors

(5.1) v =ty + -+ tyU,, W= 8101 + -+ + S, Uy,

we get

b(v,w) = b(tyvy + -+ + tyv,, w) = Y t;b(v;, w)

-

~
Il
it

-

S
Il
—

tib(vi, S101 + -+ + SpUn)

= tz‘Sjb(UZ‘7Uj> = O,

i

&,

so that b = 0. Finally, given a matrix A = (a;;) € M, ,,(K), define

b(U, w) = Z aijtisj

i?j

for v and w as in (5.1). This is a well-defined map from V' x V to K. For each i and j,
(v,w) — a;;t;s; is bilinear (product of two linear forms and a number), so the sum b is
in Bil(V). For v = v;, and w = v;,, the coefficients ¢; and s; are zero except that ¢;, = 1
and s;, = 1. Therefore b(v;,v;) = a;;. This means that S5(b) = A, which means that any
A is in the image of Sg, and hence we conclude that Sg is surjective.

By bilinearity, a bilinear form b is symmetric if and only if b(v;, v;) = b(v;,v;) for all
i and j, and this condition is equivalent to saying that the transpose of the matrix 5g(b)
is equal to itself.

(2) The first formula has already been deduced during the proof of (1), so we need to
check that for A = g(b), we have

Z b(UZ', Uj)tiSj = tl‘Ay
0]
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Indeed, we have

Ay = <Z b(vi»vj)3j>1<.< :

- <i<n
J

and therefore
tZEAy = (tl e tn> . Ay = th <2 b(Ul‘, Uj)Sj) = Z tiSjb(Ui, Uj).
i i 1<i,j<n

(3) Let B" = (wq,...,w,). If X = Mp p = (a;;) is the change of basis matrix, and
x; = (a;j)1<i<n denotes the j-th column of X, then we have by definition

w; = Z Ai5U4
i=1
for 1 < j < n. So by (2) we get
b(w,-,wj) = t.%'i,@B(b)ilfj
for all 7 and j. Now consider the matrix *X 5(b) X and denote its coefficients (¢;;). Then

¢;; is the product of the i-th row of ‘X with the j-th column of S5(b)X, which is the
product of Sg(b) and the j-th column of X. This means that

cij = "1iBp(b)z; = bwi, wy),
and hence fp (b) = 'XPBp(b)X. O
DEFINITION 5.2.4 (Left and right kernels). Let b be a bilinear form on V. The left-
kernel of b is the set of vectors v € V' such that
b(v,w) =0 for all w e V,
and the right-kernel of b is the set of vectors w € V' such that
b(v,w) =0 for all v e V.
A bilinear form b on V' is non-degenerate if the right and the left kernels are both
equal to {0}.
If b is symmetric, then the left and right kernels are equal.

PROPOSITION 5.2.5. Let V' be a finite-dimensional vector space and B = (v;) an
ordered basis of V. Then a bilinear form b on V is non-degenerate if and only if

det(B5 (b)) + 0.

PROOF. Suppose first that the left-kernel of b contains a non-zero vector v. There is
an ordered basis B’ of V' such that v is the first vector of B’ (Theorem 2.7.1 (2)). We
have

Bis(b) = X By ()X
where X = Mp g (Proposition 5.2.3 (3)). Since the coefficients b(v, v") of the first row of
B (b) are zero, we get det(Bp/(b)) = 0, hence det(fSp (b)) = 0. Similarly, if the right-kernel
of b is non-zero, we deduce that det(5g(b)) = 0.

We now consider the converse and assume that det(85(b)) = 0. Then the columns C;
of the matrix Sg(b) are not linearly independent. Let then t¢q, ..., t, be elements of K,
not all equal to 0, such that

tCr + -+ 6,0, =0, e K"
Since C; = (b(vs, v;))1<i<n, this means that for 1 < < n, we have
t1b(vi, v1) 4+ -+ + tub(vg, v,) = 0.
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By bilinearity, this means that
b(vi,tlvl + -+ tnvn) =0

for all 7. But then (by bilinearity again) the vector ¢yv; + - - - + t,,v, belongs to the right-
kernel of b. Similarly, using the fact that the rows of Sg(b) are not linearly independent,
we deduce that the left-kernel of b is non-zero. O

PROPOSITION 5.2.6. Let V' be finite-dimensional and let b € Bil(V) be a non-
degenerate bilinear form. For w €V, denote by A\, the linear form
Aw (V) = b(v, w).
Then the map
V' — Homk(V, K)
w = Ay

18 an isomorphism.

PROOF. Since both spaces have the same dimension, it suffices to check that this map
is injective. But if A, = 0, we obtain b(v,w) = 0 for all v, which means that w belongs
to the right-kernel of b, which is zero since b is non-degenerate. O

EXAMPLE 5.2.7. (1) We describe more precisely Bil(K™) for n = 1 and 2. For n = 1,
a bilinear form on K is of the form b(z,y) = azxy for some a € K. It is always symmetric
and non-degenerate if and only if a £ 0.

For n = 2, the bilinear form associated to the matrix

ailr Aaig
A fr—
ag1 A22

€ X2
b ; = 01171T2 + Q12T1Y2 + A21T2Y1 + A22T2Y2.

18

n Y2
This bilinear form is non-degenerate if and only if aj1a20 — aj2a21 + 0. It is symmetric
if and only if a5 = as;, and alternating if and only if a3 = ass = 0 and a;s = —ao.

(This corresponds to the fact that the determinant is, up to multiplication with a fixed
number, the only alternating bilinear form on K?).
(2) Let b be the alternating bilinear form on K?" of Example 5.2.2 (5):

b(v,w) = t182 — tasy + -+ - + tan—152n — tonSon—1

for v = (¢;) and w = (s;). This bilinear form is non-degenerate. Indeed, the alternating
property (in the form b(v,w) = —b(w,v)) shows that it suffices to prove that the left-
kernel of b is non-zero. Let v = (;) be such that b(v, w) = 0 for all w € K**. Taking for
w the elements ey, ..., ey, of the standard basis, we obtain

0 = b(v, eq;) = to;_1, 0 = b(v,e—1) = —to

for 1 <i<mn,sot; =0 for all .

5.3. Euclidean scalar products

We now consider exclusively the case K = R.. In this case there is an extra structure
available: the ordering between real numbers.

98



DEFINITION 5.3.1 (Positive bilinear form, scalar product). Let V' be an R-vector

space. A bilinear form b € Bil(V) is called positive if b is symmetric and

b(v,v) =0
for all v € V; it is called positive definite, or a scalar product if it is positive and if
b(v,v) = 0 if and only if v = 0.

If b is positive, then two vectors v and w are said to be orthogonal if and only if
b(v,w) = 0. This is denoted v L w, or v 1, w if we wish to specify wichi bilinear form b
is considered.

If v and w are orthogonal, note that we obtain

b(v +w,v+w) = b(v,v) + blw,w) + b(v,w) + b(w,v) = b(v,v) + b(w, w).
EXAMPLE 5.3.2. Let V = R". The bilinear form

n
b(l’, y) = Z ZiYi
i=1
is a scalar product on R"™: indeed, it is clearly symmetric, and since
n
b(x,x) = Z 3,
i=1

it follows that b(x,z) = 0 for all z € R", with equality only if each x; is zero, that is only
if v =0.
This scalar product on R" is called the standard scalar product.

PROPOSITION 5.3.3 (Cauchy-Schwarz inequality). Let b be a positive bilinear form on
V.. Then for all v and w e V', we have
b(v, w)|* < b(v,v)b(w, w).
Moreover, if b is positive definite, there is equality if and only if v and w are linearly

dependent.

PrOOF. We consider first the case of a positive definite bilinear form. We may then
assume that v # 0, since otherwise the inequality takes the form 0 = 0 (and 0 and w are
linearly dependent). Then observe the decomposition w = w; + we where

b(v, w) b(v, w)
e b(v,v) v 2= b(v,v) !
Note that
b, ) = L) b0 0) ) = 0.

o) )
Hence we get, as observed above, the relation
|b(v, w)|* |b(v, w)|?
b(w, 'U}) = b(wl, wl) + b("LUQ,’wQ) = Wb(v,v) + b(wg, U)Q) = W
This leads to the Cauchy-Schwarz inequality. Moreover, we have equality if and only if
b(way, wy) = 0. If b is positive definite, this means that wy = 0, which by definition of ws
means that v and w are linearly dependent.

In the general case, we use a different argument that is more classical. Consider the
function f: R — R defined by

f(t) =b(v + tw,v + tw).
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By expanding, we obtain
f(t) = b(v,v) + 2tb(v, w) + t*b(w, w),

so that f is a polynomial of degree at most 2. Since b is positive, we have f(¢) = 0 for all
t e R. If b(w,w) = 0, so that the polynomial has degree at most 1, this is only possible
if furthermore b(v, w) = 0, in which case the inequality holds. Otherwise, the polynomial
f can not have two distinct real zeros, as it would then take negative values. So the
discriminant is < 0, namely:

4b(v, w)?* — 4b(v, v)b(w, w) < 0.
O
ExAMPLE 5.34. (1) For V = R"™ with the standard scalar product, the inequality

translates to
1/2 1/2
Sheal = () (5)

for all real numbers zy, ..., x, and yy, ..., y,. Moreover, there is equality if and only if
there exist two real numbers a and b, not both zero, such that

ax; +by; =0

for 1 <i<n.
(2) For any continuous real-valued functions f; and f; on an interval [a, b], we have

fﬁ hdx fﬁ %:4fmw@)

b
b%Jﬁ—Jﬁ@ﬁ@m

is a positive bilinear form on the R-vector space V' of real-valued continuous functions
from [a, b] to R. Note how simple the proof is, although this might look like a complicated
result in analysis.

Indeed, the map

LEMMA 5.3.5. A symmetric bilinear form b € Bil(V') is a scalar product if and only if
it 18 positive and non-degenerate.

PROOF. If b is a scalar product and v is in the left (or right) kernel of b, then we get
0 = b(v,v) hence v = 0, so b is non-degenerate. Conversely, assume that b is positive and
non-degenerate. Let v € V' be such that b(v,v) = 0. By Proposition 5.3.3, we see that
b(v,w) = 0 for any w € V, so that v = 0 since b is non-degenerate. O

DEFINITION 5.3.6 (Euclidean space). A euclidean space is the data of an R-vector
space V and a scalar product b on V. One often denotes
(v|w)y = b(v, w).
For v € V, one denotes |v|| = 4/¢v|v). The function v — |v| is called the norm on V.

For v, w € V, the norm |v—w| is called the distance between v and w, and is sometimes

denoted d(v, w).

Note that for any symmetric bilinear form b, we have
b(v + w, v+ w) = b(v,v) + blw,w) + b(v,w) + b(w,v) = b(v,v) + b(w, w) + 2b(v, w),
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and in particular for a scalar product we deduce that
1
(5.2) whoy = 5 (v +w]* = o]* = Jw]?).

This means that the norm determines the scalar product.

LEMMA 5.3.7. Let V' be a euclidean space. If W < V is a vector subspace, then the
restriction of the scalar product to W x W makes W a euclidean space.

PROOF. It is immediate that the restriction of a bilinear form on V to W x W is a
bilinear form on W. For a scalar product, the restriction is a positive bilinear form since
b(w,w) = 0 for all w e W, and it satisfies b(w,w) = 0 if and only if w = 0, so it is a
scalar product. U

REMARK 5.3.8. It is not true, in general, that the restriction of a non-degenerate
bilinear form to a subspace is non-degenerate. For instance, if V' = R?" and b is the
non-degenerate alternating bilinear form of Example 5.2.2 (5), so that

b((ti)1<ion, (Si)1<i<on) = t152 — tas1 + -+ + top_150n — tanSon—1,
and if W denotes the subspace
W ={(t1,0,t,0,...,t,,0) € R*"},

then we get b(v,w) = 0 for all v and w in W. Hence the restriction of b to W x W is the
zero bilinear form, and it isn’t non-degenerate.

In terms of the scalar product and the norm, the Cauchy-Schwarz inequality translates
to
Kvfw)] < [[ollw]
for v and w in V.

LEMMA 5.3.9. Let V' be a euclidean space.
(1) The norm satisfies |v| = 0, with |v| = 0 if and only if v = 0, it satisfies |tv]| =
t||v]| for allt € R and v e V', and the triangle inequality

[o+w] < o] + Jlw].

(2) The distance satisfies d(v,w) = 0, with equality if and only if v = w, it satisfies
d(v,w) = d(w,v) and the triangle inequality

d(v,w) < d(v,u) + d(u,w)

for any u, v, win V.

PROOF. (1) Only the triangle inequality is not a direct consequence of the definition
of scalar products. For that, we have

v+ w||2 =b(v+ w,v+w) =b(v,v) + blw,w) + 2b(v,w) = Hv||2 + HwH2 + 2(v|w).
Using the Cauchy-Schwarz inequality, we derive
Jv+w? < [o]* + Jw]? + 2] lw] = (Jo]l + [w])?,

hence the result since the norm is > 0.

(2) is a translation in terms of distance of some of these properties, and left as exercise.
O
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ExamMpLE 5.3.10. The most important example is V' = R" with the “standard”
euclidean scalar product

<’U”LU> =T1Y1 + -+ TpYn,

for v = (z;) and w = (y;), where the norm is the standard euclidean norm

ol = /a3 + -+ a2,

If n = 2 or 3, then the distance d(v,w) is the usual distance of classical geometry between
two points in the plane, or in space.

DEFINITION 5.3.11 (Angle). Let V' be a euclidean space. The (unoriented) angle
between two non-zero vectors v and w is the unique real number ¢ € [0, 7] such that

_ vw)

~ Illel”

cos(t)

This is well-defined because the Cauchy-Schwarz inequality shows that the quantity
on the right is a real number between —1 and 1, and we know that cosine is a bijection
between [0, 7] and [—1,1].

Note that the angle is 7/2 if and only if (v|w) = 0, i.e., if and only if v and w are
orthogonal.

5.4. Orthogonal bases, I

DEFINITION 5.4.1 (Orthogonal, orthonormal sets). Let V' be a euclidean space. A
subset S of V' such that (vjw) = 0 for all v & w in S is said to be an orthogonal subset
of V. If, in addition, |v| =1 for all v € S, then S is said to be an orthonormal subset
of V.

An orthogonal (resp. orthonormal) basis of V' is an orthogonal subset (resp. an
orthonormal subset) which is a basis of V.

If V is finite-dimensional of dimension d, then an ordered orthogonal (resp. orthonor-
mal) basis is a d-tuple (vy, ..., v4) such that {vq,..., v} is an orthogonal (resp. orthonor-
mal) basis.

EXAMPLE 5.4.2. Let V' be the space of real-valued continuous functions on [0, 27|
with the scalar product

1 2m
Sfilfo) = %L fi(z) fow)dx.
Then the set {co, ¢y, sn | n = 1}, where ¢p(z) = 1 and
o) = V2 cos(nx), s$n(2) = V/2sin(nz)

for n > 1, is an orthonormal subset.
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PROPOSITION 5.4.3. Let V' be a real vector space. If S is an orthogonal subset in
V' such that 0 ¢ S, then S is linearly independent. Moreover, if w € {(S), then the
decomposition of w as a linear combination of vectors in S is

In particular, if (vi,...,vq) is an ordered orthonormal basis of V, then we have the
decomposition

d
w = Z<w|vz->vi
i=1

for all w e V. Further, we then have

Jwl? = Z wlvpl®,  (vlw) = Z<v|v¢><wlvi>

for allv and w in V.

This proposition means that if dim(V) = d, then a tuple (vy,...,v4) is an ordered
orthogonal basis if and only if

v; + 0 for all i, (v;lvj) = 0 for i + j,
and it is an ordered orthonormal basis if and only if we have
(vilv;y =1, for all 4, (vilv;) = 0 for i + j,

since the proposition shows that these vectors are then linearly independent.

It is often convenient to group the two cases together using the Kronecker symbol
dzy Or O(x,y) € R, defined to be either 1 if z = y and 0 otherwise. Then an ordered
orthonormal basis is a tuple (vy,...,vy4) such that

<Ui|vj> = 5(27.])
for all ¢ and j.

PROOF. Let (t,),es be real numbers, all but finitely many of which are zero, such

that
2 t,v = 0.
veS

Fix vy € S. Computing the scalar product with vy, we get
0= tyvfvey = . tulvlvg)
veS veS

which by orthogonality means that 0 = ¢,,{vg|vg). Since vy % 0, we deduce that ¢,, = 0.
This holds for all vy € S, which means that S is linearly independent.

Now let
w = Z t,v

veS

be an element of (S). Taking the scalar product with v € S, we get similarly

(wlv) = t,(v|v).

Finally, we compute the scalar product for any v and w in V:
(wlw) =7y (oloiy Cwlvg) (wiloy) = D (olvwlvy
i g i
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since (v;|v;) is zero unless ¢ = j. The case of |w|? follows by taking v = w. O

THEOREM 5.4.4 (Gram-Schmidt orthonormalization). Let V' be a finite-dimensional

euclidean space. Let B = (vy,...,v,) be an ordered basis of V. There exists a unique
ordered orthonormal basis (wy,...,w,) of V such that for 1 <i <n, we have
w; € <U1, C ,’UZ’>,

and such that the coefficient of v; in the linear combination representing w; is > 0. In
particular, this shows that orthonormal bases of V' exist.

ProoOF. We use induction on n. For n = 1, the vector w; is of the form cvy, and ¢

must satisfy
1 = Jwi]? = {evi]evr) = etfu |,

so that ¢ = |v|™2; since the last requirement is that ¢; > 0, the unique choice is
c1r = [l

Now assume that n > 2 and that the result is known for spaces of dimension n — 1.
Applying it to {vy,...,v,_1), we deduce that there exist unique orthonormal vectors
(w1, ..., w,_1) such that w; is a linear combination of (vq,...,v;) for 1 <i <n —1 and
such that the coefficient of v; in w; is > 0.

We search for w as a linear combination

w=tw; + -+ lp_1Wp_1 + a0V,

for some t; € R, with ¢, > 0. The conditions to be satisfied are that (w|w;) = 0 for
1 <i<n-—1and that (w|w) = 1. The first n — 1 equalities translate to

0 = (wlw;y = t; + tplvp|w;),

which holds provided t; = —t,{v,|w;) for 1 < i < n — 1. We assume this condition, so

that
n—1
w=t, (Un — Z<Un|w,>wz)
i=1

Then t, is the only remaining parameter and can only take the positive value such that
n—1

Up — Z<vn|wi>wi

i=1

tn

This concludes the proof, provided the vector

n—1
T =, — Z<vn|wi>wi
i=1

is non-zero. But by construction, this is a linear combination of vy, ..., v, where the
coefficient of v, is 1, hence non-zero. Since the vectors v; for 1 < ¢ < n are linearly
independent, it follows that x + 0. O
REMARK 5.4.5. In practice, one may proceed as follows to find the vectors (wy, . .., wy):
one computes
U1
wy = —
o
!/
w
wé = V2 — <vg\w1>w1, Wy = —?
ws]



and so on
w/
w,, = vy — {Up|wpwy — - = plWp )W, Wy =
Jwr
Indeed, these vectors satisfy the required conditions: first, the vectors are of norm 1, then
the coefficient of v, in w, is 1/||w!| > 0 (once one knows it is defined!) and finally, we

have orthogonality because, for instance for i < n, we get
(wy|wi) = (n|w;) — (vplwi)(wiw;) = 0.
Note that what these formulas do not show (which explains why we had to prove the

theorem!) is that the vectors w! are non-zero, which is needed to normalize them, and
that they are the unique vectors with the desired property.

COROLLARY 5.4.6. Let V' be a finite-dimensional euclidean space. Let W < V be
a subspace of V', and let B be an orthonormal ordered basis of W. Then there is an
orthonormal ordered basis of V' containing B.

PROOF. Write B = (wy, ..., wy). Let B' be such that (B, B’) is an ordered basis of
V, and let B = (vy,...,v,) be the ordered orthonormal basis given by Theorem 5.4.4.
Because of the uniqueness property, we have in fact v; = w; for 1 < i < m: indeed, if

we consider (wi, ..., W, Umi1,---,U,), the vectors also satisfy the conditions of Theo-
rem 5.4.4 for the basis By. U

EXAMPLE 5.4.7. Let n > 1 be an integer and consider the space V,, of real polynomials
of degree at most n with the scalar product

<Pﬁ%>=J;fﬂxﬂﬂxMx

(it is indeed easy to see that this is a scalar product).
For the basis vectors e; = X' for 0 < 7 < n, we have

1 i+7+1
{eile;) = f 2 dy = 1- (=)™
-1

i+j+1
If we apply the Gram-Schmidt process, we deduce that there exist unique polynomials
Py, ..., P,, such that (P, ..., P,) is an ordered orthonormal basis of V,, and such that

%
Pi= ), cie;
Jj=0

with ¢; € R and ¢; > 0, or in other words, such that P is a polynomial of degree exactly
i with the coefficient of 2’ strictly positive.

A priori, the polynomials P; should depend on n. But if we consider V,, as a subspace of
V11, the uniqueness property shows that this is not the case: indeed, writing temporarily
P, 1, for the polynomials arising from V.1, we see that (P,410,- .., Poy1,) satisfy the
properties required of (P, , ..., P,,), hence must be equal.

There is therefore an infinite sequence (P,),>o of polynomials such that (1) for any n
and m, we have

fl P, (z) Py (x)dz = §(n,m),

and (2) the polynomial P, is of degree n with leading term > 0. These (or multiples of
them, depending on normalization) are called Legendre polynomials.
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We can easily compute the polynomials for small values of n using Remark 5.4.5, but
the normalization factors tend to make these complicated to write down. It is therefore
usual in practice to relax the orthonormality condition.

COROLLARY 5.4.8 (Cholesky decomposition). Let n > 1 and let A € M, ,(R) be a
symmetric matriz such that the bilinear form b(x,y) = 'z Ay is a scalar product on R".
Then there exists a unique upper-triangular matriz R € M, ,(R) with diagonal coefficients
> 0 such that A ="'RR.

Conversely, for any invertible matriz R € M, ,,(R), the bilinear form on R"™ defined
by b(z,y) ='z(*RR)y is a scalar product.

Proor. We consider the euclidean space V' = R" with the scalar product

(xly) =z Ay.

We then consider the standard basis E = (ey,...,e,) of R". Let B = (vq,...,v,)
be the ordered orthonormal basis obtained from the standard basis by Gram-Schmidt
orthonormalization (Theorem 5.4.4). Let R = Mg g be the change of basis matrix from
FE to B. Because v; € {ey,...,e;), the matrix R™! = Mp x is upper-triangular, and
since the coefficient of e; in v; is > 0, the diagonal coefficients of R~ are > 0. Then by
Lemma 2.10.18 (2), the matrix R is also upper-triangular with > 0 diagonal entries.

We now check that A = 'RR. The point is that since B is an orthonormal basis, we
have

(x|y)y = Ztis,- =ts
if we denote by ¢ = (¢;) and s = (s;) the vectors such that

sztivi, y:Zsjvj.
( J

We have also t = Rx and s = Ry by definition of the change of basis. It follows therefore
that

‘v Ay = "(Rx)Ry = "2' RRy.

Because this is true for all z and y, it follows that A = 'RR.

Conversely, let b(x,y) = 'z(*RR)y for R € M, ,(R). Since '("RR) = 'RR, the ma-
trix A = 'RR is symmetric, and therefore b is symmetric. Moreover, we can write
b(z,y) = *(Rx)Ry, and hence b(x,x) = (Rxz|Rz), where the scalar product is the stan-
dard euclidean scalar product on R". This implies that b(z,z) = 0 and that b(z,x) = 0
if and only if Rx = 0. If R is invertible, it follows that R is a scalar product. O

5.5. Orthogonal complement

DEFINITION 5.5.1 (Orthogonal of a subspace). Let V be a euclidean space. The
orthogonal W+ of a subspace W of V is the set made of vectors in V' that are orthogonal
to all elements of W:

Wt ={veV | (ww)=0 for all w e W}.
The bilinearity shows that W+ is a vector subspace of V.
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PROPOSITION 5.5.2. Let V' be a euclidean space.

(1) We have {0}* =V and V*+ = {0}.

(2) For any subspaces Wy and Wy of V' such that Wy = Wy, we have Wit = Wit; if
V is finite-dimensional, then W1 = Wy if and only if Ws- < Wit.

(3) If V is finite-dimensional then (W)t = W in particular, W, = Wy if and only
if Wab = Wik

(4) If V is finite-dimensional then V. = W @® W+ for any subspace W of V. In
particular, we have then dim(W+) = dim(V) — dim(W).

PROOF. (1) By definition, all vectors are orthogonal to 0; because the scalar product
is non-degenerate, only 0 is orthogonal to all of V.

(2) If Wy < Wa, all vectors orthogonal to W are orthogonal to Wy, so VVQl c I/Vll
The converse follows from (3).

(3) Let (vi,...,Vm,Ums1,--.,0,) be an orthonormal ordered basis of V' such that
(v1,...,vy,) is an orthonormal ordered basis of W (Corollary 5.4.6). By linearity, a
vector v € W belongs to W+ if and only if v is orthogonal to the basis vectors vy, . .., vy,
of W. But since B is an orthonormal basis of V', we can write

v = Z<v|vi>vi
i=1
and this shows that v € W+ if and only if

v = Z (v|vi ;.

i=m+1

This means that (vp41,...,v,) generate W+; since they are orthonormal vectors, they
form an ordered orthonormal basis of W+.

Similarly, by linearity, a vector v belongs to (W=)* if and only if (v|v;) = 0 for
m+ 1 <1 < n, if and only if

m
v = Z<v|vi>vi,
i=1

which means if and only if v € W.

(4) We first see that W and W+ are in direct sum: indeed, an element v € W n W+
satisfies (v|v) = 0, so v = 0. Then we have W + W+ = V by the argument in (3): using
the notation introduced in that argument, we can write

v = Z<v|vi>vi + Z (vlv; v

i=m+1
where the first term belongs to W and the second to W+, U

Because of (3), one also says that W+ is the orthogonal complement of W in V.

DEFINITION 5.5.3 (Orthogonal direct sum). Let V' be a euclidean space and I an
arbitrary set. If (1W;),c; are subspaces of V', we say that they are in orthogonal direct
sum if for all ¢ + j and w € W;, w’ € W}, we have (w|w’) = 0, or equivalently if W; V[/jL
for all 7 + 7.

LEMMA 5.5.4. If (W;)ier are subspaces of V' in orthogonal direct sum, then they are
linearly independent, i.e., they are in direct sum.

PRrooOF. This is because of Proposition 5.4.3, since any choice of vectors w; in W; will
form an orthogonal subset of V. O
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DEFINITION 5.5.5 (Orthogonal projection). Let V' be a finite-dimensional euclidean
space and let W be a subspace of V. The projection py on W with kernel W+ is called
the orthogonal projection on W.

The orthogonal projection py, on W is therefore characterized as the unique map py
from V' to V such that py(v) € W and v — py(v) L w for all w e W.

LEMMA 5.5.6. Let V' be a finite-dimensional euclidean space and let W be a subspace
of V. If (v1,...,vm) is an orthonormal ordered basis of W, then the orthogonal projection
on W is given by

pw(v) = Z<U|Uz‘>vz‘
i=1
forallveV.

PROOF. Indeed, since py (v) belongs to W, Proposition 5.4.3, applied to W and the
basis (v1,...,vn), shows that

pw(v) = Z@W(v) v Yv;.

But since v = py(v) + v’ where v’ € W+, we have

wlviy = pw (v)|vi) + (W'vi) = (vlvi)

forl <i<m. O

5.6. Adjoint, I

In this section, we consider only finite-dimensional euclidean spaces.
Let f: Vi — V5 be a linear map between euclidean spaces. For any v € V5, we can
define a linear map A,: Vi — R by

Ao(w) = (f(w)]v),
where the scalar product is the one on V5. According to Proposition 5.2.6, there exists a
unique vector f*(v) € V; such that

Fw)v) = Ao(w) = Cw[f*(v)).

for all w € V;. Because of the uniqueness, we can see that the map v — f*(v) is a linear
map from V5 to V.

DEFINITION 5.6.1 (Adjoint). The linear map f* is called the adjoint of f.
If V' is a euclidean space, then f € Endgr (V') is called normal if and only if f*f = ff*,
and it is called self-adjoint if f* = f.

So the adjoint of f: V) — V4 is characterized by the equation
(5.3) (fw)v) = Cwlf*(v))
for all w e V; and v € V5.
EXAMPLE 5.6.2. Let A € M,,,(R) and let f = f4: R® — R™, where R" and R™

are viewed as euclidean spaces with the standard scalar product. Then for z € R™ and
y € R™, we have

@)y ="(f2)y = "(Az)y = 2" Ay = (z|" Ay).
This means that f*(y) = ‘Ay, or in other words, that the adjoint of f4 is fis.
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LEMMA 5.6.3. (1) The map f — f* is an isomorphism
HOmR(‘/lv ‘/2) - HOHIR(‘/Q, ‘/1)7

with inverse also given by the adjoint, i.e., for any f € Homg (V1, V3), we have (f*)* = f.
(2) The adjoint of the identity 1dy is Idy .
(3) For Vi, Va, V3 finite-dimensional euclidean spaces and f € Homg(V1,V3), g €
Hompg (V3, V3), we have
(go f)* =f"og"

PRrROOF. (1) The linearity follows easily from the characterization (5.3) and is left as
an exercise. To prove the second part, it is enough to check that (f*)* = f. Indeed, for
w e Vo and v € V;, we have

(fHw)lvy = (wlf(v))
(by definition of f* and symmetry). By definition, this means that f = (f*)*.
(2) It is immediate from the definition that Idj, = Idy.
(3) The composition g o f is a linear map from V; to V5. For any v € V3 and w € V/,
we have

Gfw)lvy = {f(w)lg*(v)) = (wlf*(g"(v))),
which shows that (g o f)*(v) = f*(g*(v)). O

PROPOSITION 5.6.4. Let f: Vi — V5 be a linear map between finite-dimensional eu-
clidean spaces.

(1) We have
Ker(f*) =Im(f)*,  Im(f*) = Ker(f),
and in particular f* is surjective if and only if f is injective, and f* is injective if and
only if f is surjective.
(2) We have rank(f) = rank(f*).
Note in particular that because of Example 5.6.2, it follows that rank(*A) = rank(A)

for any matrix A € M,, ,(R). We will see in Chapter 8 that this is in fact true over any
field.

PROOF. (1) To say that an element v € V5, belongs to Ker(f*) is to say that f*(v) is
orthogonal to all w e Vi. So v € Ker(f*) if and only if

(w[f*(v)) = {f(w)v) =0

for all w € V}. This is equivalent to saying that v is orthogonal (in V3) to all vectors f(w),
i.e., that v e Im(f)".

If we then apply this property to f*: Vo — Vi, we obtain Ker((f*)*) = Im(f*)*, or
in other words that Ker(f) = Im(f*)*. Computing the orthogonal and using Proposi-
tion 5.5.2 (3), we get Ker(f)* = Im(f*).

From this we see that f* is injective if and only if Im(f)* = 0, which means (Propo-
sition 5.5.2) if and only if Im(f) = V4, i.e., if f is surjective. Similarly, f* is surjective if
and only if f is injective.

(2) We compute, using (1) and Proposition 5.5.2 (4), that

)

rank(f*) = dim(V}) — dim Ker(f*
= dim(V}) — dim(Im(f)*) = dim Im(f) = rank(f).
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PROPOSITION 5.6.5. Let V; and Vs be finite-dimensional euclidean spaces of dimension

n and m respectively. Let f: Vi — Vs be a linear map. Let By = (vy,...,v,) be an ordered
orthonormal basis of Vi and By = (w1, ..., wy,,) an ordered orthonormal basis of V. We
then have

Mat(f; By, B2) = ((f (v;)|wi))1<ism.
1<j<n

In particular, we have
Mat(f*; B, B1) = "Mat(f; B1, Ba)

and if Vi = Vs, the endomorphism f is self-adjoint if and only if Mat(f; By, By) is
symmetric.

Note that this proposition only applies to orthornomal bases!

PROOF. Write Mat(f; By, B2) = (a;j)1<i<sm. Then for 1 < j < n, we have

1<j<n

m
flug) = ) aiw;.
i=1
Since the basis By is orthornomal, the coefficients a;; are therefore given by

aij = {f(vj)|w;).
Similarly, the matrix Mat(f*; By, B1) = (bj;)1<j<n has coefficients

1<i<m
bji = {f*(wi)|v) = {wil f(v5)) = ai;.
This means that Mat(f*; By, By) = 'A. O

COROLLARY 5.6.6. Let V' be a finite-dimensional euclidean space and f € Endgr (V).
We have then det(f) = det(f*).

PRrROOF. This follows from the proposition and the fact that det(*A) = det(A4). O

5.7. Self-adjoint endomorphisms

PROPOSITION 5.7.1. Let V' be a finite-dimensional euclidean space and f € Endg (V).
If f s self-adjoint, then the eigenspaces of f are orthogonal to each other. In other words,
if t1  to are eigenvalues of f, and v; € Eig,, ;, then we have (v|vy) = 0.

Proor. We have

ti{vi|ve) = (f(v1)|va) = (1| f(v2)) = talvi|va),

so the scalar product (v |vg) is zero since t;  to. O

THEOREM 5.7.2 (Spectral theorem for self-adjoint endomorphisms). Let V' be a finite-
dimensional euclidean space and f € Endgr (V).

If f is self-adjoint, then there exists an orthonormal basis B of V' such that the
elements of B are eigenvectors of f. In particular, the endomorphism f is diagonalizable.

The key steps are the following lemmas.

LEMMA 5.7.3. Let V' be a finite-dimensional euclidean space and f € Endgr (V). If f
1s normal, t € R is an eigenvalue of f and W < V' s the t-eigenspace of f, then W 1is
stable for f* and W+ is stable for f.
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PROOF. For v e W we have

F(F W) = fH(f(v)) = tf*(v),
so that f*(v) e W.
Now let w € W+. In order to check that f(w)e W+, we compute for v € W that

(Fw)vy = Cw[f*(v)),
Since f*(v) €e W and w e W+, we get (f(w)|v) =0 for all ve W, ie., f(w)e Wt O

LEMMA 5.7.4. Let V' be a finite-dimensional euclidean space of dimension n =1 and
feEndr(V). If f is self-adjoint, then there exists an eigenvalue t € R of f.

PROOF. Let B be an orthonormal basis of V' and A = Mat(f; B, B). We then have
A = A e M,,(R). We view A as a matrix with coefficients in C. We claim that
all eigenvalues of A are real numbers. Since A has an eigenvalue as complex matrix
(Theorem 4.3.14), this will show that there exists ¢ € R such that det(t1, — A) = 0,
hence t is an eigenvalue of A, hence also of f.

By Theorem 4.3.14, there exists t € C and x % 0 in C" such that Ax = tx. We write
r = x1 + 1x9, where x; € R™ and t = t; + ity where ¢{; € R. Expanding the equation
Ax = tx, we obtain the two relations

A.’El = tliL’l — t23§'2
AJ?Q = tox1 + 1122.

Since A is symmetric, we have the relation (Az;|zy) = (x1|Azy) (for the standard scalar
product). Hence
(x| e) — tollwa]® = tal|z |* + t1(xa] ),
hence
ta([la1|* + [ x2]?) = 0.
Since x + 0, one of the vectors x; or x5 is non-zero, so this relation means that t, = 0,
or in other words that ¢ = ¢; is real. O

PROOF OF THEOREM 5.7.2. We use induction on n = dim(V) > 1. If n = 1, all
linear maps are diagonal. Suppose now that n > 2 and that the result holds for self-
adjoint linear maps of euclidean vector spaces of dimension < n—1. Let V' be a euclidean
space of dimension n and f € Endg (V) a self-adjoint endomorphism.

By the previous lemma, there exists an eigenvalue t € R of f. Let W < V be the
t-eigenspace of f. We then have

V=Wwaewh"
(Proposition 5.5.2 (4)) and W+ is stable for f* = f (Lemma 5.7.3). Let g: W+ — W+
be the endomorphism induced by f on W+. This is still a self-adjoint endomorphism of
the euclidean space W+, because the scalar products of vectors in W+ is the same as
the scalar product computed in V. By induction, there is an orthonormal basis B; of
eigenvectors of g on W+. Then if By is an orthonormal basis of W, the basis (By, By) is
an orthonormal basis of V| and its elements are eigenvectors of f. O

COROLLARY 5.7.5 (Principal Axes Theorem). Let A € M,, ,(R) be a symmetric matriz
with real coefficients. Then A is diagonalizable, and there is a basis of eigenvectors which
1s an orthonormal basis of R™ for the standard euclidean scalar product.

ProOOF. This is Theorem 5.7.2 for the self-adjoint endomorphism f = f4 of R™ with
the standard scalar product. U

111



REMARK 5.7.6. One can compute an orthonormal basis where a symmetric matrix
is diagonal by first diagonalizing the matrix using the determination of eigenspaces and
eigenvalues (knowing that the matrix will be diagonalizable with real eigenvalues may help
detecting mistakes); in any basis of eigenvectors, the vectors corresponding to distinct
eigenvalues are already orthogonal, and one need only perform the Schmidt orthonormal-
isation for each eigenspace separately. For instance, if the eigenspace is one-dimensional
(which often happens), then one need only replace an eigenvector v by v/|[v].

5.8. Orthogonal endomorphisms

DEFINITION 5.8.1 (Orthogonal transformation). Let V; and V5 be euclidean spaces.
A linear map f: Vi — V5 is an orthogonal transformation if f is an isomorphism and

W) f (w)) = <vfw)
for all v and w e V.

If V is a euclidean space, then the set of all orthogonal transformations from V' to V'
is denoted O(V') and called the orthogonal group of V. Note that it depends on the
scalar product!

For n > 1, we denote O, (R) the set of all matrices A € M, ,,(R) such that f, is an
orthogonal transformation of R™ with respect to the standard scalar product; these are
called orthogonal matrices.

LEMMA 5.8.2. Let V' be a finite-dimensional euclidean space.

(1) An endomorphism f of V is an orthogonal transformation if and only if it is
invertible and f~' = f*, if and only if f*f = Idy. In particular, if f € O(V), then we
have det(f) =1 or det(f) = —1.

(2) An endomorphism f of V is an orthogonal transformation if and only
f)|f(w))y = v|w) for allv and we V.

(3) A matriz A € M, ,(R) is orthogonal if and only if it is invertible and A™' =tA,
if and only if A'A ='AA = 1,. We then have det(A) =1 or det(A) = —1.

PROOF. (1) If f is invertible, then it is an orthogonal transformation if and only if

@lf*f(w)) = (vlw)

for all v, w € V. This condition is equivalent to f*f = Idy. This is also equivalent with
f invertible with inverse f* (since V is finite-dimensional).

Since det(f™!) = det(f)~" and det(f*) = det(f), it follows that if f € O(V), we have
det(f)™! = det(f), hence det(f)? = 1, which implies that det(f) is either 1 or —1.

(2) It suffices to show that the condition {f(v)|f(w)) = (v|w) implies that f is invert-
ible if V' is finite-dimensional. It implies in particular that | f(v)|? = |v|? for all v € V.
In particular, f(v) = 0 if and only if v = 0, so that f is injective, and hence invertible
since V' is finite-dimensional.

(3) The statement follows from (1) using Proposition 5.6.5. O

PROPOSITION 5.8.3. Let V' be a euclidean space.

(1) The identity 1 belongs to O(V'); if f and g are elements of O(V'), then the product
fg is also one. Moreover, the inverse f~' of f belongs to O(V).

(2) If f € O(V), then d(f(v), f(w)) = d(v,w) for all v and w in V, and the angle
between f(v) and f(w) is equal to the angle between v and w.
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PRrROOF. (1) It is elementary that 1 € O(V); if f and g are orthogonal transformations,
then

(Fa)fg(w)) = (fg()]f(g(w))) = (g(v)lg(w)) = (vfw)

for all v and w in V, so that fg is orthogonal. Let g = f~'. We have ¢g* = (f*)* = f =
(f1)~!t = g1 so that f~!is orthogonal.
(2) is elementary from the definitions. [

ExXAMPLE 5.8.4. Let V be a euclidean space of dimension n > 1. Fix a non-zero
vector vy € V. We define a linear map r,, by

v
<U0|Uo>

for all v € V. This is the orthogonal reflection along vy. It is indeed an orthogonal
transformation: we have

(P (0)rug (w)) = (v =2

Too (V) = v —2

W) 1y oS8l
(volvo) ’ <UO|UO> .

-2 gy I Xty
= (v|w)

since the scalar product is symmetric.
Moreover, r,, is an involution: indeed, observe first that

Two (Vo) = Vg — 2Ug = —p,

and then

s (Gl N Gy Gl
rie) = (v = 20 T) = v = 27 + 270

for all v. It follows from Proposition 4.4.3 that r,, is diagonalizable, and more precisely
that V' is the direct sum of the 1-eigenspace of r,, and of the (—1)-eigenspace.

We can easily determine these spaces: first, we have r,,(v) = —v if and only if
NCLON
<Uo|vo>

which means
<U|Uo>
<UO|UO>
In other words, vy generates the (—1)-eigenspace of r,,, which is one-dimensional.
Now the 1-eigenspace is the space of vectors v such that

5 (o)
U?
<’UO|UO>
or in other words the space of vectors orthogonal to vy. This is the orthogonal complement
{vg)* of the (—1)-eigenspace.
In particular, if V is finite-dimensional, then the 1-eigenspace of V' has dimension
dim(V) — 1. If B = (vg,v1,...,v,) is an ordered basis of V' such that (vy,...,v,) is a
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basis of (vg)*, then the matrix representing r,, with respect to B is

10 0 --- 0
0 1 0 0
0 0 1 0
o 0 -~ 0 1

In particular, the determinant of r,, is —1.

LEMMA 5.8.5. Letn > 1. A matriz A € M, ,(R) is orthogonal if and only if'AA = 1,,
if and only if the column vectors of A form an orthonormal basis of the euclidean space
R"™ with the standard scalar product.

PrOOF. We have already seen the first point. If A is orthogonal, the column vectors
C; of A satisfy
(GilCj) = (Aei|Aej) = (eilej) = 6(i, j)
where (eq,...,e,) is the standard basis of R". So these vectors form an orthonormal
basis of R".
Conversely, the condition (C;|C;) = d(7,j) means that (Ae;|Ae;) = (e;le;) for all
and j, and using bilinearity we deduce that

tl S1 tl 51
Al 1A 2 =D tisi(AeilAejy = D tisi = (| 1 |1 & ]
tn Sn v ’ tn Sn
and hence that f4 is an orthogonal transformation. U

DEFINITION 5.8.6 (Special orthogonal group). Let V' be a finite-dimensional euclidean
space. The set of all orthogonal endomorphisms f € O(V) such that det(f) = 1 is called
the special orthogonal group of V', and denoted SO(V'). If V' = R" with the standard
euclidean product, we denote it SO, (R).

ExXAMPLE 5.8.7. (1) Let V = R? with the standard scalar product. For t € R, the

matrix
R cos(t) —sin(t)
b7 \sin(t)  cos(t)
is orthogonal, and has determinant 1. Indeed, the two column vectors are orthogonal and
cos(t)? +sin(t)? = 1 shows that their norms is 1. Geometrically, the corresponding linear

map (g) — Ry (z) is a rotation by the angle ¢ in the clockwise direction.

Conversely, let A € Ms5(R) be an orthogonal matrix. Assume first that det(A) = 1.
Then we claim that there exists ¢t € R such that A = R;. Indeed, if

= ()

then the conditions for A € SO5(R) are that

a?+c=1
V+d=1
ab+cd =0
ad — bc = 1.
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The first implies that there exists ¢t € R such that a = cos(t), ¢ = sin(¢). Similarly, there
exists s € R such that b = cos(s) and d = sin(s). The last equation becomes

1 = cos(t) sin(s) — sin(t) cos(s) = sin(s — t).

Hence there exists k € Z such that s—t = 7/2+2knw. Therefore b = cos(s) = cos(t+7/2) =
—sin(t) and d = sin(s) = sin(t + 7/2) = cos(t). This means that

4 (cos(t) —sin(t)) _ R,

sin(t)  cos(t)
If det(A) = —1, then det(BA) = 1, where

B— (‘01 2) e O(R)

p is the orthogonal reflection along the vector 1 . Hence there exists t € R such
0
that

sin(t)  cos(t)

(2) Let V = R"™ and let 0 € S,,. The permutation matrix P, is orthogonal: indeed, its
column vectors are just a permutation of the column vectors of the standard orthonormal
basis of R™.

PROPOSITION 5.8.8 (Principal Axes Theorem, 2). Let A € M, ,(R) be a symmetric

matriz with real coefficients. There exists an orthogonal matriz X such that XAX 1 =
XAX is diagonal.

A—B'R, — BR, - <— cos(t) sin(t)> ‘

PRroOOF. This a translation of Corollary 5.7.5: let B be the standard basis of R™ and
B’ an ordered orthonormal basis of R™ for which Mat(f4; B’, B') is diagonal. Since B’
is orthonormal, the change of basis matrix X = Mp p is orthogonal, and X AX ! =
Mat(fa; B', B') is diagonal (see Proposition 2.9.13). O

PROPOSITION 5.8.9 (QR or Iwasawa decomposition). Let A € M, ,,(R) be any matriz.

There ezists an orthogonal matriz Q) € O,(R) and an upper-triangular matriz R such that
A=0QR.

PrROOF. We prove this only in the case where A is invertible. Consider the matrix
T = 'AA. By the Cholesky Decomposition (Corollary 5.4.8), there exists an upper-
triangular matrix R with positive diagonal coefficients such that 7' = *RR. This means
that "RR = 'AA. Since R and 'R are invertible, with (‘R)™' =(R™!), we get

1, = "(ARTYAR™,
This means that Q = AR™! is an orthogonal matrix. Consequently, we have A = QR. O
COROLLARY 5.8.10. Let A = (a;j) € M,,(R) be a symmetric matriz. Then the

bilinear form b(xz,y) = 'wAy is a scalar product if and only if, for 1 < k < n, we have
det(Ay) > 0, where Ay, € My (R) is the matriz defined by A = (ai;)1<i<k-

1<j<k

The matrices A, are called the “principal minors” of A.

PROOF. Let B = (vy,...,v,) be a basis of R" formed of eigenvectors of A, with
Av; = \jv;. Using the standard scalar product, we have

b(z,y) = (z|Ay)
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and therefore
b(’l)i, Uj) = )\Z(S(Z,j>

It follows that b is a scalar product if (and only if) the eigenvalues \; are all > 0.

We now prove the “if” direction by induction with respect to n. For n = 1, the result
is clear. Assume now that n > 2, and that the result holds for matrices of size < n — 1.
Let A be such that det(Ag) > 0 for 1 < k < n. By induction, the bilinear form defined
by A,_; on R" ! is a scalar product. The product of the eigenvectors is equal to the
determinant of A, which is det(A,) > 0. Hence, all eigenvalues are non-zero, and if there
is one eigenvalue < 0, then there is at least another one. Assume for instance that A\; £ X\,
are two eigenvalues < 0. The vectors v; and vy are linearly independent, so there exist a
and b in R, not both zero, such that w = av; + bvy € R"™ is a non-zero vector where the
last coordinate is 0. Hence we can write

W
o= (5)
where w0 is a non-zero element of R*!. But then we have

M A, 1 = "wAw = a*b(vy,v1) + B2b(ve, v2) = —a® — b* < 0,

and this contradicts the fact that A,_; defines a scalar product on R"~!. Therefore A
has only positive eigenvalues, and b is a scalar product.

Conversely, assume that b is a scalar product on R"™. Then its restriction b, to the
subspace W}, generated by the first £ basis vectors of the standard basis is a scalar product.
If we identify W), with R”, then we get

bi(z,y) = "w Ay
for all z, y € R*. From the remarks at the beginning, we therefore have det(A;) > 0. O

5.9. Quadratic forms

The Principal Axes Theorem has another interpretation in terms of quadratic forms.

DEFINITION 5.9.1 (Quadratic form). Let n > 1. A map @Q: R" — R is called a
quadratic form if there exists a symmetric matrix A € M, ,(R) such that

Q(r) ="z Ax
for all x € R™.

By “polarization”, one sees that the matrix A = (a;;) associated to a quadratic form
@ is uniquely determined by @Q: if we denote b(z,y) = ‘x Ay, then we have

Qr +y) = Q(x) + Qy) + 2b(z,y),

and b(e;, ;) = a;; for the standard basis vectors (e;).

EXAMPLE 5.9.2. (1) For A = 1,,, we get Q(z) = |z|*.
(2) Let A be a diagonal matrix with diagonal coefficients ay, ..., a,. Then for
x = (x;) € R", we have
Q(x) = aat + - + apzl.
(3) Let

b

|
oo o
oo

o o
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for some a € R. Then we have
=9 2
Q(z1, x9,23) = 2ax 29 — T3.

THEOREM 5.9.3 (Principal Axes Theorem). Let n > 1 and let Q be a quadratic form
on R™.

(1) There exists an orthonormal basis B = (wy,...,w,) of R", for the standard
euclidean scalar product, integers p = 0, ¢ = 0, with p + q < n, and real numbers \; > 0
for 1 <i < p+ q such that

Q(ZL‘) = Aly% +-t )‘pyi - >‘p+1y1§+1 - )‘p+qy£+q
for all x € R™, where (y;) are the coefficients of x with respect to the basis B:
T = 1wy + -+ YWy,

(2) There exists an orthogonal basis B’ = (vy,...,v,) of R", for the standard eu-
clidean scalar product, integers p = 0, ¢ = 0, with p + q¢ < n, such that

2 2 _ .2 2
Q(':E) :y1+'.‘+yp_yp+l_”'_yp+q
for all x € R™, where (y;) are the coefficients of x with respect to the basis B'.

The lines generated by the vectors (w;) of a basis given by this theorem are called
principal axes of the quadratic form. The number p—q is called the index of the quadratic
form. Especially when n = p + ¢, one often says that @ is of type (p, q).

DEFINITION 5.9.4 (Positive, negative, quadratic forms). A symmetric bilinear form b
on R", or the quadratic form Q(x) = b(x,x), or the symmetric matrix A € M, ,(R) such
that b(x,y) = ‘e Ay is called

(1) Positive or positive semi-definite if Q(z) > 0 for all z € R™;

(2) Positive-definite if it positive and Q(z) = 0 if and only if x = 0, or in other
words if b is a scalar product;

(3) Negative or negative semi-definite if Q(z) < 0 for all x € R";

(4) Negative-definite if it negative and Q(x) = 0 if and only if 2 = 0, or in other
words if —b is a scalar product.

PROOF. Let A be the symmetric matrix such that Q(z) = ‘zAz for all x € R" and b
the associated bilinear form. Since A is symmetric, it is diagonalizable in an orthonormal
basis B = (wy,...,w,) of R" (Corollary 5.7.5), say Aw; = t;w; for 1 <i < n. We define
p and ¢, and we order the basis vectors of B so that t; > 0 for 1 < < p, t; < 0 for
p+1<i<p+gq,andt; =0 for i > p+ ¢ (it may be that p, or g or both are zero). We
then put \; =¢;if 1l <i<pand \; = —t; if p+1 <7 <p+q. So we get real numbers
A >0forl<i<p+gq.

If

T =yiwy + -+ YpWn,
then we compute
Q) = bl,) = b( P wiwi, Yy ue;) = 2, viasbluws, wy)
i ] irj
by bilinearity. But
b(wi, wj) = twiij = tj<w,-|vj> = 2t]5(l,])
since (wy,...,w,) is orthonormal. Therefore we get

Q(x) = )\1?/% +- /\p?/IQ; - )\p+1y£+1 - )‘p+qy12)+q'
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We then define v; = |\;|~"2w; for 1 < i < p+ ¢, and v; = w; for i > p + ¢q. Then

(v1,...,v,) is an orthogonal basis of R™ (but not necessarily orthonormal anymore), and
we have

Q@) =yi + -+ Yy = Ypp1 = — Ypug
for all x € R™. U

In terms of the type (p, q), we see that:
(1) @ is positive if and only if ¢ = 0;
(2) @ is positive-definite if and only if p = n;
(3) @ is negative if and only if p = 0;
(4) @ is negative-definite if and only if ¢ = n.
To check the first one, for instance (the others are similar or easier), note first that if

q = 0, then we get
p

Qz) = Zaiyzz =0
i=1

for all x = y1v1 + -+ + ypv, € R", so that ¢ = 0 implies that () is positive. Conversely, if
q = 1, note that

Q(Up+1) = —Qp4+1 < 0
so that @) is then not positive.

It is often useful to visualize the properties of quadratic forms in terms of the solutions

to the equations Q(z) = a for some a € R.

DEFINITION 5.9.5 (Quadric). Let n > 1. A (homogeneous) quadric in R” is a
subset of the type
Xqa={reR" | Q(z) = a}
where () is a quadratic form and a € R.

EXAMPLE 5.9.6. (1) Consider n = 2. We see that there are five types of quadratic
forms, in terms of the representation with respect to principal axes:

e p = ¢ = 0: this is the zero quadratic form; the quadric is either empty (if a # 0)
or equal to R? (if a = 0);

ep = 2, g = 0: this is the norm associated to a scalar product; the quadric
Q(z) = a is an ellipse in the plane if @ > 0, a point if a = 0 and empty if a < 0;

e p=0,q=2: then —( is the norm associated to a scalar product; the quadric
Q(z) = a is empty if a > 0, a point if @ = 0 and an ellipse if a < 0;

e p = ¢ = 1: in the orthonormal basis of principal axes, we have Q(x) = y3 — y3.
The quadric is a hyperbola in the plane if a + 0, and the union of two orthogonal
lines if a = 0.

e p=1,¢q=0: in the orthonormal basis of principal axes, we have Q(z) = y3.
The quadric is a single line if a > 0, and empty if a < 0.

e ¢ =1, p=0: in the orthonormal basis of principal axes, we have Q(z) = —y3.
The quadric is a single line if a < 0, and empty if a > 0.

(2) Consider n = 3. Then we have the following types of quadratic forms and quadrics
(where we simplify the description by using the symmetry between p and ¢ corresponding
to replacing @ with —Q):

e p = ¢ = 0: this is the zero quadratic form; the quadric is either empty (if a # 0)
or equal to R? (if a = 0);

e p =3, g = 0: this is the norm associated to a scalar product; the quadric
Q(r) = a is an ellipsoid in R? if a > 0, a point if @ = 0 and empty if a < 0;
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FI1GURE 5.1. A hyperboloid with one sheet

F1GURE 5.2. A hyperboloid with two sheets

ep =2 ¢ = 1. in the orthonormal basis of principal axes, we have Q(z) =
y? + y3 — y3. The quadric Q(z) = a is a hyperboloid with one sheet if a > 0 (the
intersection with a plane where ys is fixed is a circle of radius 4/a + y3), it is a
cone with vertex at the origin if @ = 0 (the intersection with a plane where y3 is
fixed is a circle of radius |ys|, or a point if y3 = 0), and it is a hyperboloid with
two sheets if a < 0 (the intersection with a plane where y; is fixed is empty if
lys| < 4/]a| and is a circle of radius /a + y3 if |yz| = +/]a]).

e p =2 ¢ =0: in the orthonormal basis of principal axes, we have Q(z) = y3 +y3.

e p =g = 1: in the orthonormal basis of principal axes, we have Q(z) = y? — 3.

119



FiGURE 5.3. The cone

5.10. Singular values decomposition

THEOREM 5.10.1 (Singular value or Cartan decomposition). Let V' be a finite-
dimensional euclidean space and f € Endr(V). Let n = dim(V) and r = rank(f).
There exist orthonormal bases

By = (v1,...,0,)
Bg = (wl,...,wn)

of V', possibly different, and r strictly positive real numbers oy, ..., o, such that for all
veV, we have

f) = oxvlvyw;.
i=1
Equivalently, we have f(v;) = oyw; for 1 <1 < r and f(v;) = 0 fori > r, so that the
matriz Mat(f; By, By) is diagonal with diagonal coefficients
(61,...,0.,0,...,0).

The numbers o4, ..., 0, are called the singular values of f. Up to ordering, they are
uniquely defined.

ProoFr. Consider the endomorphism g = f*f of V. Then ¢* = f*(f*)* = f*f, so
that g is self-adjoint. Let By = (vy,...,v,) be an orthonormal basis of V' of eigenvectors
of g, say g(v;) = \v; for 1 < i < n. Because

Aiflvi|? = (g(wi)viy = (F*(f (0i) vy = | f (vs)|I?,

the eigenvalues are > 0. We can order them so that the first s eigenvalues are > 0,
and the eigenvalues A;i1, ..., A\, are zero. We then see from the equation above that
f(v;) =0 for i > s.

Let v e V. We have

v = Z<U\U¢>U¢,
i=1
since the basis B is orthonormal, hence
f(v) = Y (lv f (v).
i=1
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For 1 <i<sand1<j<s, wehave

fi)lf(vy)) = {gwi)|v;) = Aivilv) = Nid (i, 7),

again because Bj is an orthonormal basis. This means that if we define

1
\/X'f(vi)’

for 1 < i < s (which is possible since \; > 0), then we have
(wilw;) = 6(i, 7).

Now we can write the formula for f(v) in the form

flv) = Z VAl

w; =

This gives the desired result with ; = v/)\; (completing the orthonormal set (wy, ..., w,)
to an orthonormal basis By of V).

Finally, the description shows that Im(f) < ({ws,...,ws}), and since f(v;) = ow;
with o; > 0 for 1 < i < s, we have in fact equality. Since (wy,...,ws) are linearly
independent (as they are orthonormal), it follows that s = dim(Im(f)) = r. O

REMARK 5.10.2. Although it can be useful to remember the construction of the sin-
gular values and of the bases B; and Bs, one should not that it is not difficult to recover
the fact that B, is a basis of eigenvectors of f*f from the stated result. Indeed, if we
consider each linear map

Uiz v (v|vpHw;
for 1 < i < r, then we compute easily the adjoint of ¢;: we have
(i) |w) = (olvi)Xwi|w) = (vl (w))

where £} (w) = (w;|w)v;. Since

f= ZT: oils,
i=1

we have
fr=>aitr.
i=1
Hence
Ff =YY oostie.

i=1j=1

But
(€5€5)(v) = wlvp )l (wy) = (vlvj)wilwjyvi = §(i, j){v|vivs,

so that

[ f) = 2 a2{v|vHv;.

This implies in particular that f*f(v;) = o?v; for 1 <4 <r and f*f(v;) = 0 for i > r.
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COROLLARY 5.10.3 (Singular values decomposition for matrices). Let n > 1 and
let A € M,,(R). There exist orthogonal matrices X; and X, and a diagonal matriz
D e M, ,,(R) with diagonal entries

(o1,...,00,0,...,0)
where o; > 0 for 1 <i <r, such that A = X1 DX5.

ProOOF. This is the theorem applied to f = f4 on R"™ with the standard scalar
product: let B be the standard basis of R", and denote X; = Mp, g, Xo = Mp p,. Then
we have

A= Mat(fA, B, B) = X1 Mat(fA, Bl> BQ)XQ = XlDXQ
by Proposition 2.9.13, and the matrices X; and X, are orthogonal because B; and B,
are orthonormal bases (Lemma 5.8.5). O

EXAMPLE 5.10.4. Consider V = R? and f = f4 where
11
2= (0 1)
z\ _ (xz+Yy
d (y) ( Y ) '
Lo (11
()

which has characteristic polynomial ¢> — 3¢ + 1, with positive roots

3+4/5 3-4/5
+2\f=2.618033..., ty = 2\F

so that

We then have

t = = 0.381966. . ..

Therefore 5 5
1++/5 —14+4/5
9 5 09 = \/g = Ta

01 0
0 02 '

To find eigenvectors of A'A with eigenvalues ¢; and ty, we write the linear systems

T4y =tz T4y =tx
20 +y =ty 20 +y = tay
We know that there exist non-zero solutions, so any non-zero solution of the first equation

(for instance) must also be a solution of the second (otherwise, the solution set would be
reduced to 0). So the vectors

e <t11_1) B <<1+1vﬁ>/2)’ "o <t21—1> ) (“—1“5)/2)

are eigenvectors for ¢; and t, respectively. We have ||71]? = (5++/5)/2, |2]? = (5—+/5)/2
and (01|09) = 0 so an orthonormal basis of eigenvectors is

(v1,v9) = ( o b )

|o1]]” [0

012\/E=

and the matrix D is

The singular decomposition formula for f is therefore

f(w) = lopfvr) + (olv)f (v2).
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CHAPTER 6

Unitary spaces

6.1. Hermitian forms

The next few sections will be very close to the discussion of euclidean vector spaces.
They concern the analogue, for the field of complex numbers, of the notions related to
euclidean spaces and scalar product. The key feature of C is that, for any z € C, the
complex number |z|? = 27 is a non-negative real number.

DEFINITION 6.1.1 (Sesquilinear form). Let V' be a C-vector space. A sesquilinear
form b on V is amap V x V — C such that

b(v,w; +wy) =0b(v,w) +
b<v1 + v, w ) = ( ,’LU) (U27 )
b(v, tw) = tb(v, w)
b(tv, w) = tb(v, w)

for all v, vy, ve, w, wi, we in V and t € C.
A sesquilinear form b on V is called hermitian if and only if we have

b(v,w) = b(w,v)

for all v and w in V.

The difference with a bilinear form is that, with respect to the first argument, a
sesquilinear form is not linear, but “conjugate-linear”, while it is linear with respect to
the second argument. On the other hand, hermitian forms are the analogues of symmetric
forms — note that if b is a sesquilinear form, then (v, w) — b(w, v) is not sesquilinear, since
it is linear with respect to the first argument, and not the second. But (v, w) — b(w,v)
is a sesquilinear form.

It should be noted that it is a convention that the first argument is conjugate-linear,
and the second linear; different authors might use the opposite convention, and one must
be careful to check which definition is used before translating formulas.

Sometimes, it is simpler to work with bilinear forms, and there is a trick for this.

DEFINITION 6.1.2 (Conjugate space). Let V' be a C-vector space. The conjugate
space V is the C-vector space with the same underlying set as V', and with

Oy = Oy
V1 +§ U2 = U1 + Vg
tyv=tv
for v, v1, v in V and t € C.
It is elementary to check that this is a vector space. For instance, for ¢t € C and vy,
ve € V =V we have
ty (V1 +v9) = t(vy + vg) =tvy +tvy =ty vy + Ty Vs
The point of the definition is the following lemma.
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LEMMA 6.1.3. Let V and W be C-vector spaces. A map f:V — W is a linear map
from V' to W if and only if we have

flvr +v2) = f(v1) + f(vg) forvy, vo eV
f(tv) =tf(v) forte C, veV.

We will see a number of maps having both of the properties; these are not linear from
V to W, but we can interpret them as linear from V to W; in particular, we can speak of
their kernel, range, of the dimensions of these, and (for instance) say that f is injective
if and only if the kernel is {0}.

PROOF. By definition of W, the second condition is equivalent to f(tv) = ¢ -y f(v).
Using the additivity of the first condition, this means that f is linear from V to W. [0

LEMMA 6.1.4. Let V' be a C-vector space. For any subset S of V', the subspace
generated by S in V and V is the same subset of V, and S is linearly independent in
V if and only if it is linearly independent in V. In particular V and V have the same
dimension.

PRrOOF. To say that w is a linear combination of vy, ..., v, in V means that there
exist t1, ..., t, in C with
w =101 + - + tpUy,
or equivalently that
w =t v U1 -i-f/”'-i-f/fn‘(/vn.
So the linear combinations of elements of S are the same in V as in V, and a linear

combination equal to 0 in V corresponds to a linear combination equal to 0 in V. The
result follows. 0

EXAMPLE 6.1.5. (1) For any linear forms A\; and Ay on the C-vector space V, the
product
b(Ul,UQ) = )\1(1)1))\2(’02)
is sesquilinear. It is hermitian if \; = \,.
(2) The set Ses(V) of all sesquilinear forms on V' is a subset of the space of all functions
V xV — C. It is a vector subspace. The set of all hermitian forms is not a subspace of
Ses(V), only a real-vector subspace: if b is hermitian, then b satisfies

(ib) (v, w) = —ib(v,w) = —(ib)(w, v)

so that it is not hermitian (unless b = 0).
(3) Let V be the vector space over C of all complex-valued continuous functions on
[0,1]. Let

b1(f1, f2) = £1(0)£2(0)

and
ba(f1, f2) = L mﬁ(ﬂ?)dl"

for f; and fy in V. Then b; and by are sesquilinear forms on V', and they are hermitian.
(4) Let V.= C™ and let A € M, ,(C). For x = (x;) € V, the transpose ‘x is a row
vector, and the conjugate
‘T =(Z1,...,%)
is also a row vector. Let
b(.ﬁlﬁ, y) = tijy
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for x and y € C". Then b is a sesquilinear form. In particular, if A = 1,, is the identity
matrix, we obtain

b(.ﬁl?, y) = Z Tl

DEFINITION 6.1.6 (Conjugate of a matrix). If n, m > 1 and if A = (a;;) € My, ,(C),
we denote by A the matrix (a@;;) of M,,,(C), and call A the conjugate of A.

LEMMA 6.1.7. (1) The application A — A satisfies
A=A, tA+sB=1%A+3B,
for any A, B € M,,,(C) and s, t € C. In particular, it is R-linear, and more precisely
it is a linear involution from M, ,(C) to the conjugate space M, ,(C).
(2) Form, n, p>=1, and for Ae M, ,(C) and B € M,,,(C), we have
BA = BA.
In particular, A is invertible if and only if A is invertible, and (A)~" = A=,

(3) Forn =1 and A € M, ,(C), we have det(A) = det(A).

PROOF. (1) is elementary, and (2) follows from the definition of the product and the
fact that st = st for any complex numbers s and ¢.
(3) can be derived from the Leibniz formula, or by checking that

A det(A)

is an alternating multilinear map of the columns of A that takes value 1 for the identity
matrix. U

DEFINITION 6.1.8 (Hermitian matrix). A matrix A € M, ,(C) is hermitian if and
only if ‘A = A, or equivalently if A = A: the conjugate of A is equal to its transpose.

PROPOSITION 6.1.9. Let V' be a finite-dimensional complex vector space.
(1) For any ordered basis B = (vy,...,v,) of V, the application

3 Ses(V) — M, ,(C)
L = (b(vi, ;) h1<ij<n
is an isomorphism of vector spaces. In particular, dimSes(V) = dimg(V)?. The

sesquilinear form b is hermitian if and only if Bg(b) is hermitian.
(2) For any x = (t;) € C" and y = (s;) € C", we have
b(z tﬂli, Z SjUj) = Z b(Ui, Uj)t_iSj = tJ_IAy
( J .3
where A = ().

(3) If B and B’ are ordered bases of V and X = Mp g is the change of basis matriz,
then for all b € Ses(V') we have

ﬂB/(b> = tXﬂB(b)X
PRrROOF. (1) The linearity of Op is easy to check. We next check that this map is
injective. If Sp(b) = 0, then b(v;,v;) = 0 for all ¢ and j. Then, using bilinearity, for any
vectors
(6.1) v="1tv + -+ t,u,, W= S$1U1 + -+ + S Uy,
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we get

-

~
Il
_

b(v,w) =b(tyvy + -+ + tpvp, w) = Yy ;b(v;, w)

tib(vi, $101 4 -+ + Sp0p)

Il

S
Il
—

Z‘Sjb(l)j, Uj) = O,

i

&,

so that b = 0. Finally, given a matrix A = (a;;) € M,,,(C), define

b(U, w) = 2 aijfisj
0,

for v and w as in (6.1). This is a well-defined map from V' x V' to C. For each i and j, the
map (v, w) — a;;t;s; is sesquilinear (Example 6.1.5 (1)), so the sum b is in Ses(V'). For
v = v, and w = vj,, the coefficients t; and s; are zero, except that t;, = s;, = 1, which
shows that b(v;,v;) = a;;. This means that Sp(b) = A, and hence we conclude that fp is
also surjective.

A sesquilinear form b is hermitian if and only if b(v;, v;) = b(v;, v;) for all ¢ and j, and
this means that the transpose of the matrix Sz(b) is equal to its conjugate.

(2) The first formula has already been deduced during the proof of (1), so we need to
check that

Z b(UZ', Uj)tiSj = ti’Ay
0,

Indeed, we have

and therefore
t(Z’Ay = (t_l tet En) . Ay = ZfiZb(UZ‘,Uj)Sj = Z Z?Z'Sjb(’UZ‘,Uj).
i J 1<i,j<n

(3) Let B" = (wy,...,wy,). If X = (a;;) = Mp p is the change of basis matrix, and
= (a;;)1<i<n denote the j-th column of X, then we have by definition

n
w]‘ = Z aijvi
i=1

L

for 1 < j < n. So by (2) we get
b(wi,wj) = ti’iﬁB(b>ZEj

for all i and j. Now consider the matrix ‘X 35(b)X and denote its coefficients (¢;;). Then
¢;; is the product of the i-th row of ‘X with the j-th column of Sz(b)X, which is the
product of Sg(b) and the j-th column of X. This means that

Cij = tfiﬁB(b)xj = b(w;, w;)

and hence B (b) = X Bp(b)X. O
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DEFINITION 6.1.10 (Left and right kernels of a sesquilinear form). Let b be a sesquilin-
ear form on V. The left-kernel of b is the set of vectors v € V such that

b(v,w) =0 for all w e V,
and the right-kernel of b is the set of vectors w € V such that
b(v,w) =0 for allve V.

A sesquilinear form b on V' is non-degenerate if the right and the left kernels are
both equal to {0}.

If b is hermitian, then the left and right kernels are equal.

PROPOSITION 6.1.11. Let V' be a finite-dimensional vector space and B = (v;) an
ordered basis of V. Then a sesquilinear form b on V s non-degenerate if and only if

det(85(b)) + 0.

PROOF. Suppose first that the left-kernel of b contains a non-zero vector v. Then
there is an ordered basis B’ of V' such that v is the first vector of B’ (Theorem 2.7.1 (2)).
We have

Bp(b) = "X B (b)X
where X = Mp p (Proposition 6.1.9 (3)). Since the coefficients b(v,v") of the first row of
Bp(b) are zero, we get det(fBp/(b)) = 0, hence det(5p(b)) = 0. Similarly, if the right-kernel
of b is non-zero, we deduce that det(5g(b)) = 0.

We now consider the converse and assume that det(8z(b)) = 0. Then the columns C;
of the matrix Sp(b) are not linearly independent. Let then ¢y, ..., ¢, be elements of K,
not all equal to 0, such that

tLCi+---+t,C, =0, C".
Since C; = (b(vi,v;))1<i<n, this means that for 1 <14 < n, we have
t1b(vi, v1) 4+ -+ + tub(vg, v,) = 0.
By linearity with respect to the second argument, this means that
b(vi, tivg + -+ + tpu,) =0

for all 7. But then (by sesquilinearity) the vector tyv; + - -+ + t,v, belongs to the right-
kernel of b. Similarly, using the fact that the rows of S(b) are not linearly independent,
we deduce that the left-kernel of b is non-zero. O

PROPOSITION 6.1.12. Let V' be a finite-dimensional C-vector space and let b € Ses(V)
be a non-degenerate sesquilinear form. For v € V, denote by \, the linear form

/\U(w> = b(’U, w)
on V. Then the map

v A,

{f/ — Homg(V, C)

18 an isomorphism.

PROOF. We first check that the map is linear. It is elementary that A, 4, = Ay, + Ao,
Let ve V and t € C.
Then, denoting by tv the product in V', we have
Ao (w) = b(tv, w) = th(v,w) = tA,(w)
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which means that A, = t),. Translating in terms of V, this means that
)\t-(/v = A\pp = tA,,

so that ) is linear from V' to Homg(V, C).

Now that we know that the map is linear, we observe that both spaces have the same
dimension (Lemma 6.1.4), so it suffices to check that this map is injective. But if A, = 0,
we obtain b(v, w) = 0 for all w € V|, which means that w belongs to the right-kernel of b,
which is zero since b is non-degenerate. U

EXAMPLE 6.1.13. We describe more precisely Ses(C") for n = 1 and 2. For n = 1,
a sesquilinear form on C is of the form b(x,y) = aZy for some a € C. This form is
hermitian if and only if a € R, and non-degenerate if and only if a % 0.

For n = 2, the sesquilinear form associated to the matrix

a1; a2
A= € My,(C
<Cl21 a22> 22(C)
is
T ) _ _ _ _
b(( ) ; ( )) = a11T1%2 + A12T1Y2 + A21T2Y1 + A22T2Y2.
hn Y2
This sesquilinear form is non-degenerate if and only if a;;a99 — aj2a9; £ 0. It is hermitian
if and only if a7 and agy are real and if a1 = Go;.
DEFINITION 6.1.14 (Positive, positive-definite hermitian forms). Let V' be a C-vector
space. A sesquilinear form b € Ses(V) is called positive if b is hermitian and
b(v,v) =0

for all v € V; it is called positive definite, or a (complex) scalar product if it is
positive and if b(v,v) = 0 if and only if v = 0.

If b is positive, then two vectors v and w are said to be orthogonal if and only if
b(v,w) = 0. This is denoted v L w, or v 1, w if we wish to specify which sesquilinear
form b is considered.

REMARK 6.1.15. If v and w are orthogonal, note that we obtain
b(v +w,v+w) = b(v,v) + blw,w) + b(v,w) + b(w,v) = b(v,v) + b(w, w).

As for euclidean spaces (see (5.2)), a positive (in fact, hermitian) form b is determined
by the map ¢: v — b(v,v). To see this, note that

g(v +w) = q(v) = g(w) = b(v,w) + b(w, v) = 2Re(b(v, w))
so the real part of b(v,w) is determined for all v and w by the map ¢. But moreover
Im(b(v,w)) = — Re(ib(v, w)) = Re(b(iv, w))
is then also determined by q.

PROPOSITION 6.1.16 (Cauchy-Schwarz inequality). Let V' be a complex vector space
and let b be a scalar product on V. Then for all v and w € V', we have
|b(v, w)|* < b(v,v)b(w, w).
Moreover there is equality if and only if v and w are linearly dependent.
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ProoF. We may then assume that v £ 0, since otherwise the inequality takes the
form 0 = 0 (and 0 and w are linearly dependent). Then observe the decomposition
w = w + wy where

o bw) )
Y ob(o,0) 2 b(v,v)
Note that
b b
b(wy, we) = (v, w) (U’w)b(v,w) = 0.

b _ A7)
b(v,v) (v, w) b(v,v)
Hence we get, as observed above, the relation

b(v, w)? |b(v, w)|?

b(w, w) = b(wl, wl) + b(wg,wg) = Wb(v,v) + b(wg, U)g) = W

This leads to the Cauchy-Schwarz inequality. Moreover, we have equality if and only if
b(way, wy) = 0. If b is positive definite, this means that wy = 0, which by definition of ws

means that v and w are linearly dependent. U

EXAMPLE 6.1.17. For any continuous complex-valued functions f; and f, on an in-
terval [a, b], we have

[ Fn@] < ([ 1w < ([ k).

Indeed, the map
b
Whif) = | R fala)ds

is a positive-definite sesquilinear form on the C-vector space V' of complex-valued con-
tinuous functions from [a,b] to C.

DEFINITION 6.1.18 (Unitary space). A unitary space or pre-Hilbert space is the
data of a C-vector space V and a scalar product b on V. One often denotes

v|w)y = b(v, w).

For v € V, one denotes |v|| = 4/{v|v). The function v — |v| is called the norm on V.
For v, w € V, the norm |v—w| is called the distance between v and w, and is sometimes
denoted d(v, w).

EXAMPLE 6.1.19. Let V = C". The sesquilinear form
b(xﬂ y) = i Ty
i=1
is a scalar product on C": indeed, it is clearly symmetric, and since
o) = ol
i=1

it follows that b(z, x) = 0 for all z € C", with equality only if each z; is zero, that is only
if x =0.
This scalar product on C" is called the standard (unitary) scalar product.

LEMMA 6.1.20. Let V' be a unitary space. If W < V 1is a vector subspace, then the
restriction of the scalar product to W x W makes W a unitary space.
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PRrROOF. It is immediate that the restriction of a hermitian form on V to W x W is a
hermitian form on W. For a scalar product, the restriction is a positive hermitian form
since b(w,w) = 0 for all w e W, and it satisfies b(w,w) = 0 if and only if w = 0, so it is
a scalar product. O

In terms of the scalar product and the norm, the Cauchy-Schwarz inequality translates
to

[wlw)] < [[ollflw]

for v and win V.

LEMMA 6.1.21. Let V' be a unitary space.
(1) The norm satisfies |v|| = 0, with |[v| = 0 if and only if v = 0, it satisfies |tv| =
|t||v] for allt e C and v eV, and the triangle inequality

Jo + w| < o] + Jlw].

(2) The distance satisfies d(v,w) = 0, with equality if and only if v = w, it satisfies
d(v,w) = d(w,v) and the triangle inequality

d(v,w) < d(v,u) + d(u,w)
for any u, v, win V.

PROOF. (1) Only the triangle inequality is not a direct consequence of the definition
of scalar products. For that, we have

lv+w|* = b(v+w,v+w) = b(v, v) +b(w, w)+b(v, w)+b(w,v) = |v]|*+ |w|*+2 Re((v|w)).

Using the bound |Re(z)| < |z| and the Cauchy-Schwarz inequality, we derive

|

[v+w|* < of* + [wl® + 2ol Jw] = (Jo] + [w])?,

hence the result since the norm is = 0.

(2) is a translation in terms of distance of some of these properties, and left as exercise.
O

EXAMPLE 6.1.22. The most important example is V' = C" with the “standard” scalar
product

lw)y = Tyyy + -+ + Tpyn = "W,

for v = (x;) and w = (y;). The norm is the standard hermitian norm

[oll = Vi1l + - + |zal.

DEFINITION 6.1.23 (Angle). Let V' be a unitary space. The (unoriented) angle
between two non-zero vectors v and w is the unique real number ¢ € [0, 7/2] such that

_ Kvfw)l

t) = .
0s() = o]l

This is well-defined because the Cauchy-Schwarz inequality shows that the quantity
on the right is a real number between 0 and 1, and we know that cosine is a bijection
between [0, 7/2] and [0, 1].

Note that the angle is 7/2 if and only if (v|w) = 0, i.e., if and only if v and w are
orthogonal.
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6.2. Orthogonal bases, 11

DEFINITION 6.2.1 (Orthogonal and orthonormal subsets). Let V' be a unitary space.
A subset S of V' such that (v|w) = 0 for all v + w in S is said to be an orthogonal
subset of V. If, in addition, ||v| =1 for all v € S, then S is said to be an orthonormal
subset of V.

An orthogonal (resp. orthonormal) basis of V' is an orthogonal subset (resp. an
orthonormal subset) which is a basis of V.

If V is finite-dimensional of dimension d, then an ordered orthogonal (resp. orthonor-
mal) basis is a d-tuple (vy, ..., v4) such that {vy,...,v4} is an orthogonal (resp. orthonor-
mal) basis.

EXAMPLE 6.2.2. Let V' be the space of complex-valued continuous functions on [0, 27]
with the scalar product

21

(filfo) = % . fi(@) fo(z)dx.

Then the set {e, | n € Z} where
€n(l') _ 62i7rnx
for n € Z is an orthonormal subset.

PROPOSITION 6.2.3. Let V' be a complex vector space. If S is an orthogonal subset
in' V such that 0 ¢ S, then S is linearly independent. Moreover, if w € (S), then the
decomposition of w as a linear combination of vectors in S is

In particular, if (vq,...,vq) is an ordered orthonormal basis of V', then we have the
decomposition

d
w = Z<vi|w>vi
i=1

for all w e V. Further, we then have

d d d
[wl® = Y Kwlopl?,  Cvlw) = Y iloxwlo) = ) foifo)vlw)
i=1 i=1 i=1
for all v and w in V.
This proposition means that if dim(V) = d, then a tuple (vy,...,vy) is an ordered

orthogonal basis if and only if
v; # 0 for all 7, (vilv;) =0 for i + j,
and it is an ordered orthonormal basis if and only if we have
(ilvj) = 6(1, 5),
since the proposition shows that these vectors are then linearly independent.
PROOF. Let (t,).es be complex numbers, all but finitely many of which are zero, such
that
Z t,v = 0.

veS
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Fix vy € S. Computing (vo|w), we get

0 = Cvgl D tuv) = ) tuluolv)

veS veS

which by orthogonality means that 0 = ¢,,{vg|vg). Since vy % 0, we deduce that ¢,, = 0.
This holds for all vy € S, which means that S is linearly independent.

Now let
w = Z t,v

vesS
be an element of (S). Computing (v|jw) for v € S, we get similarly

(lw) = t.(olv),
which gives the formula we stated.
Finally, we compute the scalar product for any v and w in V:

lwy = 2 D TloXoslw) Cwiles = Y loxoidw),

since (v;|v;) is zero unless i = j. The case of |w|? follows by taking v = w. O

THEOREM 6.2.4 (Gram-Schmidt orthonormalization). Let V' be a finite-dimensional

unitary space. Let B = (vy,...,v,) be an ordered basis of V. There exists a unique
ordered orthonormal basis (wy,...,w,) of V' such that for 1 <i <n, we have
w; € <U1, C ,’UZ’>7

and such that the coefficient of v; in the linear combination representing w; is a real
number that is > 0. In particular, this shows that orthonormal bases of V' exist.

ProoOF. We use induction on n. For n = 1, the vector w; is of the form cvy, and ¢

must satisfy
1= wi|* = evifevr) = |er[* o],

so that |ei]? = |vi||72; since the last requirement is that ¢; > 0, the unique choice is
cr = o 7h

Now assume that n > 2 and that the result is known for spaces of dimension n — 1.
Applying it to {(vi,...,v,_1), we deduce that there exist unique orthonormal vectors
(w1, ..., w,_1) such that w; is a linear combination of (vq,...,v;) for 1 <i <n —1 and
such that the coefficient of v; in w; is > 0.

We search for w as a linear combination

w=tiw; + -+l 1Wh_1 + a0V,
for some t; € C, with ¢,, a real number that is > 0. The conditions to be satisfied are that
(wilwy =0 for 1 <i < n—1 and that (w|w) = 1. The first n — 1 equalities translate to
0 = (wi|w)y = t; + tpdwi|vn),

which holds provided t; = —t,{w;|v,) for 1 < i < n — 1. We assume this condition, so
that

n—1

w =1, (Un - Z<wl|vn>w1)

i=1
Then ¢, is the only remaining parameter and can only take the positive value such that

1 n—1
U — D (vnlwiyw;
=1
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This concludes the proof, provided the vector

n—1
T =, — Z<vn|wi>wi
i=1

is non-zero. But by construction, this is a linear combination of vy, ..., v, where the
coefficient of v, is 1, hence non-zero. Since the vectors v; for 1 < ¢ < n are linearly
independent, it follows that x + 0. U
REMARK 6.2.5. In practice, one may proceed as follows to find the vectors (wy, . .., w,):
one computes
U1
Wy, = ——
vl
w/
/ 2
wy = vy — (wilvgpwy, Wy = —
s
and so on
/
I — Wn
w,, = vy — {wy v Hywy — -+ — {Wp_q v )Wy 1, Wy = m

Indeed, these vectors satisfy the required conditions: first, the vectors are of norm 1, then
the coefficient of v, in w, is 1/|w/,| > 0 (once one knows it is defined!) and finally, we
have orthogonality because, for instance for ¢ < n, we get

1
ey = Tty = Canlon) = Curlonauihur) = 0.
Jwillwn|
COROLLARY 6.2.6. Let V' be a finite-dimensional unitary space. Let W < V be
a subspace of V', and let B be an ordered orthonormal basis of W. Then there is an
orthonormal ordered basis of V' containing B.

PrROOF. Write B = (w1, ..., w,,). Let B' be such that (By, B’) is an ordered basis of
V, and let B = (vy,...,v,) be the ordered orthonormal basis given by Theorem 5.4.4.
Because of the uniqueness property, we have in fact v; = w; for 1 < i < m: indeed, if

we consider (wi, ..., W, Uni1,---,U,), the vectors also satisfy the conditions of Theo-
rem 6.2.4 for the basis By. U

COROLLARY 6.2.7 (Complex Cholesky decomposition). Let n > 1 and let A €
M, ,(C) be a hermitian matriz such that the sesquilinear form b(x,y) = 'ZAy is a scalar
product on C". Then there exists a unique upper-triangular matric R € M, ,(C) with
diagonal coefficients > 0 such that A = *RR.

Conversely, for any invertible matrix R € M, ,(C), the sesquilinear form on C"
defined by b(x,y) = 'Z('RR)y is a scalar product on C™.

PRrROOF. We consider the unitary space V = C" with the scalar product

(zly) ="z Ay.

We then consider the standard basis E = (eq,...,e,) of C*. Let B = (vq,...,v,) be
the ordered orthonormal basis of V' obtained from this standard basis by Gram-Schmidt
orthonormalization (Theorem 6.2.4). Let R = Mg g be the change of basis matrix from E
to B. Because v; € {ey,...,e;), the matrix R is upper-triangular, and since the coefficient
of e; in v; is > 0, the diagonal coefficients of R are > 0.
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We now check that A = *RR. The point is that since B is an orthonormal basis of
V', we have

(alyy =) Tis; = 's
if we denote by ¢t = (¢;) and s = (s;) the vectors such that

93=Ztivi, yzZsjvj.
( J

We have also t = Rx and s = Ry by definition of the change of basis. It follows therefore
that

‘ZAy = '"RezRy = 'Z'RRy.

Because this is true for all x and ¥, it follows that A = *RR. This proves the existence of
R. For the uniqueness, we will use some facts proved below. Note that if tRR = tS.S with
R and S upper-triangular and with > 0 diagonal entries, then we obtain ‘Q = Q' where
Q = RS™!. The matrix Q) is upper-triangular with > 0 diagonal entries, and the equation
means that it is unitary, in the sense of Definition 6.5.1 below. Then Corollary 6.5.5 below
means that () is diagonal with diagonal coefficients of modulus 1. But since it has positive
diagonal coefficients, it must be the identity.

Conversely, let b(z,y) = ‘Z(*RR)y for R € M, ,(C). Since }(*RR) = 'RR, the matrix
A = 'RR is hermitian, and therefore b is a hermitian form. Moreover, we can write
b(x,y) = *RrRy, and hence b(z,r) = (Rx|Rx), where the scalar product is the standard
euclidean scalar product on C". This implies that b(x,z) > 0 and that b(z,z) = 0 if and
only if Rx = 0. If R is invertible, it follows that R is a scalar product. O

6.3. Orthogonal complement, 11

DEFINITION 6.3.1 (Orthogonal of a subspace). Let V' be a unitary space. The or-
thogonal W+ of a subspace W of V is the set of all vectors orthogonal to all v € W:

Wt ={veV | (ww)=0 for all we W}.

PROPOSITION 6.3.2. Let V' be a unitary space.

(1) We have {0} =V and V+ = {0}.

(2) For any subspaces Wy and Wy of V' such that Wy = Ws, we have W3- < Wit;

(3) If V is finite-dimensional then (W)t = W in particular, Wy = Wy if and only
if Wab = Wik,

(4) If V is finite-dimensional then V. = W ® W+ for any subspace W of V. In
particular, we have then dim(W+) = dim(V) — dim(W).

PRrROOF. (1) By definition, all vectors are orthogonal to 0; because the scalar product
is non-degenerate, only 0 is orthogonal to all of V.

(2) If Wy = Wy, all vectors orthogonal to W, are orthogonal to Wy, so Wi <« Wit.

(3) Let (vi,...,Um,Vms1,.--,0,) be an orthonormal ordered basis of V' such that
(v1,...,0m,) is an orthonormal ordered basis of W (Corollary 6.2.6). By linearity, a
vector v € W belongs to W+ if and only if (v;|v) = 0 for 1 < i < m. But since B is an
orthonormal basis of V', we can write

n
v = Z<vi\v>vi
i=1
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and this shows that v € W+ if and only if

v = Z (vi|vyv;.

i=m+1

Hence (Vp41,...,vy) is an orthonormal basis of W+. Repeating this argument, it follows
that v e (W)L if and only if

m
v = Z<vi]v>vi,
i—1

which means if and only if v € W.

(4) We first see that W and W+ are in direct sum: indeed, an element v € W n W+
satisfies (v|v) = 0, so v = 0. Then we have W + W+ =V by the argument in (3): using
the notation introduced in that argument, we can write

v = Z(vm}}vi + Z {vi|vHv;

i=m+1
where the first term belongs to W and the second to W+. U

Because of (3), one also says that W+ is the orthogonal complement of W in V.

DEFINITION 6.3.3 (Orthogonal direct sum). Let V' be a unitary space and I an arbi-
trary set. If (W;);er are subspaces of V', we say that they are in orthogonal direct sum
if for all 7 4 j and w € W;, w’ € W}, we have (w|w’) = 0, or equivalently if W; I/VjL for
all 7 £ 7.

LEMMA 6.3.4. If (W;)ier are subspaces of V' in orthogonal direct sum, then they are
linearly independent, i.e., they are in direct sum.

PRroOF. This is because of Proposition 6.2.3, since any choice of vectors w; in W; will
form an orthogonal subset of V. O

DEFINITION 6.3.5 (Orthogonal projection). Let V' be a finite-dimensional unitary
space and let W be a subspace of V. The projection py on W with kernel W+ is called
the orthogonal projection on W.

The orthogonal projection py on W is therefore characterized as the unique map pw
from V to V such that py (v) € W and v — py(v) L w for all w e W.

LEMMA 6.3.6. Let V' be a finite-dimensional unitary space and let W be a subspace of
V. If (v1,...,0m) is an orthonormal ordered basis of W, then the orthogonal projection
on W is given by

m
pw(v) = Z<Uz‘|v>vz‘

i=1

for allveV.

PROOF. Indeed, since py (v) belongs to W, Proposition 6.2.3, applied to W and the
basis (v1,. .., Un), shows that

m

pw (v) = > Cvilpw (v))us.

i—1
But since v = py(v) + v’ where v’ € W+, we have

wilv) = Cvilpw (v)) + wilv") = (vilv)
for 1 << m. U
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6.4. Adjoint, II

In this section, we consider only finite-dimensional unitary spaces. Let f: V} — 14
be a linear map between finite-dimensional unitary spaces. For any v € V5, we can define

a linear form A\,: V3 — C by
Ao(w) = (] f(w)),

where the scalar product is the one on V5. According to Proposition 6.1.12; there exists
a unique vector f*(v) € V4 such that

@l f(w)) = Ao(w) = {f*(v)[w)
for all w € V;. Because of the uniqueness, we can see that the map v — f*(v) is a linear

map from V5 to V.

DEFINITION 6.4.1 (Adjoint). The linear map f* is called the adjoint of f.

If V is a unitary space, then f € Endg(V) is called normal if and only if f*f = ff*,
and it is called self-adjoint if f* = f.

So the adjoint of f: V) — V4 is characterized by the equation

(6.2) S )|w) = ol f(w))
for all we V; and v € V5.
Note that we also obtain

(w|f*(v)) = {f(w)|v)
by applying the hermitian property of the scalar product.
EXAMPLE 6.4.2. Let A€ M,,,(C) and let f = f4: C* — C™, where C" and C™ are

viewed as unitary spaces with the standard scalar product. Then for x € C" and y € C™,
we have

@)y ="(f(2))y = "(Ar)y = ‘7' Ay = (a|' Ay).
This means that f*(y) = *Ay, or in other words, that the adjoint of f4 is fiz.
The meaning of normal endomorphisms is made clearer by the following lemma:

LEMMA 6.4.3. Let V be a finite-dimensional unitary space. An endomorphism f €
Endc (V) is normal if and only if

[f @) = [f*(v)]
forallveV.

ProOOF. For v € V, we have

[f)I? = {f @) f(v)) = {f*F0)]o)
and
[ @7 = @) = )
so that we have | f(v)| = |f*(v)| for all v if f is normal.
Conversely, if | f(v)| = | f*(v)| for all v € V| the same computation shows that

)|y = (0)v).
Define by (v, w) = {f*f(v)|w) and by(v,w) = {ff*(v)|w). Both are positive hermitian

forms on V, from what we just saw, and b;(v,v) = by(v,v) for all v € V. By Re-
mark 6.1.15, this implies b; = by. This means that

{ff=ff))|w)=0
for all v and w € V, and taking w = (f*f — ff*)(v) leads to the conclusion that
ff* = f*f, so that f is normal. 0
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LEMMA 6.4.4. (1) The map f — f* is an isomorphism
Homc(V4, V) — Home(Va, VA1),
with inverse also given by the adjoint. In other words, we have

(fr+ )" =+ 12, @)=t () =f

for any f, f1, fo € Homg(V1,V3) and t € C. We also have Id* = Id.

(2) The adjoint of the identity 1dy is Idy .

(3) For Vi, V,, Vi finite-dimensional unitary spaces and f € Homg(Vi,Vs), g €
Home(Va, V3), we have

(go f)* = frog"

PROOF. (1) The additivity follows easily from the characterization (6.2) and is left

as an exercise. To check that (¢f)* = {f, note that

(Ef) W)w) =t f*(0)lw) = tv] f(w)) = <[ (tf)(w))
for all v € V5 and w € V;. Using the characterization of the adjoint, this means that
(tf)* =tf*.
To prove the last part, it is enough to check that (f*)* = f. But the adjoint g = (f*)*
of f* is the linear map from V; to V, characterized by the relation

Gw)lv) = wlf*(v))

for w € Vi and v € V5, or in other words by the relation

Wlg(w)) = {f*(v)|w) = ([ f(w)).
Fixing w and taking v = g(w) — f(w), we get |g(w) — f(w)||* = 0, hence g(w) = f(w) for
all we Vj. So g = f.
(2) It is immediate from the definition that Idj, = Idy.
(3) The composition g o f is a linear map from V; to V3. For any v € V3 and w € V7,

we have
@lg(f(w))) = {g* ()| f(w)) = {f*(g"(v))w),
which shows that (g o f)*(v) = f*(g*(v)). O

PROPOSITION 6.4.5. Let f: Vi — V5 be a linear map between finite-dimensional uni-
tary spaces.

(1) We have
Ker(f*) =Im(f)*,  Im(f*) = Ker(f)",
and in particular f* is surjective if and only if f is injective, and f* is injective if and
only if f is surjective.
(2) We have rank(f) = rank(f*).
(3) If Vi = Vs, then a subspace W of Vi is stable for f if and only if W+ is stable for
f*.

PROOF. (1) To say that an element v € V5 belongs to Ker(f*) is to say that, for all

w €V}, we have
@l f(w)) = {f*(v)|w) = 0.
This means precisely that v is orthogonal in V5 to all vectors f(w), i.e., that v € Im(f)*.
If we then apply this property to f*: Vo — V4, we obtain Ker((f*)*) = Im(f*)*, or in
other words Ker(f) = Im(f*)*. Computing the orthogonal and using Proposition 6.3.2
(3), we get Ker(f)* = Im(f*).
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From this we see that f* is injective if and only if Im(f)* = 0, which means (Propo-
sition 6.3.2) if and only if Im(f) = V4, i.e., if f is surjective. Similarly, f* is surjective if
and only if f is injective.

(2) We compute, using (1) and Proposition 6.3.2 (4), that

rank(f*) = dim(V;) — dim Ker(f*)
= dim(V}) — dim(Im(f)*) = dim Im(f) = rank(f).

(3) Since Vi = (V)*, we have f(W) < W if and only if f(W) L W+. Similarly,
f*(Wt) « W if and only f*(W+) L W. But for w, € W and wy € W, we have

(F(wr)|wg) = Cwn[f*(w2)),

which shows that these two conditions are equivalent. O

PROPOSITION 6.4.6. Let Vi and V5 be finite-dimensional unitary spaces of dimension
n and m respectively. Let f: Vi — V, be a linear map. Let By = (vy,...,v,) be an

ordered orthonormal basis of Vi and By = (wy, ..., w,,) an ordered orthonormal basis of
Vs. We then have

Mat(f; B1, Ba2) = ({w;i| f(v5)))1<i<dim(vs)-

1<j<dim(V;)
In particular, we have

Mat(f*; By, B1) = tMat(f; By, Bs)

and if Vi = Vs, the endomorphism f is self-adjoint if and only if Mat(f; By, By) is
hermitian.
Note that this proposition only applied to orthornomal bases!

PRrOOF. Write Mat(f; By, B2) = (a;;) with 1 < ¢ < m and 1 < j < n. Then for
1 < j < n, we have

fv) = agw.
=1

Since the basis Bj is orthornomal, the coefficients a;; are therefore given by

ai; = (wil f(vy))
(see Proposition 6.3.2).
Similarly, the matrix Mat(f*; By, B1) = (bj;) has coefficients
bji = Cv;|f* (wi)) = {f (vj)lwi) = @i

This means that Mat(f*; By, By) = "A. O

The following definition is then useful:
DEFINITION 6.4.7 (Adjoint matrix). Let A € M,,,(C). The adjoint matrix is
A* ="1A.
Note that
(A + Ay)* = AT + A5, (tA)* =tA*, (AB)* = B*A*

det(A*) = det(A), (A*)"'= (A"
if A is invertible.
COROLLARY 6.4.8. Let V' be a finite-dimensional unitary space and f € Endc(V).

We have then det(f) = det(f*).
If Ae M, ,(C), then det(A*) = det(A).
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PROOF. This follows from the proposition and the facts that det(*A) = det(A) and

det(A) = det(A). O

6.5. Unitary endomorphisms

DEFINITION 6.5.1 (Unitary transformation). Let V' be a unitary space. An endomor-
phism f of V' is a unitary transformation if f is an isomorphism and

F)f(w)) = vlw)
for all v and w € V. The set of all unitary transformations of V' is denoted U(V') and
called the unitary group of V. It depends on the scalar product!
If V= C" with the standard scalar product, that we denote U, (C) the set of all
matrices A such that f, is a unitary transformation of V; these are called unitary
matrices.

LEMMA 6.5.2. Let V' be a finite-dimensional unitary space.

(1) An endomorphism f of V is a unitary transformation if and only if it is invertible
and f~' = f*. If f € U(V), then its determinant is a complex number of modulus 1.

(2) An endomorphism f of V' is a unitary transformation if and only {f(v)|f(w)) =
(wlwy for allv and we V.

(3) A matriz A € M, (C) is unitary if and only if it is invertible and A~* = tA, if
and only if A'A ='AA = 1,. We then have | det(A)| = 1.

(4) Any unitary transformation is a normal endomorphism of V.

PRrROOF. (1) If f is invertible, then it is a unitary transformation if and only if

@lf*f(w)) = (vlw)
for all v, w € V. This condition is equivalent to f*f = Idy. This is also equivalent with
f invertible with inverse f* (since V' is finite-dimensional).

If feU(V), we deduce that det(f)™' = det(f™!) = det(f*) = det(f), which means
that | det(f)| = 1.

(2) Tt suffices to show that the condition {f(v)|f(w)) = {(v|w) implies that f is invert-
ible if V is finite-dimensional. It implies in particular that |f(v)|* = |v[? for all v € V.
In particular, f(v) = 0 if and only if v = 0, so that f is injective, and hence invertible
since V is finite-dimensional.

(3) The statement follows from (1) using Proposition 6.4.6.

(4) If f is unitary, then we have ff* = f*f = 1,, so f is normal. O

PROPOSITION 6.5.3. Let V' be a unitary space.

(1) The identity 1 belongs to U(V); if f and g are elements of U(V'), then the product
fg is also one. If V is finite-dimensional, then all f € U(V) are bijective and f~ = f*
belongs to U(V).

(2) If f € U(V), then d(f(v), f(w)) = d(v,w) for all v and w in V, and the angle

between f(v) and f(w) is equal to the angle between v and w.

PROOF. (1) It is elementary that 1 € U(V); if f and ¢ are unitary transformations,
then

(Fa)|fg(w)) = {f(gw)|f(g(w))) = {g(v)|g(w)) = {v|w)
for all v and w in V, so that fg is unitary. If f is unitary then (f~1)* = (f*)* = f =
(f~17! so that f* is unitary.
(2) is elementary from the definitions. O
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LEMMA 6.5.4. Let n > 1. A matrizx A € M, ,(C) is unitary if and only if A*A =1,
if and only if the column vectors of A form an orthonormal basis of the unitary space C"
with the standard scalar product.

PRrROOF. We have already seen the first part. If A € M, ,(C) is unitary, then the
column vectors C; of A satisfy

(GilCy) = (Aei|Aej) = Ceilej) = 6(i, 5)

where (eq,...,e,) is the standard basis of C". So these vectors form an orthonormal
basis of C".

Conversely, the condition (C;|C;) = §(i,7) means that (Ae;|Ae;) = {e;|e;) for all i
and j, and using sesquilinearity we deduce that f4 is a unitary transformation. U

This allows us in particular to deduce the uniqueness in the Cholesky Decomposition
(Corollary 6.2.7):

COROLLARY 6.5.5. If Ae M, ,(C) is an upper-triangular matriz and is unitary, then
A is diagonal and its diagonal coefficients are complex numbers of modulus 1.

PROOF. Let (ey,...,e,) denote the standard basis of C". Let A = (a;;); we therefore
have a;; = 0 if ¢ > j since A is upper-triangular. We will prove by induction on 1,
1 < 7 < n, that the i-column vector C; of A is of the form t;e; for some t; € C with
|t;| = 1, which for ¢ = n will establish the statement.

For i = 1, since A is unitary, we have

1=|C[? = |ay?

since a;; = 0 for all ¢ > 2. This proves the desired property for ¢ = 1. Now assume that
2 < i < n, and that the property holds for C1, ..., C;_;. Since A is unitary, we have

(C]Ci) =0

for 1 < j < i — 1. But the induction hypothesis shows that C; = t;e;, and hence we
obtain (C}|C;) = t;a;; = 0 for 1 < j < i — 1. Since t; + 0, it follows that a;; = 0 for
j <1—1, and with the vanishing for 7 > ¢ + 1, this means that C; = t;e; for some t; € C.
The conditions |C;|? = 1 impliest that |¢;| = 1, which therefore concludes the induction
step. U

PROPOSITION 6.5.6 (Complex QR or Iwasawa decomposition). Let A € M, ,(C) be

any matriz. There exists a unitary matriz Q € U, (C) and an upper-triangular matriz R
such that A = QR.

PROOF. We prove this in the case where A is invertible. Consider the matrix T =
A*A =tAA. Tt is hermitian. By the complex Cholesky decomposition (Corollary 6.2.7),
there exists an upper-triangular matrix R with positive diagonal coefficients such that
T = *RR. This means that R*R = A*A. Since R and R* are invertible, with the inverse

of R* equal to (R71)*, we get
1, = (ARTH*AR™.

This means that Q@ = AR™! is a unitary matrix. Consequently, we have A = QR as
claimed. 0
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6.6. Normal and self-adjoint endomorphisms, 11

LEMMA 6.6.1. Let V' be a finite-dimensional unitary space and let f € Endc(V) be a
normal endomorphism. We have Ker(f) = Ker(f*). In particular, a complex number \
is an eigenvalue of f if and only if X is an eigenvalue of f*, and we have then Eig, , =

PRrROOF. The relation Ker(f) = Ker(f*) follows from Lemma 6.4.3. For any A € C,
the endomorphism f — X -1 is also normal since

(f=ADf =AD" = =AD(f* =1
= ff*+ AP 1= = Af
=(" =2 D =A D)= =2 (f A1)
Therefore
Ker(f —A-1) = Ker((f — A~ 1)*) = Ker(f* — X- 1).
O

PROPOSITION 6.6.2. Let V' be a finite-dimensional unitary space and f € Endg (V) a
normal endomorphism.

(1) The eigenspaces of f are orthogonal to each other. In other, words, if t; % to are
eigenvalues of f, and v; € Big,, ¢, then we have (v;|vg) = 0.

(2) If f is self-adjoint, then the eigenvalues of f are real.

(3) If f is unitary, then the eigenvalues of f are complex numbers of modulus 1.

PRrROOF. (1) We may assume that v; and vy are non-zero. We then get

tidvr|ve) = (f(v1)|va) = (o1] f*(v2)) = (uiltava) = talvr|vg),
since vy € Eigg, 4« by the previous lemma. Since t1 # to, it follows that v; L vs.

(2) If f is self-adjoint then we have Ker(f — A-1) = Ker(f — A-1) for any A € C. If

A is an eigenvalue and v an eigenvector, then we get
fv) = v = v,
which means that A = X, or equivalently that A € R.
(3) If f is unitary (hence normal), then if A is an eigenvalue of f and v a A-eigenvector,
then we have
v=f*(f(v) = f* () = AP,
so that |A|* = 1. O

THEOREM 6.6.3 (Spectral theorem for normal endomorphisms). Let V' be a finite-
dimensional unitary space and f € Endc(V) a normal endomorphism. There exists an
orthonormal basis B of V' such that the elements of B are eigenvectors of f; in particular,
the endomorphism f is diagonalizable.

PROOF OF THEOREM 6.6.3. We use induction on n = dim(V) > 1. If n = 1, all
linear maps are diagonal. Suppose now that n > 2 and that the result holds for normal
endomorphisms of unitary vector spaces of dimension < n — 1. Let V' be a unitary space
of dimension n and f € End¢ (V') a normal endomorphism.

By Theorem 4.3.14, there exists an eigenvalue ¢ € C of f. Let W = Eig, = V' be the
t-eigenspace of f. We then have V. = W @ W+ and W+ is stable for f since for w, € W+
and wy; € W = Eig; ;«, we have

(f(wy)|we) = (wn | f*(we)) = t{wy|ws) = 0.
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Let g: W+ — W+ be the endomorphism induced by f on W+,

We claim that this is still a normal endomorphism of the unitary space W+. Indeed,
from Proposition 6.4.5 (3), the space W+ is also stable under f*. For w; and wsy in W+,
we have

(wilg(wa)) = (wi] f(wa)) = {f*(w1)]ws).

Since f*(w;) € W+, this means that the adjoint of g is the endomorphism induced by f*
on W+. Now since the scalar product on W+ is the restriction of that of V, we have

lg(w) = [f(w)| = 17 (w)] = lg* (w)]

for all w € W+, so that g is normal.

Now we use the induction hypothesis: there is an orthonormal basis B; of eigenvectors
of g on W+, and then if By is an orthonormal basis of W, the basis (By, B;) is an
orthonormal basis of V', and its elements are eigenvectors of f. O

COROLLARY 6.6.4. Let A € M, ,,(C) be a hermitian matriz. Then A is diagonalizable,
and there is a basis of eigenvectors which is an orthonormal basis of C™ for the standard
unitary scalar product. FEquivalently, there exists a unitary matrix X such that D =
XAX~' = XA*X is diagonal. If A is hermitian, then the matriz D has real coefficients.
If A is unitary, then the matrix D has coefficients which are complex number of modulus
1.

REMARK 6.6.5. Be careful that if A € M, ,(C) is symmetric then it is not always
diagonalizable! An example is the matrix

2 1
A= <Z O> € MQ’Q(C),
which is symmetric but not diagonalizable, as one can easily check.

EXAMPLE 6.6.6. For t € R, let

r(t) — (COS(” ‘Sin@) & My (C).

sin(t)  cos(t)

Then r(t) is unitary, hence normal. Therefore we know that for any ¢, there exists an
orthonormal basis B of C? such that f,() is represented by a diagonal matrix in the basis
B. In fact, by computing the eigenvalues, we found the basis

e () ()

of eigenvectors (see Example 4.2.11), with
r(t)v, = e "y, r(t)vy = e'vs.

This basis is orthogonal but not orthonormal; the associated orthonormal basis is B =

(v1, vs) where - o
-5 w2 ()

One notices here the remarkable fact that the basis B is independent of t! This is explained
by the next theorem, and by the fact that

r(t)r(s) =r(t+s) =r(s)r(t)
for all s and t € R.
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THEOREM 6.6.7 (Spectral theorem for families of commuting normal endomorphisms).
Let V' be a finite-dimensional unitary space and let M < Endc(V) be any set of normal
endomorphisms such that fg = gf for all f € M and g € M. There exists an orthonormal
basis B of V' such that the elements of B are simultaneously eigenvectors of f for any
feM.

ProOOF. We will prove the statement by induction on n = dim(V'). For n = 1, all
linear maps are diagonal, so the statement is true. Assume now that dim(V') = n and
that the result holds for all unitary spaces of dimension < n — 1.

If M is empty, or if all elements of M are of the form f = tId for some t € C, then
any orthonormal basis works. Otherwise, let fy € M be any fixed element which is not
a multiple of the identity. Since fy is normal, there exists an orthonormal basis By of
eigenvectors of fy by Theorem 6.6.3. Let

t, et

be the different eigenvalues of fy, and W7, ..., W} be the corresponding eigenspaces. We
have then
V=W & &W,
and the spaces W, are mutually orthogonal. The assumption on f; implies that k > 2
and that dim W, < n — 1 for all 7.
For any f e M and v € W;, we get

fo(f(v)) = f(fo(v)) = tif (v),
so that f(v) € W;. Hence the restriction of f to any W; is an endomorphism, denoted f;,
of W;. Let f¥ be the adjoint of f; in Endc(W;). For

v=vi+--Fv,, v, €W;, and w=wi+- --+w, w;eW,,
we compute
F@)|wy = {(fulor) + -+ frlve)lwr + -+ 4wy
= > X fitwlwy) = D Filwi) wiy = 3 Kuil £ (wi)),
irj i i

because (fi(v;)|w;) = 0 if ¢ + j, by the orthogonality of the decomposition of V' into
eigenspaces of fy. This shows that

Fw) = Y 17w,

In particular, the adjoint of f restricted to W; is also an endomorphism (namely, f) of
W;. Since f and f* commute, we deduce that for all 7, f; is a normal endomorphism of
W;.

We conclude by induction (applied to the sets of normal endomorphisms f|W; of W;
for 1 < i < k) that the exist orthonormal bases B; of W; such that, for all f € M, the
restriction of f to W; is represented by a diagonal matrix in the basis B;.

Let finally B = (By, ..., Bg). This is an orthonormal basis of V', and for every f € M,

the matrix Mat(f; B, B) is diagonal. O

COROLLARY 6.6.8. Let A = (a;;) € M,,(C) be a hermitian matriz. Then the
sesquilinear form b(x,y) = 'TAy is a scalar product if and only if, for 1 < k < n,
we have det(Ay) > 0, where Ay € My (C) is the matriz defined by Ay, = (aij)1<i

<k-
1<j<k
The matrices Ay are called the “principal minors” of A.

k
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PROOF. Let B = (vq,...,v,) be a basis of R™ formed of eigenvectors of A, with
Av; = \jv;. Using the standard scalar product, we have

b(w,y) = (x|Ay)
and therefore
b(’l)i,?}j) = )\Z(S(Z,j>

It follows that b is a scalar product if (and only if) the eigenvalues A; are all > 0.

We now prove the “if” direction by induction with respect to n. For n = 1, the result
is clear. Assume now that n > 2, and that the result holds for matrices of size < n — 1.
Let A be such that det(A;) > 0 for 1 < k£ < n. By induction, the sesquilinear form
defined by A,,_; on C""! is a scalar product. The product of the eigenvalues is equal to
the determinant of A, which is det(A,) > 0. Hence, all eigenvalues are non-zero, and if
there is one eigenvalue < 0, then there is at least another one. Assume for instance that
A1 F Ao are two eigenvalues < 0. The vectors v, and vy are linearly independent, so there
exist a and b in C, not both zero, such that w = av; + bvy € C™ is a non-zero vector
where the last coordinate is 0. Hence we can view w as a non-zero element of C*~!. But
then we have

oA, qw ="wAw = |a|2b(vl,vl) + \b|2b(vg,v2) = —|a|2 — |b|2 <0,

and this contradicts the fact that A,_; defines a scalar product on C"~!. Therefore A
has only positive eigenvalues, and b is a scalar product.

Conversely, assume that b is a scalar product on C". Then its restriction b to the
subspace W}, generated by the first k£ basis vectors of the standard basis is a scalar product.
If we identify W}, with C*, then we get

br(z,y) =" Ay
for all , y € C*. From the remarks at the beginning, we therefore have det(A;) > 0. O

EXAMPLE 6.6.9. This criterion is convenient when n is relatively small. For instance,
the matrix

2 3 )
A=13 ) -1+
-1 —1—1 >

defines a scalar product since 2 > 0, 10 — 9 > 0 and the determinant of A is 2 > 0, but
the matrix

A=13 3 -1+

doesn’t (because det(A}) = —3 < 0).
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6.7. Singular values decomposition, 11

THEOREM 6.7.1 (Unitary Singular value or Cartan decomposition). Let V' be a finite-
dimensional unitary space and f € Endc(V). Let n = dim(V') and r = rank(f). There
exist orthonormal bases

B1 = (vl,...,vn)
BQ = (wl,...,wn)

of V', possibly different, and r strictly positive real numbers oy, ..., o, such that for all
v eV, we have

flv) = Z o {vi|vyw;.
i=1
Equivalently we have f(v;) = oyw; for 1 < i < r and f(v;) = 0 for i > r, so that the
matriz Mat(f; By, B2) is diagonal with diagonal coefficients
(61,...,0.,0,...,0).

The numbers oy, ..., 0, are called the singular values of f. Up to ordering, they
are uniquely defined.

PRrROOF. Consider the endomorphism g = f*f of V. Then ¢g* = f*(f*)* = f*f, so
that g is self-adjoint. Let By = (vy,...,v,) be an orthonormal basis of V' of eigenvectors
of g, say g(v;) = \v; for 1 < i < n. Because

Aillvill* = (g(vi) vy = {F*(F(va) oy = [ £ (i) %,
the eigenvalues are > 0. We can order them so that the first s eigenvalues are > 0,
and the eigenvalues As, 1, ..., A\, are zero. We then see from the equation above that
f(v;) =0 fori > s.
Let v € V. We have

n
v = Z<vi]v>vi,
i—1

since the basis Bj is orthonormal, hence
f(v) = Y wiloyf () = fv) = D Luilo) f(vs).
i=1 i=1

Forl1 <i:<sand 1< j<s, we have

F)lf(vy)) = {gwi)|vy) = Nivilvy) = Nid (i, 7),

again because Bj is an orthonormal basis. This means that if we define

1

for 1 < i < s (which is possible since A; > 0), then we have
(wiw;) = 6(i, 7).

Now we can write the formula for f(v) in the form
F) =YV Ailvivyw;.
i=1

This gives the desired result with o; = y/)\; (completing the orthonormal set (wy, ..., w,)
to an orthonormal basis By of V).

w; =
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Finally, the description shows that Im(f) < ({wy,...,ws}), and since f(v;) = o;w;,
we have in fact equality. Since (w,...,w,) are linearly independent (as they are or-
thonormal), it follows that s = dim Im(f) = r. d

COROLLARY 6.7.2. Letn > 1 and let A e M, ,(C). There exist unitary matrices X,
and Xy and a diagonal matriz D € M, ,(C) with diagonal entries

(o1,...,00,,0,...,0)
where o; > 0 for 1 <i <r, such that A = X1 DX5.

PRroOF. This is the theorem applied to f = f4 on C" with the standard scalar
product, the matrices X; and X5 being the change of basis matrices from the standard
basis to B; and B,, which are orthogonal matrices since B; and By are orthonormal
bases. O
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CHAPTER 7

The Jordan normal form

7.1. Statement

The Jordan Normal Form of a matrix has a different form for different fields. The
simplest is the case K = C, and we will state and prove the general result only in that
case. However, some of the definitions make sense for any field, and we begin with these.

DEFINITION 7.1.1 (Jordan blocks). Let n > 1 and let A € K. The Jordan block of
size n and eigenvalue A is the matrix

A1 0
0 A 1

aa={ 0 0 [& Man(K)
D |

or in other words J,, » = (a;;) with
a; =\, forl<i<n, a1 =1forl<i<n-—1,
and a;; =0if j+¢and 7 +7+ 1.
ExAMPLE 7.1.2. For instance, for K = R, we have

J3x = ) Juo =

S O
S 3 =
N = O
OO OO
SO O
OO = O
O = OO

Note that det(J,,») = A" and Tr(J,\) = nA.

LEMMA 7.1.3. (1) The only eigenvalue of J,, x is A. Its geometric multiplicity is 1 and
its algebraic multiplicity is n.
(2) We have (Jpx — AL,)"™ = Oy .

PRrROOF. (1) By computing a triangular determinant (Corollary 3.4.3), we have
chary, ,(t) = (t —\)".
In particular, A is the unique eigenvalue of J, 5, and its algebraic multiplicity is n.
Let v = (t;)1<i<n € K™ be an eigenvector (for the eigenvalue A) of J, . This means
that J, »v = Av, which translates to the equations
(At +t, =My
Mo+ 13 = Ab

Mp—1+t, =AMy
Ay, = A,
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which means that ¢, = --- = t, = 0. So v is a multiple of the first standard basis
vector. In particular, the A-eigenspace is the one-dimensional space generated by this
basis vector, so the geometric multiplicity of A is 1.

(2) By definition, we have J, x — Al, = Jy, so it suffices to prove that J;'; = 0. But
if (eq,...,e,) are the standard basis vectors of K", we have

Jnoe1 =0, Jpoei = e for 1 <i<n.
Therefore J7 je2 = Jpoe1 = 0, and by induction we get J} je; = 0 for 1 < i < n. Then
Toei = TG ges = 0
for 1 < < n, so that Jj!, is the zero matrix. U

The following lemma describes what Jordan blocks “mean” as endomorphisms; an-
other interpretation is given below in Example 10.3.13.

LEMMA 7.1.4. Let V' be a finite-dimensional K-vector space of dimension n = 1
and f € Endg (V). Let X\ € K. Then there exists an ordered basis B of V' such that
Mat(f; B, B) = Ju. if and only if there exists a vector v e V such that (f —A-1)"(v) =0
and

B=((f=A1)""),(f =AD" )., (f = A-1)(v),0).

PROOF. We denote g = f — A -1 € Endg (V). First assume that there exists v such
that (¢"*(v), g" 2(v),...,v) is an ordered basis of V and g"(v) = 0. Then we get
Mat(f; B,B) — A- 1, = Mat(f —A-1; B, B)
= Mat(g; B, B) = Juo
and so Mat(f; B,B) = Joo+ A-1, = Jya.

Conversely, if Mat(f; B, B) = J,, then we have Mat(g; B, B) = J,o. If we denote
B = (v1,...,vy,), this means that

g<vl) = 07 g(”?) = 1, o g(vn) = Un-—1,

and hence it follows that

Vpo1 = g(vn), - v =g"Hu), ¢"(v,)=0.

which gives the result with v = v,,. U

DEFINITION 7.1.5 (Sums of Jordan blocks). Let £ > 1 be an integer, and let ny, ...,
ny be positive integers and Ay, ..., A\ complex numbers. Let n be the sum of the n;’s.
We denote by
Jnl,)q Jn2,>\2 T Jnk7>\k
the matrix A € M, ,,(K) which is block diagonal with the indicated Jordan blocks:

S 0 0

0 Juyn O
A= ) } : :
0 A S 0
0 0 .
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LEMMA 7.1.6. Let
A= Jyy BB B,
The spectrum of A is {\1,..., A\r}; the geometric multiplicity of an eigenvalue X\ is the
number of indices © such that \; = A, and the algebraic multiplicity is the sum of the n;
for these indices.
In particular, the matriz A is diagonalizable if and only if k = n and n; = 1 for all i.

Proor. This follows from Lemma 7.1.3. To be more precise, since A is upper-
triangular, we have

k
chara(t) = | [(t =A™,
i=1
so the set of eigenvalues is {A1,..., Ax}, and the algebraic multiplicity of one eigenvalue

A is the sum of the n; where \; = .

To compute the geometric multiplicity of A, we decompose C"* =V, ®--- DV}, where
V; is generated by the standard basis vectors B; corresponding to the ¢-th Jordan block,
then V; is invariant under f4. Hence, for v = v; + - - - + v with v; € V;, we have

f(U1+"'+’Uk)2)\(?]1+"'+Uk)

if and only if f(v;) = Av; for all 4. Since the restriction of f to V; has matrix J,, ), with
respect to B;, Lemma 7.1.3 shows that v; = 0 unless A = \;, and that the corresponding
vector v; is then determined up to multiplication by an element of K. U

ExAMPLE 7.1.7. For instance, for K = R, we have

= 10000
07 1000
00 000
Jsx B J1xHJoo = Oogﬂoo
00 0O0O0T1
000 O0O00O0

This has eigenvalues 7 and 0; the geometric multiplicity of 7 is 2 (there are two Jordan
blocks for the eigenvalue ), and the algebraic multiplicity is 4; the geometric multiplicity
of 0 is 1 (there is one Jordan block for the eigenvalue 0), and the algebraic multiplicity
is 2.

Now we can state the Jordan Normal Form for complex matrices:

THEOREM 7.1.8 (Complex Jordan Normal Form). Letn > 1 and A € M,,,,(C). There
exists k = 1 and integers ny, ..., ng = 1 withn = ny + - - - + ng, and there exist complex
numbers A1, ..., A\ such that A is similar to the matrix

Jn1,>\l Jn2,>\2 T Jnk,)\k'

In particular, A is diagonalizable if and only if k = n.

Equivalently, if V' is a finite-dimensional C-vector space of dimension n = 1 and
f € Endc(V), then there exist an ordered basis B of V', an integer k = 1, integers ny,
oo, ng =1 withn =nq + -+ + nyg, and compler numbers \i, ..., A\p such that

Mat(f; B, B) = Jn1,>\1 Jn2,>\2 T Jnk)\k'
This will be proved in the next section. For the moment, we present some applications:
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COROLLARY 7.1.9 (Cayley-Hamilton Theorem). Let n > 1 and let A € M, ,(C).
Wrrite
chars(t) = t" + ap_1t" 1 4 - - - + ait + ao.

Then we have
A" +a, 1AV 4. a1 A+ apl, =0,

This theorem is in fact valid for any field K. (Indeed, for K = Q or K = R, it suffices
to view A as a complex matrix to get the result.)

For any field K, any polynomial P = ), ¢;X" € K[X]| and any matrix A € M, ,(K),
we denote

P(A) =) A"

)

LEMMA 7.1.10. For any polynomials P and Q in K[X]| and any A € M, ,(K), we
have (P + Q)(A) = P(A) + Q(A) and (PQ)(A) = P(A)Q(A) = Q(A)P(A). Moreover, if
X is an invertible matriz and B = XAX ™!, then P(B) = XP(A) X!

PRroOF. The first property follows immediately from the definition. For the second,
write

P=>YcX'\ Q=) dX
( J

Then
PQ = ZcideH_j.
4.J

Similarly, we have

P(A) =Y GA,  Q(A) =) d;A,

i J

and computing the product using the rule A7 = A*AJ, we find

(PQ)(A) =) cid; AT = P(A)Q(A).

1,J
Finally, for any i > 0, we first check (for instance by induction on i) that
XAX = (XAXYH  (XAX Y = (XAXT).

Then using linearity, it follows that P(XAX™!) = XP(A)X~! for any polynomial P €
K[X]. O

PROOF OF THE CAYLEY-HAMILTON THEOREM. Since P(XAX 1) = XP(A)X!
and chary = chary,x-1 for any invertible matrix X (similar matrices have the same
characteristic polynomial), we may assume using Theorem 7.1.8 that A is in Jordan
Normal Form, namely

A= Jnh)\l an)\z T ‘]mm)\kv

for some k£ > 1, integers (n;) and complex numbers ()\;). We then have
P(A) = (A= X)™ - (A= )",
For any ¢ with 1 <4 < k, we can reorder the product so that
PA) =(A=X - 1)™ - (A= Xq - 1)t
(A= DXipq - D)t (A= N)™ (A= N\ - )™
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Let ¢ be an integer with 1 < ¢ < k. For the standard basis vectors v corresponding to the
block J,, »,, namely

v=-e; where n; + - +n;_; <j<ng+ - +n,
we have
PAjv=(A—=X - )™ (A= X - )Mt
(A= - )"t (A= XN - D)™ (A= X\ - 1)) =0,
by Lemma 7.1.3 (2). Therefore the matrix P(A) has all columns zero, which means that
P(A) = 0. [
EXAMPLE 7.1.11. Let n > 1 and let A € M,, ,(C) with
chary(t) = t" + ap_1t" ' 4+ - -+ + ait + ao.
If ag = (—1)"det(A) £ 0, it follows from the Cayley-Hamilton Theorem that
1, = —alO(A” +a, A"+ +aA) = AB

where B = —ag (A" + a, 1A" 2 + .-+ a;1,). Hence B is the inverse of A (but in
practice this is not very convenient to compute it!) For n = 2, since
char,(t) = t* — Tr(A)t + det(A),
this gives the formula
1
e (A-Tr(A)l
det(A)( I‘( ) 2)

for an invertible matrix in M, (C), which can of course be checked directly.

REMARK 7.1.12. A common idea to prove the Cayley-Hamilton Theorem is to write
chars(A) = det(A — A) = det(0) = 0. This does not work! One reason is that it is not
allowed to mix numbers, like determinants, and matrices (chars(A) is a matrix), in this
manner. To see this concretely, consider the following question: for a matrix

b
A= <Z d) € MQyQ(C),
define q(A) = ad + be. Then there exists a polynomial P,(t) such that
q(tly — A) = Pa(?),
namely
Pa(t) = (t—a)(t —d) + be = t* — (a + d)t + ad + be.

If the naive argument for the Cayley-Hamilton Theorem was correct, one should also
expect that P4(A) = qa(A — A) = 0. But this almost never true! For instance, when

()

one checks that Pa(t) = t* — 4t + 5, and that P4(A) = (61 2)

COROLLARY 7.1.13. Let n > 1 and let A€ M, ,,(C). Then A and A are similar.
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PROOF. We first see that this property is true when A = J,, 5 is a Jordan block: the
matrix of f4 in the basis (e, €,-1,...,e1) of C" is the transpose of J ,,.

Now we reduce to this case. By Theorem 7.1.8, there exists an invertible matrix
X € M, ,(C) such that XAX ! = C, where

C = Jnl,/\1 Jn2,>\2 e Jnk,)\k

for some integer k£ > 1, integers n; > 1, and complex numbers );. For each 7, we can find
an invertible matrix X; in M,, ,,,(C) such that

-1 t
XiJni,)\iXi = JTLZ',)\H

since (as we saw at the beginning) a Jordan block is similar to its transpose. Then the
block diagonal matrix

X, 0 - 0

0 Xy -+ 0
Y=1. .

0 - 0 X,

satisfies YCY ! = {C. This means that
YXAX 'yl =txAX ! = tX_ltAtX,
and therefore A = ZAZ ' with Z =tXY X. Hence A is similar to *A. O

The final two applications concern the exponential of a complex matrix. Recall from
analysis that for any n > 1 and any A € M, ,,(C), the series

+00 1
A
i=0J’

converges, in the sense that all coefficients converge, to a matrix exp(A) called the ezpo-
nential of A.

Since the multiplication of matrices is continuous, for any invertible matrix X e
M, »(C), we have

+00 400
_ 1o o 1 i _
(7.1) Xexp(A)X~! = Z;)TXAJX = Zof!(XAX 1) — exp(XAX Y.
J= J=

PROPOSITION 7.1.14. Let n > 1 and let A € M, ,(C). The exponential of A is
invertible, and in fact we have det(exp(A)) = exp(Tr(A)).

PROOF. The formula (7.1) shows that det(exp(A)) = det(exp(XAX™!)). By Theo-
rem 7.1.8, using a suitable X, we reduce to the case

A= Ty BIpor, B EH Inpa,
This matrix is upper-triangular with diagonal coefficients
A1 repeated nq times, ..., A\, repeated n; times
Hence, for any j > 0, the matrix A’ is upper-triangular with diagonal coefficients
)\{ repeated n; times, ..., )\i repeated ny times.
Summing over k, this means that exp(A) is upper-triangular with diagonal coefficients

eM repeated ny times, . . ., e repeated ny times.
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Hence
det(A) = (eM)™ ... (eM)™ = emMTFmAe — oxp(Tr(A)).
O

Finally, we sketch a proof of the following fact:

PROPOSITION 7.1.15. Let n > 1 be an integer. The exponential on M, ,(C) has

immage equal to the set of invertible matrices. In other words, for any invertible matriz
Ae M, ,(C), there exists a matriz L € M, ,(C) such that exp(L) = A.

SKETCH OF PROOF. Because of (7.1) and Theorem 7.1.8, it suffices to show that if

A= Jm,)\l Jn2,>\2 T Jnk)\k?

with \; £ 0 for all ¢, then A = exp(L) for some matrix L. If we note further that the
exponential of a block-diagonal matrix

L, 0 - 0
0 Ly, -~ 0
0 - 0 I
with L; € M, ,,(C) is
exp(Ly) 0 e 0
exp(L) = 0 exp(Lz) 0 |
b e O exp(Ly)

it is sufficient to prove that any Jordan block J, x with A # 0 is the exponential of some
matrix.

We only check that this is true for n < 3, the general case requiring some more alge-
braic details. For n = 1, this is because any non-zero complex number is the exponential
of some complex number. For n = 2, one computes

(5 0)) = (5 ).

and hence for A # 0, writing A\ = exp(z) for some z € C, we have

el )

For n = 3, similarly, we have

a tl tg e? €at1 €a(t3 + t1t2/2)
exp< 0 a t3 ) =10 e e
0 0 a 0 0 e?

(to see this, it is useful to know that exp(A; + Az) = exp(A;)exp(Ay) if A; and A
commute; apply this A; = als and A, the upper-triangular matrix with zero diagonal).
So in that case, we get
z A (2?7
I3 =eXp< 0 =z A )
0 0 z
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7.2. Proof of the Jordan normal form

A first key observation is that a Jordan block J, \ has the property that J, » — A1, is
a nilpotent matrix with (J, » — A1,)" = 0. This implies that in a matrix

A= Jm,)\l an)\Q T Jnk)\k?

any vector v € C™ which is a linear combination the basis vectors corresponding to the
block Jy, , verifies
(A — )\Zln)"‘v =0
So these vectors are not quite eigenvectors (which would be the case n; = 1), but they
are not very far from that. We will find the Jordan decomposition by looking for such
vectors.
DEFINITION 7.2.1 (Generalized eigenspace). Let V' be a K-vector space and ¢ € K.

Let f be an endomorphism of V. The t-generalized eigenspace of f is the union over
k = 0 of the kernel of (f —¢ - 1)

The crucial properties of generalized eigenspaces are the following facts, where one
should note that the second is not true of the eigenspace:

LEMMA 7.2.2. Let V be a K-vector space and t € K. Let f be an endomorphism of
V.

(1) The t-generalized eigenspace W of f is a subspace of V' that is stable for f.

(2) If v € V is such that f(v) —tv € W, then we have v € W. In other words,
(f—t- D)7 Y(W)cW.

(3) The t-generalized eigenspace is non-zero if and only if t is an eigenvalue of f.

PROOF. (1) Let W be the t-generalized eigenspace of f. It is immediate from the
definition that if £ € K and v € W, then tv € W. Now let v; and vy be elements of W.
There exist k; = 0 and ky > 0 such that (f —¢-1)*(v1) = 0 and (f —¢-1)*2(vy) = 0. Let
k be the maximum of k; and ks. Then we have

(f =t- 1)) = (f =t D*ws) =0,
and by linearity we get
(f —t- l)k(vl + 1)2) = 0.

This shows that W is a vector subspace of V.
Let ve W and k = 0 be such that (f —¢-1)*(v) = 0. Let w = f(v). We then have

(f =t DMw) = (f =t D*(f —t- D) +t(f —t- D) = (f = t- 1) (v) = 0.
Hence w = f(v) € W, which means that W is f-invariant.
(2) Assume that f(v) —tv e W. Let k > 0 be such that (f —¢ - 1)*(f(v) — tv) = 0.
Then
(f =t 1)1 (0) = (f = t- D5 (fv) — tv) =0,
so that v e W.
(3) If t is an eigenvalue of f, then any eigenvector is a non-zero element of the ¢-

generalized eigenspace. Conversely, suppose that there exists a vector v £+ 0 and an
integer £ > 1 such that

(f =2 Df(w) =0.
We may assume that k is the smallest positive integer with this property. Then for
w = (f—X-1)*"1(v), which is non-zero because of this condition, we have (f—\-1)(w) = 0,
so that w is a t-eigenvector of f. O
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The next result is the Jordan Normal Form in the special case of a nilpotent endo-
morphism. Its proof is, in fact, the most complicated part of the proof of Theorem 7.1.8,
but it is valid for any field.

PROPOSITION 7.2.3. Let n = 1. Let V' be an n-dimensional K-vector space and let
f € Endk (V) be a nilpotent endomorphism of V.. There exists an integer k = 1, integers
Ny, ..., =1 withn =ny + -+ ng and a basis B of V' such that

Mat(f; B,B) = Jp, 0B - B Jn, 0-

EXAMPLE 7.2.4. For instance, if m = 5, and £ = 3 with ny = 3, no = ng = 1, then
we get the matrix

01 00O
00100
Jso@EJioBJio=]10 0 0 0 0
00 0O0@O0
00 0O0@O0

We give two proofs of Proposition 7.2.3 — one is more abstract (using subspaces and
linear maps), but slightly shorter, while the second is more concrete (using vectors and
constructing a suitable basis “by hand”), but slightly longer.

FIRST PROOF OF PROPOSITION 7.2.3. Let d > 0 be the integer such that f¢ = 0
but ¢! + 0. We may assume that d > 2 (otherwise we get f = 0, this has matrix
JigH - -H Jip in any basis).

Then we have an increasing sequence of subspaces of V' given by the kernels W; =
Ker(f*) of the successive powers of f:

{0} = Ker(f%) < Ker(f) c --- < Ker(f") = --- = Ker(f?) = V.

Note that W; 4 Wi, for 0 < i < d—1: indeed, for any v € V, we have f4=0+1(v) e W,
since f%(v) = 0, and if Wy, = Wj, it follows that f?f4~(+1(v) = 0, which means that
f41 = 0. For any i, we have also f(W;) ¢ W;_;.
Using these properties, we will construct by induction on ¢ with 1 < ¢ < d, a sequence
of direct sum decompositions
(7.2) V=W @ @ Wiy @ Wy,
such that, for d —¢ < 7 < d — 1, we have
(1) the space W; is a subspace of W,,; and W, n W, = {0};
(2) the restriction of f to W; is injective;
(3) the image f(W;) lies in W;_y if j > d — ¢, while f(Wy_;) € Wy,
(note that these conditions are not independent; but some parts are useful for the con-
clusion, and others better adapted to the inductive construction).
Let us first explain how this leads to the Jordan form of f. For i = d, we have
Wy = {0}, and we get the decomposition
(7.3) V=Wi1® - @®W,

such that (by Conditions (2) and (3)) the restrictions of f are injective linear maps
W, LW, L v L,
We then construct a basis B of V' as follows:

e Let By_; be a basis of Wy_y;
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e The set f(By_1) is linearly independent in Wy_s, since f is injective restricted to
W,_1; let By_s be vectors such that (f(Bg-1), Bg_2) is a basis of W,_o, so that

(Ba-1, f(Ba-1), Ba—2)

is a basis of W,_; ® Wd,g;

e The vectors in (f2(Bg_1), f(Bq_2)) are linearly independent in W,_s, since f is in-
jective restricted to Wy_s; let By_s be vectors such that (f2(By_1), f(Ba—2), Ba_3)
is a basis of Wd,g, so that

(Ba-1, f(Ba-1), f*(Ba-1), Ba-2, f(Ba-2), Ba—3)

is a basis of Wy_1 @ Wy_o;
e Inductively, we construct similarly By, ..., B linearly independent vectors in
Wa_1, ..., Wy, such that

B = (Bd—h f(Bd—1>) CII) fd_l(Bd—1)7 Bd—?: s 7fd_2(Bd—2)7 e 7B1) f<B1>7 BO)
is a basis of V.

Finally, for any ¢ > 1 and for any basis vector v of B,_;, consider the vectors

(f* (), .., f(v),0)
which are all basis vectors of B. These generate a subspace of V' that is invariant under
f: indeed, it suffices to check that f(f4~%(v)) = 0, and this holds because v € W;_;
Wa_it1 = Ker(f*1) (see Condition (1)).
The matrix of f restricted to the subspace generated by

(f7' (), f(v),v)

is Jo,g—i+1 (see Lemma 7.1.4). If we reorder the basis B by putting such blocks of vectors
one after the other, the matrix of f with respect to B will be in Jordan Normal Form.

This concludes the proof of Proposition 7.2.3, up to the existence of the decomposi-
tions (7.2). We now establish this by induction on 4. For i = 1, we select W,_; as any
complement of Wy_1in W; =V, sothat V = Wd 1®W,_1. This gives the direct sum de-
composition and Condition (1). The image of Wy_; is then a subspace of Wy (Condition
(3)), and the kernel of the restriction of f to Wy_ is then Wy nWy_y € Wy_1nWy_y = {0},
which gives Condition (2) (recall that we assumed that d > 2,s0 1 <d —1).

Suppose now that ¢ < d and that we have constructed

(7.4) V=W 1@ Wd—(i—l) @ Wa_(i-1),
satisfying the desired properties. The image F' = f (Wd—(i—1)> and the subspace Wy_; are
both contained in Wy_(;_1). Moreover, we have F'n Wy_; = {0}: indeed, if v € ' n Wy_,,
then we can write v = f(w) with w € Wy__1). Then f@0D(w) = f4-i(v) = 0 and
therefore w € Wy_;_1y 0 Wy_;—1y = {0} (by induction from Condition (1) for (7.4)), so
v =0.

Hence F' and W,_; are in direct sum. We define Wd i to be any complement of Wy_; in

Wy_(i—1) that contains F'. Condition (1) holds since W, , Wa—(i—1y and Wy iAWy, =
{0}. From

W) = Wasy @ Was,
and (7.4), we get the further decomposition
V=W @ ®Wa ®@Wa.
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The linear map f sends Wd—(i—l) to F = W,y_; by construction. Since f sends also
W, , Wi—(i—1) to Wy_;, we obtain Condition (3).

To conclude, we check Condition (2). First, since Wy_, ..., Wd—(z‘—l) are unchanged,
the induction hypothesis implies that the restriction of f to Wj is injective for d— (i—1) <
j <d—1. And finally, for j = d — 7, the kernel of the restriction of f to Wy_; is

Ker(f) N Wd*i = W1 M Wd*i (- Wd—(i—l) ) Wdfi — {0}
by construction. -

SECOND PROOF OF PROPOSITION 7.2.3. The idea is to identify vectors that are as-
sociated to the Jordan blocks as in Lemma 7.1.4, and the difficulty is that they are not
unique in general. The basic observation that we use is that each block J,,, o must cor-
respond to a single vector in Ker(f), up to multiplication by an element of K. We will
then start from a basis of Ker(f), and construct the blocks carefully “backwards”.

To be precise, for a vector v £ 0 in V, define the height H(v) of v as the largest
integer m > 0 such that there exists w € V with f™(w) = v (so that m = 0 corresponds
to the case w = v, i.e., v does not belong to the image of f). This is finite, and indeed
H(v) < n — 1 because we know that f™ = 0 (Proposition 4.4.6).

Note that if H(v) = h and f"(w) = v, then we have fi{(w) = 0 for all i > h, and also
H(f(w)) =i for 0 < ¢ < h. Moreover, if f is the linear map on K" corresponding to a
Jordan block J, ¢, then the first standard basis vector e; of K" satisfies H(e;) = n — 1
(since e; = f"*(e,)), and is (up to multiplication by non-zero elements of K) the only
vector with this height, all others having height < n — 2 (because f™ = 0). Therefore we
can try to “recover” the size of a Jordan block from the heights of vectors.

Let k = dim Ker(f). Let then (vy,...,v;) be a basis of Ker(f) chosen so that the sum

ZH(%‘)

of the heights of the basis vectors is as large as possible — this is possible because the set
of possible sums of this type is a finite set of integers (since the height of a non-zero vector
is finite). For 1 < i < k, let n; = H(v;) = 0 and let w; € V' be such that f™(w;) = v;.
Since f is nilpotent, we know that the vectors
By = (f"(w), f*H(wi), .., fwi),wy)
are linearly independent (Proposition 4.4.6). Let W; be the (n; + 1)-dimensional subspace
of V with basis B;. We may re-order the vectors (v;) to ensure that
N =2nNg=---=2n; = 1.

We first claim that the vectors in B = (By,..., By) are linearly independent (in

particular, the spaces W1y, ..., Wy are in direct sum). To see this, note that these vectors
are [~ (w;) for 1 <i <k and 0 < j < n;. Let ¢;; be elements of K such that
k n;
(7.5) DIt (wy) = 0.
i=1j=0

We apply f™ to the identity (7.5); since f™ ™7 (w;) = 0 unless n; —j = 0 and
n; = ny, the resulting formula is
Z tmlvi = 0.

1<i<k
n;=ni
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Since (v;) is a basis of Ker(f), this means that ¢;,, = 0 whenever n; = n;. Now apply
f™~1 to (7.5); the vanishing of ¢;,,, when n; = n; shows that the resulting equation is

Z ti7n1—1vi = 07

1<i<k
n;=ni—1
and hence t;,,_1 = 0 whenever n; — 1 < n;. Iterating, we obtain t;,,_; = 0 whenever
ny — [ < n;, and in the end, it follows that ¢, ; = 0 for all ¢ and j.

Now we claim that the direct sum W of the spaces Wy, ..., Wy is equal to V. This will
conclude the proof of the proposition, since the matrix of f with respect to (B, ..., Bg)
is simply

Jnp+1,0 8- B Jnpr1,0-

To prove the claim, we will show by induction on r > 1 that Ker(f") < W. Since f is
nilpotent, this will imply that V' < W by taking r large enough (indeed, r = n is enough,
according to Proposition 4.4.6).

For r = 1, we have Ker(f) < W by construction, so we assume that » > 1 and that
Ker(fr=1) c W.

We first decompose W in two parts: we have

W=F®F

where E is the space generated by (wy, ..., wy), and F is the space generated by f7(w;)
with 1 <4 < k and 1 < j < n;. Note that F' is contained in f(W), since all its basis
vectors are in f(W). On the other hand, we claim that £ n Im(f) = {0}. If this is
true, then we conclude that Ker(f") < W as follows: let v € Ker(f"); then f(v) belongs
to Ker(f""1). By induction, f(v) therefore belongs to W. Now write f(v) = w; + wy
with w; € E and wy € F. By the first observation about F', there exists w3 € W such
that f(ws) = wy. Then wy = f(v — ws) € E n Im(f), so that w; = 0. Therefore
v—ws € Ker(f) « W, so that v = (v — ws3) + w3 € W.
We now check the claim. Assume that there exists v + 0 in E n Im(f). Then there

exists w € V' such that

flw) =v =tywy + - + tpwy
with ¢; € K not all zero. Let j be the smallest integer with ¢; 0, so that

fw) =v=tyw;+ -+ twy.
Applying ", we get
(76) fanrl(’LU) = fnj (U) = tj’Uj + -4+ iy :+: 0,

where [ > j is the integer such that n; = --- = n; and n;4; < n;. But then the vectors
(vi)i+j, together with vf = f**!(w), form another basis of Ker(f): the formula (7.6)
shows that v € Ker(f) and that

1

vj = t—(U; — i1 — -t
j

so that these k vectors generate Ker(f). Since vj = f"*!(w), we have mathrmH (v}) >

n; + 1. Hence the sum of the heights of the elements of this new basis is strictly larger

than ny + - -+ + ng. This contradicts our choice of the basis (vy,...,v) of Ker(f), and
therefore concludes the proof that £ n Im(f) = {0}. O

The second lemma is also valid for any field.
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LEMMA 7.2.5. Let V be a K-vector space. Let f be an endomorphism of V. The
generalized eigenspaces of f are linearly independent.

PROOF. Let Ay, ..., A\; be the distinct eigenvalues of f and V; the \;-generalized
eigenspace. Let n; = 1 be such that V; = Ker((f — \;-1)™). Suppose v; € V; are elements
such that

v 4+ g = 0.

Fix ¢ with 1 < i < n. Consider then the endomorphism
gi = (f - )‘1 ' 1>n1 e (f - )\ifl ' 1)"?1 (f - )\i+1 : 1)””1 ce (f — )\k . 1)k S EIldK(V)

(omitting the factor with ;). Since the factors f — \; commute, we can rearrange the
order of the composition as we wish, and it follows that for j + ¢, we have g;(v;) = 0. On
the other hand, since V; is stable under f (Lemma 7.2.2 (1)), it is stable under g;, and
since none of the \;, j + i, is a generalized eigenvalue of f|V;, the restriction of ¢; to V;
is invertible as an endomorphism of V;. Since applying g; to the equation above gives

9i(vi) = 0,
we deduce that v; = 0. Since this holds for all 7, it follows that the generalized eigenspaces
are linearly independent. O

Using these lemmas, we can now conclude the proof:

ProOF OF THEOREM 7.1.8. Let Ay, ..., A\x be the distinct eigenvalues of f and V;
the \;-generalized eigenspace. Let

W=V -V,

where the sum is direct by the previous lemma. By Proposition 7.2.3 applied to the
restriction of f — A; to V;, which is nilpotent, there exist integers k; > 1, integers n, i,
Ny, =1 withng g + - +n,, = dimV; and a basis B; of V; such that

Ma‘t(fﬂ/;’ Bi? BZ) = Jni,h)\i e Jni,kiv)‘i'

Therefore the restriction of f to the stable subspace W has a Jordan Normal Form
decomposition in the basis (B, ..., By) of W. The proof will be finished by proving that
W =V.

Suppose that W 4+ V. Then we can find a complement W of W in V with dim(WW) > 1.
Consider the projection p on W parallel to W and the endomorphism f =po(f |W) of
w. By Theorem 4.3.14, since dim(W) > 1 and we are considering C-vector spaces, there
exists an eigenvalue A € C of f . Let v € W be an eigenvector of f with respect to A\. The
condition f(v) = Av means that

f(v) = +w
where w € Ker(p) = W. Therefore

k
w=Yw,
i=1

where w; € V;. Define g = f — X\ - 1, so that

g(v) = sz
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For any ¢ such that \; + A, the restriction of ¢ = f — A -1 to Vj is invertible so there
exists v; € V; such that g(v;) = w;. If this is the case for all 7, then we get
k
g <U - Z Uz‘) =0,
i=1

which means that the vector

k
S
=1

is in Ker(g) = Ker(f — XA+ 1) = {0}. This would mean v € W, which is a contradiction.
So there exists ¢ such that A\; = A\, and we may assume that A\ = A\; by reordering the
spaces V; if needed. Then g = f — Ay - 1, and we get

k
— ;] = .
9(’0 Z:ZQ"U> g(v1) ey
But then .
g (U - Zw) =g" (n) =0,
i=2

which means by definition of generalized eigenspaces that

k
v—Yv eV,
1=2

so v € W, again a contradiction. Il

ExXAMPLE 7.2.6. How does one compute the Jordan Normal Form of a matrix A,
whose existence is ensured by Theorem 7.1.87 There are two aspects of the question: (1)
either one is looking “only” for the invariants k, A, ..., A\x and nq, ..., ng; or (2) one
wants also to find the change of basis matrix X such that X AX ! is in Jordan Normal
Form.

The first problem can often be solved, for small values of n at least, by simple com-
putations that use the fact there the number of possibilities for £ and the integers n; is
small. The second requires more care. We will illustrate this with one example of each
question.

(1) Assume that we have a matrix A € M7 7(C), and we compute the characteristic
polynomial to be chara(t) = (t —)*(t + 2)*(t — 7). We can then determine the Jordan
Normal Form (without computing a precise change of basis) by arguing for each eigenvalue
A in turn, and determining the “part” of the Jordan Normal Form involving only A:

e For the eigenvalue A = 7, the algebraic and geometric multiplicities are 1, and
therefore the corresponding contribution is Ji ..

e For the eigenvalue A = —2, there are two possibilities: either J, _o or Ji o[ J; _o;
they can be distinguished by computing the eigenspace Eig_, 4: the first case
corresponds to a 1-dimensional eigenspace, and the second to a 2-dimensional
eigenspace (since each Jordan block brings a one-dimensional eigenspace).

e For the eigenvalue A\ = i, there are more possibilities, as follows:

Joi, J3i@B T, S By, Joi By E Ty, i B E T E
Most can be distinguished using the dimension of Eig; 4, which is, respectively
1, 2, 2, 3, 4.
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o If the i-eigenspace has dimension 2, we can distinguish between Js; [ J;; and
Jo i Jo; by the dimension of the kernel of (A —il,)?: it is 3 for the first case,
and 4 for the second case.

(2) Now we discuss the actual computation of the Jordan Normal Form together with
the associated basis. Besides general remarks, we apply it to the matrix

31 =300
0 -2 16 0 0

(7.7) A=10 -1 6 0 0]e Ms5(C).
2 -3 14 21
00 0 02

We use the following steps:
e We compute the characteristic polynomial P of A and factor it, in the form

m

P(t) =] [(t =)™

j=1

where the \; are distinct complex numbers, and m; > 1 is the algebraic multi-
plicity of A; as eigenvalue of A.

For the matrix A of (7.7), we find
P =(t—2)*t—3).

e For each eigenvalue A, we compute Eig, 4; its dimension is the number of Jor-
dan blocks of A with eigenvalue \; if the dimension is equal to the algebraic
multiplicity, then a basis of corresponding eigenvectors gives the Jordan blocks

JinE- B I

Here, A = 3 is an eigenvalue with geometric and algebraic multiplicity 1, so the corre-
sponding Jordan block is J; 3. Solving the linear system Av = 3v (which we leave as an
exercise) gives the basis vector

v =

NN OO

of Figs 4.

e To determine further the Jordan blocks with eigenvalue A, if needed, we compute
the successive matrices (A — A - 1,)* for k = 2, ..., and their kernels. When
these stabilize, we have found the A-generalized eigenspace. We can then either
exploit the small number of possibilities (see below for an example), or else use
the construction in the first proof of Proposition 7.2.3 for A—\-1,, to find a basis
of the generalized eigenspace in which the matrix has a Jordan decomposition.

For our example, if A = 2, the possibilities for the Jordan blocks are

Juo, JSspoB 12, JopH oo, JooBHJioBH 12, JipgHBHJi2EH Ji2EH Jie.
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We solve the linear system Av = 2v using the REF method for (A —2- 15)v = 0. Since

1 1 -300
0 -4 16 0 0
(7.8) A-2.1;=|0 =1 4 0 o],
2 -3 14 0 1
00 0 00

we forget the last row which is identically zero. The reduction (where we exchange rows
at some point to avoid denominators) goes:

R, 1 1 =300 R /1 1 =300
A9 1 o 0 —4 16 0 0| Rs[0 =1 4 00
> R, 0 -1 4 00 R, |0 —4 16 0 0
Ry—2R, \0 =5 20 0 1 Ry \O =5 20 0 1

R, 1 1 =300 R /1 1 =30 0

R, 0 -1 4 00 R0 =1 4 0 0

T Ry—4R, [0 0O 0 0 0 R, o 0 o0 01
Ry—5R,\0 0 0 0 1 R;\O 0 0 0 0

If we now use Theorem 2.10.12, we see that dim Fig, , = 2, with basis vectors

0 -1
0 4
vg = | 0| = ey, V3 = 1
1 0
0 0

(the fourth and third columns of the REF matrix are the free columns). As a check, note
that it is indeed clear from the form of A that e4 is an eigenvector for the eigenvalue 2.
This shows in particular that the only possibilities for the Jordan blocks are

J3oEBH Ji12, JooH Jap.

To go further, we compute the kernel of (A — 2 - 15)?, since we know (see the discussion
above) that its dimension will distinguish between the two possibilities. We compute

10100
00000
(A=2-15=10 0 0 0 0O
20200
00000

It is clear that the rank of this matrix is 1, so its kernel W has dimension 4. Indeed, a
basis is

(f17f2,f37f4) = (61 - 63762764765)

in terms of the standard basis vectors. Since the kernel has dimension 4, it is in fact
the generalized eigenspace for the eigenvalue 2, which confirms that the corresponding
Jordan blocks are Jyo B Jo2. There only remains to find a suitable basis where these
Jordan blocks appear.

For the block associated to vy = e4, this means we must find a vector w, in W with
(A—2-15)wy = vy. Looking at A—2-15 (namely (7.8)), we see that we can take wy = es,
which is indeed in Ws.
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For the block associated to vz, we must find wz € W with (A —2-15)ws = v3. Writing
w3 = af1 + be + Cf3 + df4,

we compute
da + b
—16a — 4b
—12a —3b+d
0

To satisfy (A — 2 - 15)ws = v3, the equations become

da+b= -1
—12a—-3b+d =0

(the others following from these two). These equation are satisfied if and only if d = —3
and 4a + b = —1. Hence, a suitable choice is
0
-1
wy=—fr=3fr=10
0
-3
In conclusion, if we take the basis
1 0 0 -1 0
0 0 0 4 —1
B = (7)17/027w2uv37w3) = ( 0 ) 0 ) 0 ) 1 ) 0 )
2 1 0 0 0
0 0 1 0 -3

of C?, then the matrix of f4 with respect to B is the Jordan Normal Form matrix

Ji3H Ja2 H Jao.
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CHAPTER 8

Duality

In this short chapter, we consider an important “duality” between vector spaces and
linear maps. In particular, this is the theoretic explanation of the transpose of a matrix
and of its properties.

In this chapter, K is an arbitrary field.

8.1. Dual space and dual basis

DEFINITION 8.1.1 (Dual space; linear form). Let V' be a K-vector space. The dual
space V* of V' is the space Homk (V, K) of linear maps from V' to K. An element of V*
is called a linear form on V.

If V' is finite-dimensional, then V* is also finite dimensional, and dim(V*) = dim(V'),
and in particular, V* is isomorphic to V. This is not true for infinite-dimensional spaces.

Let A € V* be a linear form and v € V. It is often convenient to use the notation

A vy = A(v)
for the value of A\ at the vector v.

ExaMpPLE 8.1.2. (1) Let V' = K" for some n > 1. For 1 < j < n, let A\; be the j-th
coordinate map (t;)1<i<n — t;; then \; is a linear form on V, hence an element of V*.
More generally, if s, ..., s, are elements of K, the map

(tz) —> Sltl + -+ Sntn

is an element of V*. In fact, all linear forms on K™ are of this type: this linear form is
the unique linear map V' — K such that the standard basis vector e; is mapped to s;.

(2) Let V. = M, ,(K). Then the trace is an element of V*; similarly, for any finite-
dimensional vector space V, the trace is an element of Endg (V')*.

(3) Let V' = K[X] be the space of polynomials with coefficients in K. For any ¢y € K,
the map P — P(ty) is a linear form on V. Similarly, the map P — P’(y) is a linear
form.

(4) Let V' be a vector space and let B be a basis of V. Let vy be an element of B.
For any v € V| we can express v uniquely as a linear combination of the vectors in B; let

A(v) be the coefficient of vy in this representation (which may of course be 0):
v = Av)vy + w,

where w is a linear combination of the vectors of B’ = B — {vp}. Then A is an element of
V*, called the vp-coordinate linear form associated to B. Indeed, if v; and vy are
elements of V' such that

v; = AMv;)vo + wy,
with w; a linear combination of the vectors in B’, then we get
tvy + svg = (tA(v1) + sA(v2))vo + (twy + sws),
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where tw; + swsy also belongs to (B’), which means that
A(tvy + svg) = tA(v1) + s\ (vg).

Note that A depends not only on vy, but on all of B.

(5) Let V = K[X]. Consider the basis B = (X%);=o of V. Then for i > 0, the
X'-coordinate linear form associated to B is the linear form that maps a polynomial P
to the coefficient of X* in the representation of P as a sum of monomials >’ ;X 7.

(6) Let V' be the C-vector space of all continuous functions f: [0,1] - C. On V', we
have many linear forms: for instance, for any a € [0,1], the map f — f(a) is a linear
form on V. For any function g € V', we can also define the linear form

A(f) = f F(Hg(t)dt.

We will now show how to construct a basis of V* when V is finite-dimensional.

ProrosiTiION 8.1.3. Let V' be a finite-dimensional vector space and let B =
(e1,...,€,) be an ordered basis of V. For 1 < i < n, let \; be the e;-coordinate lin-
ear form associated to V', i.e., the elements \;(v) of K are such that

v=XA(W)er + -+ A (v)ep.
Then B* = (Ay,...,\,) is an ordered basis of V*. It satisfies
1 ifi=
8.1 A, €)=
®.1) Ky {0 otherwise

and it is characterized by this property, in the sense that if (1, ..., 1y) 1S any ordered
sequence elements of V* such that

1 ifi=j
s €)= {O otherwise,
then we have p; = \; for all j.
One says that (A1,...,A,) is the dual basis to the given ordered basis B.

PROOF. We saw in Example 8.1.2 (4) that A\; € V*. The property (8.1), namely

1 ifi=j
</\ja€z‘>={

0 otherwise,

follows from the definition, since the coefficients of the representation of e; in the basis
B are 1 for the i-th basis vector e; itself and 0 for all other vectors.

Since V' and V* both have dimension n, to show that B* = ();)1<j<n is an ordered
basis of V*, it is enough to check that the linear forms A; are linearly independent in V*.
Therefore, let tq, ..., t, be elements of K such that

t1>\1++tn)\n:O€V*
This means that, for all v e V', we have
t1)\1(0) + -+ tn/\n(’l)) =0e K.

Applied to v = e; for 1 < i < n, this leads to t; = 0.
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Finally, we check that B* is characterized by the condition (8.1): let (11;)1<j<n be a
sequence in V* such that
1 ifi=
<uj7 6i> = {

0 otherwise.

Then A; and p; are linear maps on V' that take the same values for all elements of the
basis B: they are therefore equal. O

Given an ordered basis B = (ey,...,e,) of a finite-dimensional vector space V', we
can also summarize the definition of the dual basis (\;)1<j<, by the relation

(8.2) v = Z<)\i, v)e,.

EXAMPLE 8.1.4. (1) Let V = K™ and let B = (ey,...,e,) be the standard basis of
V. Consider the ordered basis By = (1) of K. For A\ € V*, the matrix Mat(\; B, By) is a
matrix with one row and n columns, namely

Mat(A; B, By) = (A(e1), Ale2), -+, Aen)).
Let (A1, -+, A,) be the dual basis of B. These are just the coordinate maps:
)‘j((ti)1<i<n> =1

for 1 < j < n, since the coordinate maps satisfy the characteristic property (8.1). These

linear forms are often denoted dxq, ..., dx,, so that the representation formula becomes

t
v=| 1 |=tdri(v) + - + tydr,(v).
tn
The corresponding matrices are
Mat(dzy; B, By) = (1, 0,---, 0), Mat(dxs; B, By) = (0, 1, 0,---, 0),
Mat(dx,; B, By) = (0, 0,---, 0, 1).
For a linear form A represented by the row matrix t = (¢; --- t,) as above and a column

vector © = (2;)1<i<n € K", the value A(v) is
ey + -+ ity =t o,

where the product on the right is the product of matrices.

(2) If V is infinite-dimensional and B is a basis of V', then the corresponding coordinate
linear forms do not form a generating set of V*. For instance, let V' = R[X]. Consider
the linear form )

A(P) J P()dt,
0
and the basis (X*);izo, so that A(X?) = 5 for i > 0. We claim that X is not a linear
combination of the coordinate linear forms \;, which map P to the coefficient of X in the
representation of P. Intuitively, this is because such a linear combination only involves
finitely many coefficients, whereas A involves all the coefficients of P. To be precise, a
linear combination of the \;’s is a linear form of the type

U(P) = iti)‘i(P)
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where the integer m and the coefficients ¢; € R are fized. So we have £(X™%1) = 0, for
instance, whereas A\(X™*1) = 1/(m + 2).

(3) Let V' = M,, ,(K), and consider the basis (£;;) (Example 2.5.8 (3)). The cor-
responding dual basis (after choosing a linear ordering of the pair of indices (i, j)...) is
given by the (k,[)-th coefficient linear maps for 1 <k <m and 1 <[ < n:

)\k,l<<aij>1$z’,j<n) = dg,1-

(4) Let K = R, and let n > 1 be an integer and let V' be the vector space of
polynomials P € R[X] with degree < n. Then

B=(1,X-1,...,(X=-1)"
is an ordered basis of V' (to see this, note that the linear map

VoV
d {PHP(X—l)

is an isomorphism, with inverse given by P+ P(X + 1), and that (X — 1)’ = f(X") for
all 4; since (1, X, ..., X™) is a basis of V, the result follows). To find the dual basis, we
must represent a polynomial P € V as a linear combination of powers of X — 1; this can
be done using the Taylor formula:

pn) (1)
n!

P(X)=P(1)+ P (1)(X-1)+ P”2(1> (X =1+ +

From the coefficients, we see that the dual basis B* is given by B* = (\,..., \,) where

(X —1).

LEMMA 8.1.5. Let V' be a vector space.

(1) Let A\e V*. Then A =0 if and only if (\,v) =0 for allve V.

(2) Let ve V. Then v =0 if and only if (\,v) =0 for all A e V*.

(3) More generally, if v is an element of V and if W <V is a subspace of V' such that
v ¢ W, then there exists a non-zero linear form A € V* with A(v) £ 0 and W < Ker(\).

PROOF. (1) is the definition of the zero linear form. The assertion (2) is the special
case of (3) when W = {0}.

To prove (3), let By be an ordered basis of W. Because v ¢ W, the elements of By
and v are linearly independent (assuming

tv + Z tyw =0,

’wEBQ

we would get v € W if ¢t were non-zero; so t = 0, and then the linear independence of B
shows that all ¢,, = 0). Let B be an ordered basis of V' containing By and v. Now let A be
the v-coordinate linear form associated to B (Example 8.1.2 (3)). We have A(v) =1 % 0,
so A is non-zero, but A(w) = 0 if w € By, hence W < Ker(\). O

A vector space has a dual, which is another vector space, hence has also a dual. What
is it? This seems complicated, but in fact the dual of the dual space is often nicer to
handle than the dual space itself.
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THEOREM 8.1.6. Let V' be a vector space and V* the dual space. For any v eV, the
map ev,: V* — K defined by
evy(A) =\ vy = A(v)
is an element of (V*)*. Moreover, the map ev: v — ev, is an injective linear map
V — (V*)*. If V is finite-dimensional, then ev is an isomorphism.

PRrROOF. It is easy to check that ev, is a linear form on V*. Let v € V be such that
ev, = 0 € (V*)*. This means that A\(v) = 0 for all A € V* and by the lemma, this implies
v = 0. So ev is injective. If V is finite-dimensional, we have dim(V') = dim(V*), and
therefore ev is an isomorphism (Corollary 2.8.5). O

If V is infinite-dimensional, then one can show that ev is injective but not surjective.
In particular, it is not an isomorphism. In a similar direction, we deduce the following

property:
COROLLARY 8.1.7. Let V' be a vector space. The space V* is finite-dimensional if and
only if V is finite-dimensional.

PRroOOF. If V is finite-dimensional, then we know that V* is also. Conversely, as-
sume that V* is finite-dimensional. Then (V*)* is also finite dimensional, and since
Theorem 8.1.6 gives an injective linear map ev: V' — (V*)* we deduce that V is finite-
dimensional. 4

REMARK &.1.8. Note the relation
levy, Ny = (\ v),

so that if we “identify” V and (V*)* using the isomorphism of the theorem, we get a
symmetric relation

(v, A) =\ v)
for NeV*¥andvelV.

LEMMA 8.1.9. Let V be a finite-dimensional vector space and B = (ey,...,e,) an
ordered basis of V. The dual basis B** of the dual basis B* of B is the ordered basis

(eve,)1<i<n of (V)"
If we identify V' and (V*)* using v — ev,, this means that the dual of the dual basis
of B “is” the original basis B.

PROOF. The vectors (eve,,...,ev,, ) satisfy

1 ifi—
<evei7)\j> = <)‘j76i> = {

0 otherwise,

for all 4 and 7, and so by the last part of Proposition 8.1.3, (eve,,...,ev,,) is the dual
basis of B*. ]

DEFINITION 8.1.10 (Hyperplane). Let V' be a vector space. A subspace W of V is
called a hyperplane if there exists a complement of dimension 1.

If V is finite-dimensional, this means that a hyperplane is a subspace of dimension
dim(V') — 1.

LEMMA 8.1.11. Let W < V be a subspace. Then W is a hyperplane if and only if
there exists a non-zero A € V* such that W = Ker(\).
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PROOF. Suppose first that A £ 0 is a linear form. Let W = Ker(A). Since A # 0,
there exists vy € V' such that A(vg) # 0. Then the formula

v = <v — ;\((:0)) U0> + ;\((;;)) Vo

shows that the line generated by vy is a one-dimensional complement to .

Conversely, let W be a hyperplane in V. Let vy ¢ W be fixed. There exists a linear
form X\ € V* with A(vg) £ 0 and W < Ker(\) (Lemma 8.1.5 (3)). Then W = Ker()),
since W is a hyperplane, so that W @ (vy) = V, and

Aw + tvg) = tA(vg)
for we W and t € K. O

DEFINITION 8.1.12 (Orthogonal). Let V' be a vector space and W a subspace of V.
The orthogonal of W in V* is the subspace

Wh={XeV*| O\,w)y=0forall we W}
In other words, W+ is the space of all linear forms with kernel containing .

PROPOSITION 8.1.13. Let V' be a vector space.

(1) We have {0} = V* and V*+ = {0}.

(2) We have W1 = Wy if and only if Wi < Wi, and W1 = W, if and only if
Wi = Wit

(3) Suppose V is finite-dimensional. Then we have (W)t = {ev,, € (V*)* | we W}
and

(8.3) dim(W+) = dim(V) — dim(W).

The last assertion shows that if V' is finite-dimensional and we identify (V*)* and V/
using the isomorphism of Theorem 8.1.6, then (W1)+ = W.

PROOF. (1) It is elementary that {0}* = V= (all linear forms take value 0 at Oy) and
that V+ = {0} (only the zero linear form maps all elements of V' to 0).

(2) If Wi < Wy, then any linear form A that is zero on Wj is also zero on Wy, which
means that W3- is contained in Wit. Conversely, if W, is not contained in W, then there
exists w 4 0 in W; and not in Ws. There exists a linear form A € V* with A(w) + 0 and
W, < Ker()\) (lemma 8.1.5 (3)). Then X € Wit but A ¢ Wit.

Since (exchanging W and Wy) we also have W, < W, if and only if Wit <« Wi, we
get the equality W, = W, if and only if Wi = Wi

(3) By definition and Theorem 8.1.6, (W)t is the set of elements ev,, of (V*)* such
that {(ev,, \) = 0 for all A € W+, or in other words, the space of all ev, for v € V such
that (\,v) = 0 for all A € W+. This condition is satisfied if v € W. Conversely, if v ¢ W,
there exists a linear form A € V* with A(v) + 0 but W < Ker(\) (lemma 8.1.5 (3)). Then
A e WL but A(v) £ 0. This means that it is not the case that A(v) = 0 for all A € W+,
so ev, ¢ (V4)*

We now prove (8.3). Let W be a complement of W. Let f: Wt — W* be the
restriction linear map A — A|W. We claim that f is an isomorphisme: this will imply
that dim(W+) = dim(W*) = dim(W) = dim(V) — dim(W) (by Proposition 4.1.11).

We now check the claim. First, f is injective: if f(A) = 0, then the linear form A
is zero on W, but since A € W, it is also zero on W, and since W@ W =V, we get
A=0eV*.
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Now we check that f is surjective. Let 1 € W* be a linear form. We define A € V* by

AMw +w) = p(w),
which is well-defined (and linear) because W @ W = V. The restriction of A\ to W
coincides with p, so that f(\) = u. Hence f is surjective. O

REMARK 8.1.14. In particular, from (2) we see that, for a subspace W of V', we have
W = {0} if and only if W+ = V* and W =V if and only if W+ = {0}.

ExAMPLE 8.1.15. (1) Consider for instance V' = M,, ,(K) for n > 1 and the subspace
W={AeV | Tr(A) = 0}.

The orthogonal of W is the space of all linear forms A on V' such that A(A) = 0 whenever
A has trace 0. It is obvious then that W+ contains the trace itself Tr € V*. In fact, this
element generates W+. Indeed, since the trace is a surjective linear map from V to K,
we have dim(W) = dim(Ker(Tr)) = dim(V) — 1, and hence

dim(W+) = dim(V) — dim(W) = dim(V) — (dim(V) — 1) = 1.

Since Tr € W+ is a non-zero element of this one-dimensional space, it is basis of W*.
(2) It is often useful to interpret elements of W+ as “the linear relations satisfied by
all elements of W”. For instance, in the previous example, all elements of W satisfy the
linear relation
“the sum of the diagonal coefficients is 07,

but they do not all satisfy
“the sum of the coefficients in the first row is 0”

(unless n = 1, in which case the two relations are the same...) The fact that W+ is
generated by the trace means then that the only linear relations satisfied by all matrices
of trace 0 are those that follow from the relation “being of trace 0”7, namely its multiples
(e.g., “twice the sum of diagonal coefficients is 0”).

8.2. Transpose of a linear map

Let V4 and V; be K-vector spaces and V" and V;* their respective dual spaces. Let
f: Vi — V5 be a linear map. If we have a linear form A\: V5, — K, we can compose with
f to obtain a linear form Ao f: V3 — K. This means that to every element of V;* is
associated an element of V}*.

LEMMA 8.2.1. The map X\ — Ao f is a linear map from V5 to Vi.

PRrROOF. By definition, for A\; and Ay in V¥, and for v, w € V5 and s, t € K, we get

((EA1 + sX2) 0 f)(v) = tA(f(v) + sAa(f (v)),
which is the desired linearity. U
DEFINITION 8.2.2 (Transpose). Let V; and V2 be K-vector spaces and V;* and V¥

their respective dual spaces. Let f: V; — V5 be a linear map. The linear map V¥ — V/*
defined by A — Ao f is called the transpose of f, and denoted *f.

Concretely, the definition translates to:

(8:4) CHN) v = fw))
for all A e V¥ and v e V.
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EXAMPLE 8.2.3. (1) Let V = K" and f = f4 for some matrix A € M, ,(K). We will
see in Section 8.3 that 'f is the linear map on V* represented by the transpose matrix
YA in the dual basis of the standard basis of V.

(2) Let V' be any K-vector space and let A € V*. Then A is a linear map V — K,
hence the transpose of A is a linear map ‘\: K* — V*. To compute it, note that a linear
map pu € K* = Homg (K, K) satisfies u(t) = tu(1) for all ¢t € K, so that u(t) = at for
some a € K. We then get ‘A() = o A, or in other words

(M), v) =, Av)) = aA(v).
This means that ‘A\(u) = aX = p(1)\.

PROPOSITION 8.2.4. The transpose has the following properties:
(1) For all vector spaces V', we have Idy = Idy .
(2) The map f—'f is a linear map

Homg (V1, V2) — Homg (V5" Vi¥).

(3) For all vector spaces Vi, Vo and Vs and linear maps f: Vi — Vo and g: Vo — V3,
we have
t(gOf) ztfotg: VE%* _)Vvl*
In particular, if f is an isomorphism, then'f is an isomorphism, with inverse the trans-
pose L(f7Y) of the inverse of f.

PROOF. (1) and (2) are elementary consequences of the definition.
(3) Let A e V5*. We get by definition (8.4)

“gofYN)=Ao(gof)=(Nog)of="Ff(Aog)="f("g(N).

The remainder of the follows from this and (1), since for f: V; — V5 and g: V5, — V4, the
condition go f = Idy, (resp. fog = Idy,) implies ‘fo'g = Idyx (vesp. ‘go’f = Idyx). O

PROPOSITION 8.2.5 (Transpose of the transpose). Let Vi and Vy be K-vector spaces,
and f: Vi — V5 a linear map. For any v eV, we have

CC))(eve) = eviw).

In other words, if Vi and Vy are finite-dimensional and if we identify (V;*)* with V; using
the respective isomorphisms ev: V; — (V:*)* then the transpose of the transpose of f is

f.

PROOF. The transpose of ' f is defined by (*(*f))(z) = x o' f for x € (V}*)*. Assume
that = = ev, for some vector v € V; (recall from Theorem 8.1.6 that if V; is finite-
dimensional, then any z € (V}*)* can be expressed in this manner for some unique vector
veVy). Thenzolf =ev,o!f is a linear form V;* — K, and it is given for \ € V* by

(evy o' f)A) = evy("f(N) = evy(Ao f) = (Ao f)(v) = A(f(v)) = evyw (N).
This means that *(*f)(ev,) = evy(,), as claimed. O

PROPOSITION 8.2.6. Let f: Vi — V5 be a linear map between vector spaces.

(1) The kernel of 'f is the space of linear forms X\ € V3* such that ITm(f) < Ker(\),
i.e., Ker('f) = Im(f)*. In particular, 'f is injective if and only if f is surjective.

(2) The image of ' f is the space of linear forms u € Vi* such that Ker(f) < Ker(u),
i.e., Im(*f) = Ker(f)*. In particular, *f is surjective if and only if f is injective.
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PROOF. (1) To say that “f(\) = 0 is to say that, for any v € V7, we have

CHN), v =\ fv) =0,

or equivalently that A(w) = 0 if w belongs to the image of f, hence the first assertion.
Then ! f is injective if and only if its kernel Im(f)* is {0}, and by Proposition 8.1.13, this
is if and only if Im(f) = V%, i.e., if and only if f is surjective.

(2) Let A € V5¥ and let u = (*f)(N\). For v € Vi, we have

(i, 0) =, f ),

which shows that p(v) = 0 if f(v) = 0, so that Ker(f) < Ker(u) for any u € Im(*f).
This means that Im(*f) = Ker(f)*. Conversely, assume that € Vi* is in Ker(f)+. Let
W < Vs be the image of f, and let W be a complement of W in Vs. Any v € V5 can be
written uniquely v = w + w where w € W and w € W. There exists v; € V; such that
w = f(v1). We claim that the map

At v pu(vr)

is well-defined, and is an element of V3* such that (*f)(\) = u. To see that it is well-
defined, we must check that A(v) is independent of the choice of vy such that f(v;) = w.
But if v} is another such element, we have f(v; — v}) = 0, hence v; — v} is in the kernel
of f, and consequently (by the assumption pu € Ker(f)*) in the kernel of p, so that
vy — ) = 0.

Since A is well-defined, it follows easily that it is linear (left as exercise). So A € V5.
Also, it follows that A(f(v)) = p(v) for all v € Vi, since for the vector f(v) € V5, we can
take v; = v itself to define A(f(v)). Now we get for all v € V; the relation

(), v =, fv) = p(v),

so that ' f = u, as desired.
Finally, this result shows that ! f is surjective if and only if Ker(f)* = V}*, i.e., if and
only if Ker(f) = {0} by Proposition 8.1.13. O

REMARK 8.2.7. We can deduce prove (2) from (1) in the finite-dimensional case by
duality: identifying V; and V**, we have

Ker(f)* = Ker("f)* = (Im("f)")* = Im(*f),

where we used the identification of Proposition 8.2.5, then applied (1) to !f, and then
the identification from Proposition 8.1.13 (3).

EXAMPLE 8.2.8. As in Example 8.1.15 (1), consider V' = M,, ,(K) and the linear map
Tr: V — K. From Example 8.2.3 (2), the image of *Tr is the set of linear forms of the
type a Tr for some a € K, which means that it is the space generated by the trace. Hence
Ker(Tr)* = Im(*Tr) is one-dimensional and generated by the trace, which recovers the
result of the example.

COROLLARY 8.2.9. Let f: Vi — V5 be a linear map between finite-dimensional vector
spaces. We have dim Ker(* f) = dim(V3)—rank(f) and rank(*f) = dim(V;)—dim Ker(f) =
rank(f).

PROOF. We prove the first assertion. We have, by the previous proposition, Ker(*f) =
Im(f)*. From Proposition 8.1.13 (3), we then deduce

dim(Ker('f)) = dim(Im(f)*) = dim(V3) — dim(Im(f)).
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To prove the second assertion, we use duality: we apply the formula to ! f instead of
f, and get
rank(*(*f)) = dim(V3") — dim Ker(* f).
But Proposition 8.2.5 shows that the rank of *(*f) is the same as the rank of f. So we
et
° dim Ker(* f) = dim (V) — rank(f),
as claimed. U

8.3. Transpose and matrix transpose

LEMMA 8.3.1. Let Vi and V5 be finite-dimensional vector spaces with ordered bases
By and By and dim(V}) = n, dim(V2) = m. Let B} be the dual bases of the dual spaces.
If f: Vi = V4 is a linear map and A = Mat(f; By, Bs), then we have A = (a;;);; with
ai; = i, £(&5))
forl<i<mandl<j<n.
PROOF. We write By = (e1,...,¢e,), By = (f1,..., fm) and By = (A\j)i<j<n, B3 =

(i) 1<i<m- Let A = Mat(f; By, Ba) = (aij)1<i<n- The columns of A are the vectors f(e;)
for 1 < j < n, which means that

f(ej) = 2 ij fi-
i=1
If we compare with the definition of the dual basis, this means that
aij = i, f(€5))-

g

PROPOSITION 8.3.2. Let V; and V4 be finite-dimensional vector spaces with ordered
bases By and By. Let B} be the dual bases of the dual spaces. If f: Vi — V4 is a linear

map then we have
Mat(tf, B;, BT) = tMat(f, Bl, Bg)

PrROOF. We write B, = (61, . ,Gn), By = (fl,. . ,fm) and Bik = (>\j)7 B; = (:U’j)
Let A = Mat(f; By, B2) = (a;j). By the previous lemma, we know that

aij = (i, f(e5)).

On the other hand, if we apply this to 'f and to A" = Mat(*f; By, Bf) = (b;i), using
the fact that the dual basis of BY is (eve,) and that of Bj is (evy,) (Lemma 8.1.9), we get
bji = Cevey, ' f(pa)) = C fa), e5) = s fe5)) = aij.

This means that A’ is the transpose of the matrix A. U

COROLLARY 8.3.3. Let V' be a finite-dimensional vector space and f € Endg(V).
Then det(*f) = det(f) and Tr('f) = Tr(f).

Proor. This follows from the fact that one can compute the determinant or the

trace of ' f with respect to any basis of V*, by combining the proposition with Proposi-
tion 3.4.10. U

We then recover “without computation” the result of Proposition 5.1.1 (1).
COROLLARY 8.3.4. Let n,m,p>1 and A€ M,,,(K), B € M,,,(K). Then
“(BA) ='A'B e M,,(K).
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PRrROOF. Let B,,, B,, B, denote the standard bases of K", K" and KP? respectively,
and let By, B, and B} denote the dual bases.
We compute

"(BA) = Mat (' fpa; By, By) = Mat('(f5 © fa): By, B})
= Mat('fao'fs; By, By) = Mat(" fa; By, By) Mat(' f5; B}, B}y))
= '"Mat(fa; Bn, By)'Mat(fp; B, By) = "A'B,
using the last proposition and Proposition 8.2.4 (2). O

COROLLARY 8.3.5 (Row rank equals column rank). Let A € M,,,(K) be a matriz.
The dimension of the subspace of K" generated by the columns of A is equal to the
dimension of the subspace of K,,, generated by the rows of A.

PROOF. Denote again By, (resp. B,) the standard basis of K™ (resp. K") and B}
(resp. B}) the dual basis. The dimension r of the subspace of K,,, generated by the rows
of A is the rank of the transpose matrix *A. Since *A = Mat (" fa; B, B?), it follows that
r is the rank of f4 (Proposition 2.11.2 (2)). By Corollary 8.2.9, this is the same as the
rank of f4, which is the dimension of the subspace of K" generated by the columns of

A. 4
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CHAPTER 9

Fields

It is now time to discuss what are fields precisely. Intuitively, these are the sets of
“numbers” with operations behaving like addition and multiplication so that all' the
results of linear algebra work equally well for all fields as they do for Q, R or C (except
for euclidean or unitary spaces).

9.1. Definition

DEeFINITION 9.1.1 (Field). A field K is a set, also denoted K, with two special
elements Og and 1k, and two operations

+x: (T,9) — T +K Y, x: (T,y) >z kY
from K x K to K, such that all of the following conditions hold:

(1) Ok + 1k (so a field has at least 2 elements);
(2) For any z € K, we have z +x Ox = Ox +x = = x;
(3) For any z and y in K, we have

THKY =Y KT

(4) For any z, y and z in K, we have

T+k (Y +k 2) = (T +x Y) +K 2
(5) For any z in K, there exists a unique element denoted —z such that

r+k (—2) = (—7) 4k © = Ok;
(6) For any z € K, we have 2 'x Ox = O 'k © = Ox and z ‘g lg = lx 'k T = ;
(7) For any = and y in K, we have

TKY =Y KT
(8) For any z, y and z in K, we have
zx (Y k2= (kY K7

(9) For any z in K — {0}, there exists a unique element denoted x=! in K such that
1 1

rrT =2 ‘kr=lg;
(10) For any z, y and z in K, we have
rk(Y+xz2) =2 KYyY+2T K2, (4K Y) K2=T KZ+YK?Z

EXAMPLE 9.1.2. (1) One can immediately see that, with the usual addition and
multiplication, the sets Q, R and C satisfy all of these conditions. On the other hand,
the set Z (with the usual addition and multiplication) does not: condition (9) fails for
x € 7, except if x = 1 or x = —1, since the inverse of an integer is in general a rational
number that is not in Z.

L Or almost all: we will see that there are very few exceptions.
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(2) The simplest example of a field different from Q, R or C is the following: we take
the set Fo = {0,1}, and we define + and - according to the following rules:

+]0]1 |01
001 0[0]0
1111]0 1101

Note that these are easy to remember for at least two reasons: (1) if one takes the
convention that 0 represents “even integers” and 1 represents “odd integers”, then the
result always give the parity of the sum or the product of integers with the given parity;
(2) since only the elements 0 and 1 occur, the conditions (2) and (6) in the definition of
a field determine all the rules, except 1 + 1 = 0. But condition (5) implies that we must
have —1 = 1 if the field has only two elements 0 and 1 (because (2) shows that 0 does
not work as opposite of 1), and therefore 1 + 1 = 0.

It is not difficult to check that F5 is a field with these definitions of addition and
multiplication.

(3) Let

K={:=z+iyeC | reQand yec Q}.

This is a subset of C, containing Q, and it is not difficult to see that it is a field with
the addition and multiplication of complex numbers. Indeed, the main points are that
21 + 29 and 2129 are in K if both z; and z5 are in K (which follow immediately from
the definition of addition and multiplication), and that if z # 0 is in K, then the inverse
271 e C of z is also in K, and this is true because if z = x + iy, then

-1 r—1y
a2 42
has rational real and imaginary parts. Most conditions are then consequences of the fact
that addition and multiplication of complex numbers are known to satisfy the properties
required in the definition. This fields is called the field of Gaussian numbers and is
denoted K = Q(1).
(4) Let
P(r)

K — {WGR | PeQ[X], Qe Q[X]and Q(x) + 0}.

This set is a subset of R. It is a field, when addition and multiplication are defined as

addition and multiplication of real numbers. Again, the main point is that the sum or
product of two elements of K is in K, because for instance

Pi(m) = Pa(m) _ P (7)Qa(7) + Po(m)Q1(7)

Qi(m)  Qa(m) Q1(m)Qa(7) 7
and we have (Q1Q2)(7) #+ 0. This field is denoted Q(7).

REMARK 9.1.3. If —1k denotes the opposite of the element 1k in a field, then we
have

for any z € K.

A very important property following from the definition is that if x -x y = Ok, then
either x = Og or y = Ok (or both); indeed, if xx # Ok, then multiplying on the left by

™!, we obtain:

vk (rky) =2 k0 = Ok
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by (6), and using (8), (9) and (6) again, this becomes
Ok = (7" k2) y=1k-y=y.
9.2. Characteristic of a field
Let K be a field. Using the element 1x and addition we define by induction
2k = 1k + 1k, nk =(n— 1k + 1k
for any integer n > 1, and
nk = —((—n)x) = (—1x) - nk
for any integer n < 0. It follows then that
(n+m)k = nk +k Mk, (nm)k = nk ‘K MK

for any integers n and m in Z.

Two cases may occur when we do this for all n € Z: either the elements nk are
non-zero in K whenever n £ 0; or there exists some non-zero integer n € Z such that

In the first case, one says that K is a field of characteristic zero. This is the case for
K=Q,or RorC.

The second case seems surprising at first, but it may arise: for K = F5, we have
2k = lg + 1lx = 0. When this happens, we say that K has positive characteristic.

Suppose now that K has positive characteristic. Consider the set I of all integers
n € Z such that nkx = Ox. This is then a subset of Z that contains at least one non-zero
integer. This set has the following properties:

(1) We have 0 € I;

) If n and m are elements of I, then n + m is also in [;
) If nisin I, then —n € I.
)

Consequently, by induction and using the previous property, if n is in I and
ke Z, then kn e I.

Since I contains at least one non-zero integer, (3) shows that there exists an integer
n > 1in I. It follows that there is a smallest integer k > 1 in I. Then, by (4), all
multiples gn of n are in I, for ¢ € Z. Consider then an arbitrary n € I. By division with
remainder, we can express

(2
(3
(4

n=qk+r
where ¢ and 7 are in Z and 0 < r < k — 1. Since k € [ and n € I, then the properties
above show that r = n — gk is also in /. But since 0 < r < k — 1, and k is the smallest
positive integer in I, this is only possible if » = 0. This means that n = gk.
What this means is that if k£ is as defined above, we have

I={qk | qeZ}.

The integer k is not arbitrary: it is a prime number, which means that k£ > 2 and has no
positive integral divisor except 1 and k. Indeed, first we have k£ £ 1 because Ok + 1k.
Next, assume that k = ab where a and b are positive integers. Then

OK = kK = 0K 'K bK7

and therefore, from the properties of fields, either ax = 0 or bx = 0, or in other words,
either a € I or b e I. Since I is the set of multiples of k£ and a and b are non-zero, this
means that either a or b is divisible by k. But then the equation ab = k is only possible
if the other is equal to 1, and that means that & is prime.
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DEFINITION 9.2.1 (Characteristic of a field). The characteristic of a field K is
either 0, if ng # 0 for all n € Z, or the prime number p such that ng = 0 if and only if
n = pm is a multiple of p.

ExaMPLE 9.2.2. (1) The fields Q, R, C, Q(7) and Q(7) are all fields of characteristic
0.

(2) The characteristic of Fy is 2. One can show that, for any prime number p, there
exist fields of characteristic p; some are finite, and some are infinite (in particular, it is
not true that all infinite fields are of characteristic 0).

9.3. Linear algebra over arbitrary fields

From now, we denote by K an arbitrary field, and we denote simply 0 = Ok, 1 = 1k
and write the addition and multiplication without subscripts K. We can then look back
to the definition 2.3.1 of a vector space and see that it involves no further data concerning
K than the elements 0 and 1 (see (2.3)), and the addition and multiplication (for instance
in (2.6) and (2.8). In other words, the definition does make sense for any field.

We denote by p the characteristic of K, which is either 0 or a prime number p > 2.
The whole developpment of linear algebra is then independent of the choice of field, with
very few exceptions, which we now indicate:

e Remark 3.1.5 (which states that a multilinear map f on V" is alternating if and
only if

(9.1) flor, .. vn) = —flog, ... y Vi1, Vg, Vit1s - - -5 Uj—1, U3, Ujp1, - - - , Un)

whenever 1 < i # j < n) holds only when the characteristic is not equal to 2.
Indeed, if K = F5, for instance, then since 1+ 1 = 0 in K, we have 1 = —1 in K,
and the condition (9.1) always holds. Conversely, if the characteristic is not 2,
then 2 =1+ 1 % 0 in K, and therefore has an inverse 1/2, so that the condition

2f(v1,...,v,) =0

coming from (9.1) if v; = v; with ¢ & j implies f(vy,...,v,) = 0 if v; = v;.

e Proposition 4.4.3 is also only valid for fields of characteristic different from 2,
since the proof uses a division by 2 (see (4.4)). Indeed, if K = F5, the endomor-
phism f4 € Endp,(F3%) given by the matrix

11
=0 )
is an involution, since

, (1 1\ /1 1\ (1 141\
A‘<o 1>(o 1)‘(0 1 )_12

(in My4(F9)) and it is not diagonalizable.

e The most delicate issue is that if the field K is finite (which implies that the
characteristic is not zero), then the definition of polynomials (and therefore the
construction of the characteristic polynomial) requires some care. We discuss
this in the next section.

e Properties that require the existence of an eigenvalue for an endomorphism of
a finite-dimensional vector space of dimension 1 (e.g., the Jordan Normal Form
as in Theorem 7.1.8) are only applicable if all polynomials of degree > 1 with
coefficients in K (as defined precisely in the next section) have a root in K —
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such fields are called algebraically closed, and C is the standard example of such
field.

9.4. Polynomials over a field

Let K be an arbitrary field. When K is Q or R or C, we have viewed polynomials
with coefficients in K as a function P: K — K such that there exist an integer d > 0
and coefficients

apg, ..., 0aq

in K with

P(x) = ag + a1z + - - + agr”

for all x € K. This definition is reasonable because the power functions x — z are linearly
independent, which means that the function P determines uniquely the coefficients a;.

This property is not true any more for finite fields. For instance, consider K = Fs.
Then consider the functions from F5 to Fy defined by

Py () = 22, Py(z) = x.

These do not have the same coefficients, but P;(0) = P,(0) = 0 and Pi(1) = Py(1) = 1,
so that the functions are identical.

This behavior is not what we want, in particular because it leads to a considerable
loss of information. So one defines polynomials more abstractly by identifying them with
the sequence of coefficients. To do this, we make the following definition:

DEFINITION 9.4.1 (Polynomial). Let K be a field. A polynomial P with coefficients
in K and in one indeterminate X is a finite linear combination of “symbols” X* for
1 integer > 0, which are linearly independent over K. Polynomials are added in the
obvious way, and multiplied using the rule

Xt X = Xt
together with the commutativity rule PyP, = P5P;, the associativity rule Py(PyP3) =
(P, Py) P3 and the distributivity rule P (P, + P3) = PP, + P Ps.
The set of all polynomials with coefficients in K is denoted K[X]. It is a K-vector
space of infinite dimension with

7

(Bax) + (2 bX') = (i + b)) X,

7 7

d
1=0

for t €e K and

where only finitely many coefficients are non-zero. One often writes simply ag instead of
ao X" for ay € K.

Let P € K[X] be a non-zero polynomial. The degree of P, denoted deg(P), is the
largest integer ¢ > 0 such that the coefficient of X* is non-zero.

An abstract formula for the product is simply

(2 aiXi> - (Z biXi> _ Z e X,
c; = Z a;by,

k=i
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(both j and k ranging over integers = 0, which means that j < i and k < ¢, so the sum
is a finite sum).

EXAMPLE 9.4.2. (1) The degree of P = qg is equal to 0 for all ag % 0, but is not
defined if ag = 0.

(2) Consider the polynomial P = X? + X + 1 in Fo[X] of degree 2 (note that the
corresponding function is 0 — 1 and 1 — 1, but it is not a constant polynomial, which
would be of degree 0).

We have

PP=(X?+X+1D)(X*+X +1) =
X'+ X+ X+ X+ X+ X+ X2+ X +1=X"+1
because X? 4+ X3 = 2X3 = 0 in Fy[X] and similarly X? + X? =0 and X + X = 0.

LEMMA 9.4.3. The degree of P, + P» is < max(deg(P;),deg(P,)), if P, + P> £ 0; the
degree of PPy is deg(Py) + deg(P,) if P, and Py are non-zero.

PROOF. We leave the case of the sum as exercise. For the product, if P, and P, are
non-zero, we write

PlzadXd—i---‘—FalX—l—ao, szbeXe+"'+le+b0
where d = deg(P;) = 0 and e = deg(P,) = 0, so that ag + 0 and b, £ 0 by definition. If
we compute the product, we obtain
PPy = agbe X" + (agbe—1 + ag_1be) X7+ -+

where agb. + 0 (as a product of two non-zero elements of K!). Hence deg(P,P;) =
d+e. U

DEFINITION 9.4.4 (Polynomial function). Let P € K[X] be a polynomial, with
P=ay+a; X + -+ as X%
The associated polynomial function P is the function K — K defined by
P(z) = ag + a1 + - - - + agz®.
We often write simply P(z) = P(z).

LEMMA 9.4.5. The map P — P from K[X] to the vector space V' of all functions
K — K is linear and satisfies Py Py = Py Py. It is injective if and only if K is infinite.

PRrROOF. The linearity and the assertion f/ﬁ\P; = f’lpg are elementary — they come
essentially from the fact that both the powers X of the indeterminate and the powers 2
of a fixed element of K satisfy the same rules of multiplication (exponents are added).

To prove the other assertion, we will show the following: if P % 0, then the number
Np of z € K such that P(z) = 0 is at most the degree of P. This will show that the map
P — P is injective if K is infinite.

We proceed by induction on the degree of P. If the degree is 0, then P = a¢ with
ag % 0, and hence P(x) = ag + 0 for all z € K, so the number Np is 0 = deg(P) in that
case.

Now assume that P has degree d > 1 and that Ng < deg(Q) for all non-zero polyno-
mials () of degree < d — 1. Write

P=a X%+ - +aX +ag
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with ag + 0. If Np is zero, then obviously Np < d, so we assume that Np > 1. This
means that there exists xy € K such that P(xg) = 0. We may assume that zo = 0 (by
replacing P by

d
P1 = EGZ(X + xo)i,
=0

otherwise, since Pi(x) = 0 if and only if P(z + 2¢) = 0, so that Np = Np,). But
P(0) = ap = 0 means that

P=a X+ +aX=X(a1 + -+ a X" = XQ

where Q has degree d — 1. Then P(z) = 0 if and only if either = 0 or Q(z) = 0.
Therefore Np < 1+ Ng, <1+ d—1 = d by induction.
For the converse, if K is finite, define

P-][(X -2 eK[X]
zeK
This is a polynomial of degree Card(K), in particular non-zero. But for any = € K, we
have P(x) = 0, so that P = 0. O

A “proper” definition of the characteristic polynomial of a matrix A € M, ,,(K) can
then be given as follows: (1) K[X] can be seen as a subset of a field K(X), with elements
the fractions P/Q where P and () are polynomials with @ % 0, and the “obvious” addition
and multiplication of such fractions, which moreover satisfy P;/Q, = P,/Q2 if and only
if P1QQy = P»Q@1; (2) the polynomial X = X /1 belongs to K(X), and so X -1, — A is a
matrix in M, ,,(K(X)); as such, it has a determinant, which is an element of K(X), and
one can check that in fact this determinant belongs to K[X]. This is the characteristic
polynomial of A.

ExaMPLE 9.4.6. Consider K = F5 and

1 01
A=10 1 1]e M373<K).
1 10

To compute the characteristic polynomial of A in practice, we write the usual determinant
with the “indeterminate” X and then we compute it by the usual rules, e.g., the Leibniz
formula: since —1 = +1 and 2 =0 in K, we get

X+1 0 1
chara(X)=| 0 X+1 1|=XX+1)?+0+0—(X+1)—(X+1)-0
1 1 X

=X(X*+1)=X’+X
We finish with a fundamental result about polynomials:

THEOREM 9.4.7 (Euclidean division for polynomials). Let K be a field, let Py and Ps
be polynomials in K[ X]| with Py + 0. There ezist a unique pair (Q, R) of polynomials in
K[X] such that R is either 0 or has degree < deg(P), and such that

P, =QP, + R.

One says that @ is the quotient and that R is the remainder in the euclidean division
of P2 by Pl-
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PROOF. We first prove the existence. For this purpose, we use induction with respect
to the degree of Pp. If P, = 0 or if 0 < deg(F») < deg(P;), then we may define Q = 0
and R = PQ.
Now assume that deg(P,) = d = deg(P;) = e and that the result holds for polynomials
of degree < d — 1. We write
Py=a. X+ -+ a1 X + ap, ae + 0,
and
PlzbdXd+"'+b1X+b0, bq £ 0.
Since d > e, the polynomial

b
Py =P, — 2xtep,

Qe

is well-defined. We have
Py =bg X%+ by — <bdXd+%Xd‘1+---)

a’e
which shows that P; = 0 or deg(P3) < d — 1. By induction, there exist Q3 and Rz such
that R3 = 0 or has degree < deg(P,) and

It follows that

b b
Pr= PyQs+ Ry+ 2 X"P, = (@ + a—dXd‘e>P2 + Ry

which is of the desired form with R = R3 and Q = Q3 + bga_*X47¢.
We now prove the uniqueness. Assume that

P=QP,+R=QP,+ R
with R and R’ either 0 or with degree < deg(P,). We then get
P2(Q_Q,) =R - R
But the left-hand side is either 0 or a polynomial of degree < deg(P,), whereas the right-

hand side is either 0 or a polynomial of degree deg(FP») + deg(Q — Q') = deg(P,). So the
only possibility is that both sides are 0, which means that R = R’ and Q = @'. O

ExAMPLE 9.4.8. In practice, one can find () and R by successively cancelling the
terms of higher degree, as done in the proof. For instance, with

P=X°—12X'+ X2 -2, Po=X*+X -1,
we get
P=X"—12X*+ X? - 2=X*(X?+ X 1) - 13X* + X* + X? -2
= (X? - 13X (X? + X — 1) + 14X° — 12X* - 2
= (X? - 13X? + 14X)(X? + X — 1) —26X° + 14X — 2
= (X? - 13X2 + 14X —26)(X* + X — 1) +40X — 28
so that @ = X® — 13X? + 14X — 26 and R = 40X — 28.
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CHAPTER 10

Quotient vector spaces

What we will discuss in this chapter is an example of one of the most important
general construction in algebra (and mathematics in general), that of quotient sets modulo
an equivalence relation. The idea involved is, in some sense, very simple, but is often
considered quite abstract. We will focus on the special case of vector spaces where
some geometric intuition may help understand what is happening. In turn, this helps
understanding the general case.

In all this chapter, K is an arbitrary field.

10.1. Motivation

We will first present the general idea in a very special case. We consider K = R and
the real vector space V = R2. Let W < V be a one-dimensional subspace, namely a line
through the origin. We will explain what is the quotient vector space V/W.

We define first a set X as the set of all lines in R? parallel to W, where lines do not
necessarily pass through the origin. So an element of X is a subset of V. There is an
obvious map p from V to X: to every point x € R?, we associate the line p(z) that is
parallel to W and passing through x; it is an axiom of euclidean geometry that such a line
exists and is unique, and below we will check this algebraically. Note that p is surjective,
since if £ € X is any line parallel to W, we obtain p(x) = ¢ for any point x that belongs
to L.

We will show that there is on the set X a unique structure of R-vector space such
that the map p: V — X is a linear map.

In order to do this, in a way that will allow us to generalize the construction easily
to any vector space V with subspace W, we begin by describing X and the map p more
algebraically. Let vy #+ 0 be a vector generating the line . This means that

W = {tvy | t € R}.
For v; € R?, the line ¢ = p(v;) parallel to W and passing through v; is the subset

(={veR? | v=uw +wfor somewe W} = {v, +tvy | te R} c R%.

ExaAMPLE 10.1.1. Suppose that W is the horizontal axis, which means that we can

take vy = . Then the elements of X are horizontal lines. For any v; = (Zjl), the
1

1
0
horizontal line through v; is

{(;1) |xeR}={(Z)+<x—xl) <(1)> |xeR}={<zi>+t((1]) |teR}.

To define a vector space structure on X, we need to define the zero vector Oy, and
the addition +x and multiplication -x of a real number with an element of X. Asking
that the map p is linear will tell us that there is only one possibility.
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FIGURE 10.1. The red lines are non-zero elements of X, the blue line is
the zero vector in X

To begin with, we must have 0x = p(0), since p is linear; that means that 0x must
be the line parallel to W through the origin, in other words, that we must have Ox = W,
seen as an element of X.

Now consider addition. If ¢; and ¢, are elements of X, we can find v; and v, in R?
such that ¢; = p(vy) and f5 = p(vy) (in other words, v; is a point on ¢, and vy is a point
on /3). Since p should be linear we must have

U +x Uy =p(v1) +x p(v2) = p(vy + v2),

or in other words: ¢; +x ¢ must be the line parallel to W through the vector v; + v in
R2.

Similarly, consider £ € X and t € R. If v € R? is an element of ¢, so that ¢ = p(v), we

must have

tx =t xp)=p(tv),
which means that the product ¢ -x £ should be the line parallel to W through the vector
tv.

This reasoning tells us that there is at most one vector space structure on X for
which p is linear. It does not yet say that it exists, because the definitions of addition
and multiplication that it suggests might not be well-defined. The point (say for addition)
is that there are many choices of vectors vy and v, in ¢; and ¢, respectively. It could then
be that if we chose other points w; and ws, the line parallel to W through w; + ws would
be different from the line parallel to W through v; + vs; this would be a contradiction,
since we saw that either of them is supposed to be /1 +x £s.

We now show that this does not happen. So suppose w; € {1 and w, € 5 are arbitrary.
By the description above, the line in X through w; + wy is

{w) + we + tvy | t € R},
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FIGURE 10.2. The sum of ¢; and ¢,

and the line through vy + vs is
p(vr +v3) = {v1 + v2 +tvg | t€ R}

To show that these lines are identical, it suffices to check that they contain a common
point, since they are parallel. We will show that indeed wy + ws € p(v; + vy). For this we
know that w; is in the line ¢; in X through vy; this means that

w € {’Ul—i-t’Uo | tER},
or in other words, that there exists a € R such that w; = v; + avg. Similarly, there exists
b € R such that wy = vy + bvg. It follows that wy + wq = vy + v + (@ + b)vy, which belongs
to p(vy + va).
In other words, we have constructed a well-defined map
+x: X xX—-X
such that

(10.1) p(v1) +x p(v2) = p(v1 + v2).

The definition is as above: the sum of two lines ¢; and /5 in X is the line parallel to W
passing through the sum vy + v9 of v € £1 and vy € ¢, this definition being independent
of the choice of vy in ¢1 and vy € /5.

A similar reasoning applies to the product of t € R with ¢ € X. Recall that it should
be the line in X passing through tv, and the question is whether this is well-defined:
what happens if we replace v € £ by another point w in ¢? The answer is that since w
belongs to the line in X through v, we have w = v + avy for some a € R, and therefore
tw = tv + atvy, which shows that p(tw) = p(tv). Therefore the map

x:RxX - X
is well-defined and satisfies

(10.2) p(tv) = t-x p(v)
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for t € R and v € R2.

It now remains to check that X, with the zero vector 0x = W and the addition and
multiplication just defined, is indeed a vector space according to Definition 2.3.1. This
is the case, and all axioms are verified in the same manner: by writing the points of X
as p(v) for some v € R?, by using the vector space properties of R? and then using the
fact that addition and multiplication have been constructed so that the map p: R? — X
preserves addition and multiplication (by (10.1) and (10.2)).

For instance, let us check (2.8). Fix first ¢ € R and ¢;, {y in X. Write ¢; = p(v;).
Then

tx (b +x o) =t -x (p(v1) +x p(va)) =t x p(vr + v2)
= p(t(v1 + v2)) = p(tvy + tvg) = p(tvy) +x p(tve)
=t-xp(v1) +xt-xplva) =t-xl +xt-xlo,
which is the first part of (2.8). If ¢; and t5 are in R and ¢ = p(v) in X, then

(tl + tz) ' = (tl + tg) ¢ p(U) = p((t1 + tg)U) = p(tlv + tQ’U)
= p(t1v) +x p(tav) = t1 -x p(v) +x ta -x p(v) =t1 -x L +x t2 -x ¢,
which establishes the second part of (2.8).
All remaining conditions are proved in the same way, and we leave them as exercises.

And finally, from (10.1) and (10.2), we next see that p: V' — X is a linear map with
respect to this vector space structure on X.

Before we continue to the general case, now that we now that X is a vector space, and
p: R? — X is a surjective linear map, we can ask what is the kernel of p? By definition,
this is the space of all v € R? such that p(v) = 0x = W, which means the space of all v
so that the line parallel to W through v is W itself. This means that Ker(p) = W.

The vector space we just constructed is called the quotient space of V by W and
denoted V/W (“V modulo W”), and the linear map p the canonical surjection of V to
V /W. One should always think of these are coming together.

Note that since p: V' — V/W is surjective, we have

dim(V /W) = dim(V) — dim Ker(p) = dim(V') — dim(W) = 1.

10.2. General definition and properties

We now consider the general case. Let K be any field, V' a vector space over K
and W < V a subspace. To generalize the discussion from the previous section, we first
explain the meaning of “affine subspace parallel to W”, and the crucial property of these
subspaces that generalizes the parallel axiom for lines in plane.

DEFINITION 10.2.1 (Affine space). Let V' be a vector space. An affine subspace A
of V is a subset of V' of the form

Awyy ={veV | v =1y + w for some w e W}

for some vector subspace W < V' and some vy € V. The dimension of Ay, is defined
to be the dimension of W. We then say that the affine subspace A is parallel to W.

If A is an affine subspace of V', then the corresponding vector subspace is uniquely
determined by A. Indeed, if A = Ay, then

W={v—uvy | ve A}
We call W the vector subspace associated to the affine subspace A.
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The crucial property is the following:

LEMMA 10.2.2. Let V' be a K wector space and W a vector subspace of V.. Then any
v eV belongs to a unique affine subspace parallel to W, namely Aw,,. In particular, two
parallel affine subspaces Ay and Ay are either equal or have empty intersection.

PROOF. Since v € Ay, any v € V belongs to some affine subspace parallel to W. We
then need to show that it belongs to only one such affine subspace. But assume v € Ay,
for some v' € V. This means that v = v' + wy for some wy € W. But then for any w in
W, we get

v+ w =10+ (w+wy) € Ay, V4w =0v+ (w—wy) € Ay,

which means that in fact Aw, = Aw,. So v belongs only to the affine subspace Ay,
parallel to W. O

Now we define a map p: V — X by p(v) = Aw,,, which is therefore the unique affine
subspace of V' parallel to W containing v. Note that p is surjective since any affine
subspace A parallel to W contains some point v, which then satisfies p(v) = A.

We will now define a new vector space X and a linear map p: V — X as follows:

The set X is the set of all affine subspaces of V' parallel to W,
The zero element of X is the affine subspace Ay, = W;

The sum of Ay, and Ay, in X is Ay, 0.}

The product of t € K and Ay, € X is Ay € X

and we will check that p: V' — X is linear, and that its kernel is equal to W.

To check that this makes sense we must first check that the operations we defined
make sense (namely, that Ay, 44, is independent of the choice of vectors vy and vy in
the respective affine subspaces Ay, and Ay,,, and similarly for the product), and then
that p is linear. These checks will be exactly similar to those in the previous section, and
justify the following definition:

DEFINITION 10.2.3 (Quotient space). The vector space X is denoted V /W and called
the quotient space of V' by W. The linear map p: V' — V /W is called the canonical
surjection from V to V/W.

PROOF OF THE ASSERTIONS. We begin by checking that the addition on X is well-
defined. Let A; and A, be two affine subspaces parallel to W. Let v; and w; be two
elements of V' such that A; = Aw,, = Aw.w, and let v, and wy be two elements of V
such that Ay = Aw,, = Aww,. We want to check that Aw.,, 10, = AW, +w,y, 50 that the
sum

Al + A2 = AW,U1+U2

in X is well-defined. By Lemma 10.2.2, it suffices to show that w; + ws € Ay 4, 44, This
is indeed the case: since wy € Ay = Ay, , there exists z; € W such that w; = v; + 21, and
similarly there exists xo € W such that wy = vy+z5. But then wy+wy = vi+ve+(x1+22) €
AW,U1+UQ-

Similarly, we check that the multiplication of A € X by t € R is well-defined.

These two facts imply in particular the compatibility of p: V' — X with addition and
multiplication:

p(vr +v2) = p(v1) + p(v2),  p(tv) = tp(v),

where the addition on the right-hand side of the first formula is the addition in X.

From this, it follows easily as in the previous section that this addition and multi-
plication satisfy of the conditions for a vector space structure on X. For instance, we
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check (2.6) this time. Let ¢; and t5 be elements of K, and A € X. Write A = p(v) for
some v € V', which is possible since p is surjective. Then we have

(titz) - A = (tit2) - p(v) = p((tit2)v) = p(t1(t2v))
= tip(tav) =t1 - (t2 - p(v)) =t1 - (L2 - A).

Now that we know that X is a vector space, the compatibility relations of p mean
that p is linear. Moreover, we have Ker(p) = {veV | p(v) =W e X} = W. O

COROLLARY 10.2.4. Let V and W be finite-dimensional vector spaces. Then V /W is

finite-dimensional and
dim(V /W) = dim(V') — dim ().

PROOF. Since p: V' — V/W is linear and surjective, the space V /W has finite di-
mension < dim V. Then from Theorem 2.8.4 we get

dim(V) = dim Im(p) + dim Ker(p) = dim(V /W) + dim(WV)
since Ker(p) = W and p is surjective. O

ExAMPLE 10.2.5. The simplest examples of quotient spaces are when W = V and
W = {0}. In the first case, the only element of V/W is W = V itself, so that V /W =
{Oy w}. In the second case, the elements of V /W are the sets {x} for x € V, and the map
pis © — {x}. Hence p is an isomorphism V' — V /{0}. In general, one simply identifies
V and V /{0}, although properly speaking these are not the same sets.

10.3. Examples

Quotient spaces are examples of these mathematical objects that seem to be very
abstract at first, but that turn out to occur, implicitly or explicitly, everywhere, including
where one didn’t suspect their presence. We will give some instances of this here.

ExaMPLE 10.3.1. First, recall that we constructed V /W not in a vacuum, but with a
surjective linear map p: V' — V /W with kernel W. It turns out that this data is enough
to characterize very strongly V/W:

PrOPOSITION 10.3.2 (First isomorphism theorem). Let V' be a K-vector space and
W <V a subspace. Let X be a K-vector space and f:V — X a surjective linear map
such that Ker(f) = W. Then there exists a unique isomorphism

g:V/W - X
such that gop = f, where p: V. — V /W is the canonical surjection.

It is very convenient to draw diagrams to understand this type of statements, in this
case the following:

P
p
V/W
In other words, if a vector space X, coming with a surjective linear map V' — X

“looks like V /W7 then it is isomorphic to V /W and the isomorphism is “natural”, in
the sense that it involves no choice (of a basis, or of a complement, or of anything else).
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PROOF. Let A € V/W. To define g(A), we write A = p(v) for some v € V; then
the only possible choice for g(A), in order that the relation g o p = f holds, is that
9(A) = g(p(v)) = f(v).

The question is then whether this definition makes sense: one more, the issue is that
there are many v € V with p(v) = A, and we must check that f(v) is independent of
this choice, and only depends on A. To see this, let v € V' by any other element with
p(v) = A. Then A = Ay, and v € V, means that there exists w € W such that
v = v+ w. We now deduce that f(v') = f(v) + f(w) = f(v) because Ker(f) = W.

So the application g: V /W — X is well-defined. By construction, we see that gop = f.
We now check that it is linear: if A; = Ay, and Ay = Ay, are elements of V/W, and
t1, to elements of K, then we know that

tlAl + tzAQ = p(tlvl + thg).

Therefore, our definition implies that g(t1 Ay + taAs) = f(t1v1 + tavs) = t1f(v1) + taf(vg)
since f is linear. This means that g(t1A; + t2As) = t19(A1) + tag(As).

Finally, we prove that ¢ is an isomorphism. First, since f is surjective, for any x € X,
we can write z = f(v) for some v € V, and then x = g(p(v)), so that x belongs to the
image of g. Therefore g is surjective. Second, let A € Ker(g). If we write A = p(v), this
means that 0 = g(A) = f(v), and therefore v € Ker(f) = W. But then A = p(v) = Oy w.
Hence g is also injective. U

Using this, we can often identify even the most familiar spaces with a quotient space.

COROLLARY 10.3.3. Let f: Vi — V4 be any linear map. There exists a unique iso-
morphism g: Vi/Ker(f) — Im(f) such that f = g o p, where p: Vi — Vi/Ker(f) is the

canonical surjection:

v tn(f)
P
Vi/ Ker ()

PROOF. The linear map f defines a surjective map V; — Im(f), which we still denote
f. Since the kernel of this linear map is indeed the kernel of f, the proposition shows
that there exists a unique isomorphism g: V3 /W — Im(f) such that gop = f, or in other
words an isomorphism V3 /Ker(f) — Im(f). O

ExAMPLE 10.3.4. Another way to interpret a quotient space is a an analogue of a
complementary subspace.

PROPOSITION 10.3.5. Let W < V be a subspace and W' < V a complementary

subspace so that W @ W' = V. The restriction p|W' of the canonical surjection p: V —
V /W is an isomorphism p|W': W' — V /.

PROOF. The restriction p|IW" is linear. Its kernel is Ker(p) n W/ = W n W’ = {0}, by
definition of the complement, so that it is injective. To show that p|WW’ is surjective, let
A e V/W. There exists v € V such that p(v) = A, and we can write v = w + w’ where
we W and w' € W'. Then A = p(v) = p(w’) (since p(w) = 0), which means that A is in
the image of p|W’. Therefore p|W’ is surjective, hence is an isomorphism. O

ExAMPLE 10.3.6 (Linear maps from a quotient space). One can also think of V /W
in terms of the linear maps from this space to any other space.
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PROPOSITION 10.3.7. Let V' be a vector space and W a subspace. Let p: V — V /W
be the canonical surjection. For any vector space Vi, the map

f—1Ffop
18 an isomorphism
Homk (V /W, V1) — {g € Homk (V, V) | W < Ker(g)}.

What this means is that it is equivalent to give a linear map V /W — V; (which is a
data involving the quotient space V /W) or to give a linear map V — V; whose kernel
contains W (which does not refer to the quotient space at all). This makes is often
possible to argue about properties of quotient spaces without referring to their specific
definitions!

DEFINITION 10.3.8 (Linear maps defined by passing to the quotient). Given a linear
map ¢g: V — V; with W < Ker(g), the linear map f: V/W — Vj with fop = g is called
the linear map obtained from g by passing to the quotient modulo W.

PRrROOF. It is elementary that f — f op is a linear map
¢: Homg (V /W, V1) — Homk (V, V3).

What we claim is that ¢ is injective and that its image consists of the subspace E of
Homg (V, V) made of those g: V' — Vj such that W < Ker(g). Note that it is also
elementary that E is a subspace of Homg (V. V}).

To prove injectivity, assume that fop = 0 € Homg (V, V7). This means that f(p(v)) =
0 for all v € V. Since p is surjective, this implies that f(A) = 0 for all A € V/W, and
hence that f = 0. So Ker(¢) = {0}, and ¢ is injective.

If g = fop belongs to Im(¢), then for any w € W, we get g(w) = f(p(w)) = f(0) =0,
so that the kernel of g contains W. Therefore g € E. Conversely, let g: V — V] be a
linear map such that W < Ker(g). We wish to define f: V/W — Vj such that fop = g.

Let Ae V/W, and let v € V be such that p(v) = A. We must define f(A) = g(v) if we
want fop = g. As usual, we must check that this is well-defined. But if v € V' is another
element of A, then v — v’ belongs to W, so that g(v) = g(v') since W < Ker(g). Hence
g is indeed well-defined. It satisfies ¢ = f o p, so that it is a linear map and ¢(f) = g¢.
Therefore E < Im(¢), and the proof is finished. O

It is useful to know the kernel and image of a linear map obtained in such a way.

ProrosITION 10.3.9. Let Vi and Vs be vector spaces and W a subspace of V1. Let
f: Vi =V, be a linear map with W < Ker(f), and let f: Vi/W — Vy be the linear map
obtained from f by passing to the quotient modulo W .

(1) The image off 18 equal to the image of f; in particular, f 18 surjective if and only
if fis surjective.

(2) The restriction to Ker(f) of the canonical surjection p: Vi — Vi/W induces by
passing to the quotient an isomorphism

Ker(f)/W — Ker(f).
In particular, f 1s injective if and only if the kernel of f is exactly equal to W'.

PROOF. By definition, we have f = f o p.

(1) Since p is surjective, any f(A) is of the form f(p(v)) = f(v) for some v € V4, and
hence the image of f is contained in the image of f. On the other hand, f(v) = f(p(v))
shows that Im(f) > Im(f), so there is equality.
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(2) If v € Ker(f), then f(p(v)) = f(v) = 0, so that p(v) € Ker(f). Therefore the
restriction j of p to Ker(f) defines a linear map p: Ker(f) — Ker(f). The kernel of
this linear map is W (since W = Ker(p) and W < Ker(f)). Moreover, p is surjective: if
A e Ker(f), then writing A = p(v), we obtain f(v) = f(A) = 0, so that v € Ker(f), and

then A = p(v). By Proposition 10.3.2, we obtain an isomorphism

Ker(f)/W — Ker(f).
U

ExaMPLE 10.3.10. Taking V; = K in Proposition 10.3.7, we obtain a description of
the dual space of V/W: the map ¢+ £ o p is an isomorphism

(V/W)* - {AeV* | A(W) =0} =W+,

in other words, the dual of V/W is the subspace of the dual of V' consisting of linear
maps that are zero on W.

Dually we have the description of the dual of a subspace:

ProrPoOSITION 10.3.11. Let V' be a K-vector space and W < V' a subspace of V. Then
the restriction map A — AW from V* to W* induces by passing to the quotient an

1somorphism
VEWE - W,

Proor. We first check that the restriction map, which we denote f: V* — W™,
passes to the quotient modulo W+ < V*, which means that W+ is a subset of Ker(f)
(Definition 10.3.8). In fact, by definition, we have A € W+ if and only if ) is zero on W,
and so we have the equality W+ = Ker(f). In particular, it follows (Proposition 10.3.9
(2)) that the induced linear map f: V*/WL — W* is injective.

To prove surjectivity, it suffices to prove that f itself is surjective. But f is the

transpose of the linear inclusion W — V| which is injective, and hence it is surjective by
Proposition 8.2.6 (2). O

ExAMPLE 10.3.12. Let V' be a vector space, W < V a subspace and f € Endg (V)

an endomorphism of V. We assume that W is stable under fn, namely that we have
fwW)c w.

Let p: V' — V /W be the canonical surjection. We obtain a composite linear map
v-Lvvw,

and for all w e W, we have f(w) € W, and therefore p(f(w)) = 0 in V/W. By Propo-
sition 10.3.7, there exists therefore a unique linear map f : V/W — V/W such that
fop=pof. This endomorphism f of V /W is called the endomorphism of V /W induced
by f. It is computed, according to the proposition, in the following manner: for A € V /W
one writes A = p(v) for some v € V; one computes f(v) € V; then f(v) = p(f(v)). In

other words, f (A) is the affine subspace parallel to W that contains f(v) for any element
v of A.
This is summarized by the diagram




We can “visualize” this endomorphism as follows if V' is finite-dimensional. Let n =
dim(V), m = dim(W), and let B = (By, By) be an ordered basis of V' such that Bj is a
basis of W. The matrix of f with respect to B has a block form

A Ay
(Onm,m A4>
where A; = Mat(f|W; By, By) (where f|W is the endomorphism of W induced by f,
which is defined since f(W) < W), Ay € My, pn—m(K) and Ay = M,_py n—m (K).
The space W’ generated by Bs is a complement to WW in V. So the restriction of p to
W' is an isomorphism p|W’: W’ — V /W (Proposition 10.3.5). In particular, if we write
By = (x1,...,Tm_n), the vectors

B3 = (p('rl)a SR ’p(xm—n»
form an ordered basis of V /WW. We then have the relation
Ay = Mat(f; Bs, Bs).

In other words, the “lower right” block of Mat(f; B, B) is the matrix representing the
action of f on V/W.

ExAMPLE 10.3.13. We now give a very concrete example. Let V' = K[X] be the space
of polynomials with coefficients in K. Let n > 1 and let W,, be the subspace generated
by X for i > n+ 1. There is an obvious complementary subspace W/ to W,,, namely the
subspace generated by 1, ..., X™. By Proposition 10.3.5, the restriction of the canonical
projection to W/ is therefore an isomorphism p,,: W) — V /W,,.

Consider the endomorphism f of V' defined by f(P) = XP. Since f(X') = X**! it
follows that f(W,) < W,. Let f. be the endomorphism of V /W,, obtained from f by
passing to the quotient, as in the previous example.

The vectors (v, . ..,v,), where v; = p,(X?) for 0 < i < n, form a basis B, of V/W,,.
We will compute the matrix Mat( fn; By, B,,) as an example of concrete computation with
quotient spaces. 3

For 0 <i < n—1, we have f(X*) = X! which implies that f,(v;) = v;41. Fori = n,
we have f(X") = X" € W,, and this means that f,(v,) = 0. Therefore the matrix is

0 0 0
1 0 0
- 0 1 0
Mat(anBmBn) =1 . . . .| € Mn+1,n+1(K)-
o -~ 1 0 0
0 -+ -~ 1 0

This is the transpose of the Jordan block J,119. What is interesting here is that it shows
that the Jordan blocks (or their transposes) of all sizes are defined uniformly in terms of
the single endomorphism f of the space V.

ExAMPLE 10.3.14. Consider a K-vector space V' and two subspaces W and W5. Then
W1 is a subspace of W + W,. The following important proposition identifies the quotient
space (W + Wy)/Wh.
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PROPOSITION 10.3.15 (Second isomorphism theorem). The composition
f: W2 - W1 + W2 - (Wl + WQ)/W]_,

where the first map is the inclusion of Ws in W1 + Wy and the second is the canonical
surjection p, passes to the quotient by Wo n Wy and induces an isomorphism

WQ/(W]_ N Wg) — (Wl = Wg)/Wl

PROOF. The kernel of the composition f is the set of vectors v € W5 which belong to
the kernel Wy of the canonical surjection p, which means that Ker(f) = W; n W,. Hence
by Proposition 10.3.9 (2), f passes to the quotient to define an injective linear map

f: WQ/(Wl M Wg) - (Wl + Wg)/Wl

It remains to check that f is surjective. Thus let z € (W;+W,)/W;. There exists w; € W
and wy € Wy such that x = p(w; + we). But since wy € Wi, we have in fact z = p(w,),
and that means f(wz) = p(wz) = x. Hence f is surjective, and (Proposition 10.3.9 (1))
so is f. O

ExAMPLE 10.3.16. We now consider the subspaces of a quotient space. These are
very simply understood:

PROPOSITION 10.3.17. Let V' be a K-vector space and W a subspace of V.. Letw: V —
V /W be the canonical projection. Let X be the set of all vector subspaces of V./W and
let Y be the set of all vector subspaces of V' which contain W .

(1) The maps
I y=2= and J X = Y_l
E — n(E) F— a (F)

are reciprocal bijections.
(2) These bijections preserve inclusion: for subspaces Ey and Ey of V', both containing
W, we have Ey < FEy if and only if n(Ey) < 7(Es).
(3) For a subspace E € Y of V, the restriction of m to E passes to the quotient to
induce an injective linear map
E/W — V/W,
with image equal to w(E).

PROOF. (1) It is elementary that I and J are well-defined, since the image and inverse
images of subspaces are subspaces, and since 71(F) contains 77({0}) = Ker(w) = W
for any subspace F of V/W.

We first check that [ o J = Idx. Let F be a subspace of V/W; then J(F) = 7~ (F).
Let Fy = I(J(F)) = n(7~Y(F)). Since v € 7 '(F) if and only if 7(v) € F, we obtain
Fy, « F. Conversely, let w e F. Write w = 7(v) for some v € V. Then v € 7~!(F), and
hence w € w(7~1(F)). This means that F' < F, and therefore F' = F}. This means that
IoJ=Idyx.

Now we check that J ol = Idy. So let E be a subspace of V' containing W and F; =
71 (7(E)). We have v € E) if and only if 7(v) € 7(E). In particular, this immediately
implies that £ < FE;. Conversely, let v € E; be any vector. Since m(v) € m(FE), there
exists v; € F such that 7(v) = m(vy). This means that v — vy € Ker(r) = W < E (since
E €Y), and hence

v=(v—v)+v €E.
We conclude that E; < E, so that E; = F, and this gives J o I = Idy.
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(2) This is an elementary property.

(3) The restriction of 7 to F is a linear map E — V/W. Its kernel is EnW = E (since
E €Y), and therefore it induces an injective linear map E/W — V /W (Proposition 10.3.7
and Proposition 10.3.9 (2)). The image of this map is the image of 7|E, which is 7(F)
(Proposition 10.3.9 (1)). O

REMARK 10.3.18. One must be careful that if F is an arbitrary subspace of V, it is
not always the case that 7! (7(F)) = E! For instance, 7! (7({0})) = 7#~1({0}) = W..

The meaning of this proposition is that subspaces of V /W “correspond” exactly to
subspaces of V' which contain W. One can also determine quotients of subspaces of V /W

PROPOSITION 10.3.19 (Third isomorphism theorem). Let V' be a vector space and
W a subspace. Let w denote the canonical projection V. — V /W . Let Ey < Es be two
subspaces of V' containing W. Denote F; = w(E;). Then Fy < Fy. Let m: Fy — Fy/F)
be the canonical surjection modulo Fy. The linear map f: Ey — Fy/Fy defined as the
composition

Ey, " F - B/F
passes to the quotient modulo Ey and induces an isomorphism
Eg/El - FQ/Fl.
One often writes the result of this proposition in the form
(E2/W)/(E/W) = Eb/Ey.

PROOF. First, the composition defining f makes sense since m(FEs) = F». The kernel
of f is the set of vectors v € Fy such that 7(v) € Ker(m;) = Fi, or in other words it
is 71 (F}), which is equal to E; by Proposition 10.3.17 (1) since F} = ©(E;). So (by
Proposition 10.3.9 (2)) the map f passes to the quotient modulo E; and induces an
injective linear map Ey/E) — Fy/F;. The image of this map is the same as the image of
f. Since f is surjective (because m maps Es to Iy by definition and 7 is surjective), it
follows that f is an isomorphism. O
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CHAPTER 11

Tensor products and multilinear algebra

In this chapter, we use quotient spaces for the very important construction of the
tensor product of vector spaces over a field.

11.1. The tensor product of vector spaces

Let K be a field and let V; and V5 be K-vector spaces. For any K-vector space W,
we denote by Bilk (V7, Vo; W) the vector space of all K-bilinear maps V; x Vo — W ie.,
the space of all maps b: Vi x Vo5 — W such that

b(tvy + svy, vg) = th(vy, ve) + sb(v], va)
b(vy, tvg + svy) = tb(vy, va) + sb(vy, vy)
for all s, t € K and vy, v} € Vi, vq, v} € V5.

This space is a vector subspace of the space of all (set-theoretic) maps from V] x V,
to W (Example 2.3.6 (3)).

ExaMPLE 11.1.1. (1) We already saw examples of bilinear forms in the study of
euclidean spaces for instance: if V' is a R-vector space, then a scalar product on V' is an

element of Bilg (V,V;R).
(2) For any field K and any K-vector space V, the map

VxV*—>K
(v, 2) = (A0
is in Bilg (V,V*; K).
(3) For any field K and any K-vector space V', the map
(f:9) = foyg
is an element of Bilk (Endk(V'), Endk(V); Endk(V)).
(4) Let m, n, p = 1 be integers. The map

M (K) x My (K) — M, (K)
(Ala Az) = A2A1

is bilinear, and is an element of Bilk (M, ,(K), M, ..(K); M, ,.(K)).
If b: V1 x Vo — W7 is a bilinear map in Bilk (V, Vo; W1) and f: Wi — W is a linear

map, then

fob: Vi xVy— W,

is an element of Bilk (V;, Vo; Wh).
The tensor product construction creates a vector space V7 xk Vs, called the “tensor
product of V; and V5 over K”, in such a way that, for any K-vector space W, the linear
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maps correspond exactly and naturally to the bilinear maps from Vi x V5 to W using this
composition.

The precise statement is the following result, that we will first prove before discussing
with examples why, despite the abstract appearance of this construction, this is in fact a
very useful thing to know.

THEOREM 11.1.2 (Construction of tensor product). Let K be a field. Let Vi and V;
be K-vector spaces. There exists a K-vector space Vi @k Vo and a bilinear map

bo: Vi x Vo = V) ®k Vs,

denoted by(vy,v2) = v1 ® v, such that for any K-vector space W, the composition appli-
cation f — f oby is an isomorphism

Homg (Vi ®k Vo, W) — Bilg (V4, Va; W)

of K-vector spaces.
Moreover, the vector space Vi Qi Vo is generated by the set of vectors vi ® vy for
(v1,v9) € Vi x Va.

The following diagram illustrates the statement:

Vix Vy —2s W

[

Vi ®k Vo

DEFINITION 11.1.3 (Tensor product). The space V; ®k Vs, together with the bilinear
map by, is called the tensor product of V; and V; over K.

(We emphasize the bilinear map by also in the definition, because it is necessary to
characterize the tensor product by the property of the theorem, as we will see.)

Proor. We will construct V; ®k Vo and b by a quotient space construction. We first
consider a vector space E over K with basis B = V] x V5. This means that an element
of E is a finite sum of the type

n
Z ti(vs, w;)
i=1

where n > 0 (with n = 0 corresponding to the zero vector Og), t; € K and v; € Vi, w; € Vs
for 1 < ¢ < n, and the only rules that can be used to operate such sums are those of
vector spaces. For instance, (0,0) € E is a basis vector, and not the zero vector Op.

In E/, we define a set of vectors S = S; U Sy U S3 U Sy, where

S1 = {(tvy,vg) — t(vy,va) | te K, (v1,v2) € V] x Vi},
Sy = {(v1 + V1, v2) — (vi,v2) — (v, v2) | (01,01, 09) € Vi x Vi x Vol
Sz = {(v1,tvg) — t(vy,va) | te K, (v1,v2) € V] x Vi},
Sy = {(v1,v9 + vh) — (v1,v9) — (v1,05) | (v1,v9,v5) € Vi x Vo x Va}.
We define a subspace F' of E as being the vector space generated by S in E. We then
define V; ®k Vo = E/F, and we define a map by: V; x V5 — V; ®k Va by
bo(vhvz) = p((Ul,U2))7

where p: F — E/F is the canonical surjective map. Note already that since the vectors
(v1,v9) generate F and p is surjective, the vectors by(vy, v2) generate E/F.
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By definition, V; ®k Vs is a K-vector space. What remains to be proved is that b is
bilinear, and that V), ®gk V5 with the bilinear map b satisfies the stated property concerning
bilinear maps to any K-vector space W.

Bilinearity of by means that the following four conditions should hold:

bo(tvy, vg) = tho(vy, v2)

bo(vy + 7, v9) = bg(vy,v2) + bo(v], v2)
bo(v1, tug) = tho(vy, v2)

bo(v1,v2 + vg) = bo(v1,v2) + bg(v1, v5).

It is of course not a coincidence that the shape of the formulas look like the definition of
the sets \S;; each set \S; is defined to be a subset of S in order that one of these formulas
become true.

Indeed, we have by definition

bo(tvr, va) — tho(v1,v2) = p((tvy, va) — t(v1,v2)) = Oy/r

since (tvy,vy) — t(vy,v2) € S; < F, and similarly

bo(v1 + vy, v2) — (bo(v1,v2) + bo(v), v2)) = p((v1 + v, v2) — (v1,02) — (v1,v2)) = Om/r

because the vector belongs to S; < F', and so on.
This being done, let W be a K-vector space. We denote by ¢ the map

Homg (Vi ®k Va, W) ~%> Bilk (V, Va; W)

given by f +— foby. We leave it to the reader to check that, indeed, f o by is bilinear if
f is linear (this follows from the bilinearity of by and the linearity of f). We then need
to show that ¢ is an isomorphism. We leave as an elementary exercise to check that it is
linear.

We next show that ¢ is injective: if f € Ker(¢), then we have f(by(v1,v2)) = 0 for all
(v1,v9) € V] x V. This means that p((vq,v2)) € Ker(f) for all v; and vy. Since the basis
vectors (v1,vq) generate E by definition, and p is surjective, this implies that f = 0.

Finally, we show that ¢ is surjective. Let b: Vi x V5 — IV be a bilinear map. We can
define a linear map f: E' — W by putting f((vi,v2)) = b(v1,vq) for any (vy,ve) € V3 x Va,
since these elements of E form a basis of E. .

We then observe that S < Ker(f), so that ' < Ker(f). Indeed, for a vector r =
(tvy,va) — t(vy,v9) € S1, we get by linearity of f the relation

f(r) = f((tvl,vg)) — tf(vl,vg) = b(tvy, vg) — tb(vy,v9) =0

because b is bilinear, and similarly for the vectors in Sy, S3 or Sy.

Since F' < Ker(f), the linear map f passes to the quotient modulo F (Proposi-
tion 10.3.7): there exists a linear map f: E/F = V; ®k Vo — W such that f = fop.
We claim that ¢(f) = foby = b, which will show that ¢ is surjective. Indeed, for

(v1,v9) € V1 x Va, we have
Fbo(vr,v2)) = f(p((v1,02))) = F((v1,02)) = b(vy,v2)
by the definitions of by and of f. O

The definition and construction of the tensor product seem very abstract. Here is a
simple consequence that shows how they can be used; as we will see in all of this chapter,
it is only the statement of Theorem 11.1.2 that is important: the details of the quotient
space construction are never used.
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COROLLARY 11.1.4. Let Vi and V5 be K-vector spaces. Let vy and vy be non-zero
vectors in Vi and Vy respectively. Then vi ® vy is non-zero in Vi Qk Vs.

Proor. It suffices to find a vector space W and a bilinear map b: V; x Vo — W such
that b(vy,vo) # 0, since in that case, the linear map

Vi@V, —>Ww

such that f(v; ® vy) = b(v1, v2) (Whose existence is given by Theorem 11.1.2) will satisfy
f(v1 ® vg) £ 0, which would not be possible if v; ® vy were zero.

To find b, we first note that, since ve # 0, there exists A € V' such that A(vq) =+ 0.
Then we define b: V; x Vo — Vi by

b(v, w) = AMw)v.
This map is bilinear, and we have b(vy, v2) = A(va)vy £ 0. O

Another corollary gives the dimension of the tensor product if the factors are finite-
dimensional.

COROLLARY 11.1.5. Let Vi and V5 be finite-dimensional K-vector spaces. Then the
tensor product Vi ®k Vs is finite-dimensional and

dim(V; ®k V2) = dim(V;) dim(V5).

PROOF. Apply the characterization in Theorem 11.1.2 to W = K: we find then an

isomorphism
(V1 ®k V2)* — Bilg(V1, Va; K).

The right-hand side is the space of bilinear maps V; x V, — K, and it is finite-dimensional
(by extending to this case Proposition 5.2.3, which provides the result when V; = Vi:
one maps a bilinear map b to the matrix (b(v;,w;)) with respect to a basis of V; and
a basis of V3). By Theorem 8.1.6, this means that the space V; ®k V3 itself is finite-
dimensional. Then it has the same dimension as Bilk (V1, V5; K), and the generalization
of Proposition 5.2.3 shows that this dimension is dim(V7) dim(V53). O

We next show that the property highlighted in Theorem 11.1.2 characterizes the tensor
product — this is similar to Proposition 10.3.2 that showed that the properties (kernel
and surjectivity) of the canonical surjection V' — V /W are sufficient to characterize the
quotient space.

ProPOSITION 11.1.6. Let Vi and V5 be K-vector spaces. Let X be a K-vector space
with a bilinar map B: Vi x Vo — X such that for any K-vector space W, the composition
application f — f o is an isomorphism

Homg (X, W) — Bilk (V4, Vo; W)
of K-vector spaces. There exists then a unique isomorphism f: Vi ®k Vo — X such that
B(v1,v2) = f(v1 @v2)
for (v1,v9) € Vi x V3.

PRrROOF. Apply first Theorem 11.1.2 to W = X and to the bilinear map [3: this shows
that there exists a unique linear map f: Vi ®k Vo — X such that g = f o by, or in other
words such that 5(vy,v2) = f(v1 ® vg).

Next, apply the assumption of the proposition to W = V; ®k V> and to the bilinear
form by; this shows that there exists a unique linear map g: X — Vi ®k V5 such that

g(B(v1,v2)) = 11 @ vy
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for (vi,v9) € Vi x V5. We then claim that f and g are reciprocal isomorphisms, which
will prove the proposition.
Indeed, consider the composite : = fog: X — X. It satisfies

i(B(v1,v2)) = f(v1 ®v2) = Blvy,v2),
or in other words, 03 = = Idx of3. Since f — fo [ is supposed to be an isomorphism,
this means that fog = 7 = Idx. Similarly, arguing with go f, we see that go f = Idy, g vs-
This concludes the proof of the claim. U

The next proposition is also very important as a way of understanding linear maps
involving tensor products.

PROPOSITION 11.1.7. Let fi: Vi — W7 and fo: Vo — Wy be two linear maps. There
exists a unique linear map
[ Vi®k Ve — Wi @k Ws
such that
fo1 ®v2) = fi(v1) @ fa(v2)
for all (vy,v3) € Vi x V3.
We will denote f = f; ® fo the linear map constructed in this proposition.

PROOF. Define .
f:Vix Vo> W, ®k Ws
by f(vl,vg) = fi(v1) ® fa(ve). Since f; and fy are linear, and (wy,ws) — w; ® we is
bilinear, the map f belongs to Bilk (Vi, Va; W1 ®k Wa2). From Proposition 11.1.6, applied
to W = W, @k W and f, there exists a unique linear map

Vi Vo — W @k W

such that f(v; ® v2) = f(v1,v2) = fi(v1) ® fa(va), as we wanted to show. The following
diagram summarizes the construction:

Vix Vo —L Wi @k We

| e
Vi ®k Ve
]

ExAMPLE 11.1.8. (1) If either f; = 0 or fo = 0, we have f; ® f = 0, since we then
get (f1® f2)(v1 ®vg) = f1(v1)® fa(ve) = 0 for all (vy,vq) € V) x Va; since the pure tensors
generate Vi ® V5, the linear map f; ® fo is zero.

(2) If f1 =1dy, and fo = Idy,, then f; ® fo = Idy,@,. Indeed, we have

(Idy, ® Idy, ) (v1 ® v2) = 11 @ V2

and since the pure tensors generate V) ® V5, this implies that Idy, ® Idy, is the identity
on all of V; ® V5.

(3) Suppose that we have pairs of spaces (Vi, Vs), (Wy, W) and (Hy, H), and linear
maps f;: V; - W; and g;: W; — H;. Then we can compute

(g10f1)®(g20 f2): Vi® V2 — Hy ® H,

and (g1 ® g2) © (f1 ® f2). These linear maps are the same: indeed, the first one maps
V1 ® V9 to
(g1 0 f1)(v1) @ (g2 © f2)(v2),
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while the second maps this vector to
(91 ® 92) (f1(v1) ® fa(v2)) = g1(f1(v1)) @ g2(fa(v2)).
11.2. Examples

We will discuss some examples and simple applications of tensor products in this
section.

ExXAMPLE 11.2.1. When V; and V5 are finite-dimensional K-vector spaces, the tensor
product V; ®k V5 is not such a mysterious space.

ProproOSITION 11.2.2. Let Vi and V5 be finite-dimensional K-vector spaces. Let
(v1,...,0,) be abasis of Vi and (wy, . .., wy,) a basis of V. Then the vectors (v;@w;) 1<i<n
1<jsm

form a basis of Vi @k V.

PROOF. In Theorem 11.1.2; we saw that the vectors v ® w, for (v,w) € Vj x Vj,
generate V3 Qg V5. Writing

sztifui, szsjwj,
i J

the bilinearity gives
VR W = Ztisj v; @ wy,

(2]
so that (v; ® w;) is a generating set of V; ®k Va. Since this set has nm = dim(V; ®k V2)
elements (by Corollary 11.1.5), it is a basis. O

One can show that this result is also true in the general case when V; or V4 (or both)
might be infinite-dimensional.

Here is a an example that gives an intuition of the difference between pure tensors
and all tensors. Consider V; = V4 = K? with standard basis (e, e3). Then V; ® V5 is
4-dimensional with basis (f1, f2, f3, f1) where, for example, we have

i=ea®e, fri=e1®e, [fi=ex®e, [fi=exQen.

A pure tensor in V; ® V5 is an element of the form

<Z) ® <CCZ> = (aey + bey) ® (cey + dey) = acfy + adfs + befs + bdfy.

Not all vectors in V; ® V5 are of this form! Therefore x1f; + - -+ + x4 f4 is a pure tensor if
and only if there exist (a, b, c,d) € K* such that

1 ac
ro | | ad 4

(11.1) o | = | e e K*.
T4 bd

An obvious necessary condition is that zyz4 = zoz3 (since both products are equal to
abed in the case of pure tensors). In fact, it is also a sufficient condition, namely if z,

.., xy satisfy x1x4 = xows, we can find (a,b,c,d) with the relation (11.1). To see this,
we consider various cases:

o If z1 & 0, then we take

x
a=1, b=—, c=uz, d=xs.

The relation (11.1) then holds (e.g., bd = z3x9/71 = x124/71 = T4).
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e If 21 = 0, then since 0 = zox3, we have either x5 = 0 or 3 = 0; in the first case,
take

a=0, b=1 c=x3 d=ux4
and in the second, take

a=1x9, b=x4, ¢c=0, d=1.

EXAMPLE 11.2.3. Since we have found (in the finite-dimensional case) an explicit
basis of the tensor product, we can think of the matrices representing linear maps.

Let V7 and V5 be finite-dimensional K-vector space. Consider two endomorphisms
fi1 € Endg (V1) and f; € Endk(V3), and let f = f1 ® fo € Endk (V) ®k V3).

Let By = (v1,...,v,) be a basis of V| and By = (wy,...,w,,) a basis of V5. Define
A; = Mat(f;; B, B;). Write A; = (a;;) and Ay = (b;;). We consider the basis B of
Vi ®k Vs consisting of the vectors v; ® wj, and we want to write down the matrix of f
with respect to B. For simplicity of notation, we present the computation for n = 2 and
m = 3.

We must first order the basis vectors in B. We select the following ordering:

B = (z1,...,7) = (v1 @ Wi, v1 @ w2, v1 ® w3, V2 @ Wy, Vg @ Wa, V2 & w3)

(i.e., we order first with respect to increasing j for ¢ = 1, and then with i = 2).

Let C' € Mgg(K) be the matrix representing f with respect to this ordered basis of
Vi ®k Va.

We begin with the first basis vector v; ® w;. By definition, we have

floi®@wy) = fi(v1) ® folwr) = <CL11U1 + a21v2> & <b11w1 + byjws + b31w3)
= a;ibnz1 + a11ba1za + a11bs1z3 + ag1bi1Ts + ag1ba s + ag1bsizs
in terms of our ordering. The first column of C' is therefore the transpose of the row
vector
(anbn, a11ba1, a11b31, a21b11, a1 oy, a21b31).

Similarly, for x5, we obtain

f(x2) = f(r1 @ws) = fi(v1) ® fa(ws) = (alwl + 6121712) & <b12w1 + bagwsy + bgaws)
= 1101971 + a11b207T2 + a11b3073 + a21b19T4 + a21b20T5 + a21b3076,
and
f(z3) = a11bisxy + a11basza + a11bssxs + a2 bisra + agsbass + a2 bssze.
This gives us the first three columns of C:
a11b11  a11bia aiibis

a11bar  a11baa  ainbos
a11b31  ai11bsz  aiibss (anAz)

a1011  asibia agbys as As

a21b91  as1bay  agibas
a21b31 CL21b?,2 a21633

in block form. Unsurprisingly, finishing the computation leads to
O = aiAz apAs
ag Az anAs
in block form. This type of matrix (in terms of A; and As) is called, in old-fashioned

terms, the Kronecker product of A; and As.
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In the general case, with the “same” ordering of the basis vectors, one finds
apAz - an A
¢ = : : :
apAs - appAs
in block form.

EXAMPLE 11.2.4. Another way to “recognize” the tensor product is the following:

PROPOSITION 11.2.5. Let Vi and V5 be finite-dimensional K-vector spaces. There
exists a unique isomorphism

a: Vi ®k Vo — Homg (V1, Va)
such that a({ @ w) is the linear map fy,, from Vi to Va that sends v to
¢, vyw = L(v)w

ProOOF. The map « is well-defined (and linear) by Theorem 11.1.2; because the map

(67 U)) g fﬁ,w
is bilinear from V}* x V, to Homg (V1, V). To prove that it is an isomorphism, we will con-
struct an inverse 5. For this purpose, let (vy,...,v,) be a basis of V;. Denote (¢4, ...,¢,)

the dual basis.
For f: Vi — V5, we then define

f) =268 fv) e Vi@Vh.
i=1
The map f: Homgk (Vi, Vo) — Vi* ®k Vs is linear. We will show that it is the inverse of a.

First we compute ao 8. This is a linear map from Homg (V7, V3) to itself. Let f: Vi — V5
be an element of this space, and g = (a0 8)(f). We have

Z all; ® f(v;))
=1
and therefore
v) = M) f(w) = (Do) = f)
i=1 i=1
by definition of the dual basis (8.2). There g = f, which means that avo ( is the identity.

Now consider 8 o o, which is an endomorphism of V* @k V5. To show that S o« is
the identity, it suffices to check that it is so for vectors ¢ ® w. We get

(Boa)(t®@w) = B(few)

But for any v € Vi, using (8.2), we get

U) = Z<€27 U><£7 U> = <Z<£7 Ui>€i7 U>
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which means that

0= vl € Vi

i=1

Hence (o a)({ ® w) = £ ® w, which means that o « is also the identity. O
For instance, if V' is finite-dimensional, this gives an isomorphism
V*®k V — Endk (V).

Now consider the trace Tr: Endk (V) — K. This is a linear form, and hence, by compo-
sition we obtain a linear form

V*ekV - K,
which by Theorem 11.1.2 corresponds to a unique bilinear form
T:V*xV > K.
What linear form is that? If we follow the definition, for any w e V and ¢ € V*, we have
T(l@w) = Tr(f)

where f € Endg(V) is given by

flv) = t(v)w
The trace of this endomorphism is simply ¢(w) = (¢, w). Indeed, this is clear if w = 0,
and otherwise, let B = (w, ws, ..., w,) be a basis of V; then the matrix of f with respect
to B is
lw) L(vy) -+ L(vy)
0 0O -~ 0

which has trace ¢(w).

So we see that, by means of the tensor product, the meaning of the trace map is
clarified, and it does not look as arbitrary as the “sum of diagonal coefficients” suggests.

Another useful consequence of this proposition is that it clarifies the difference between
“pure tensors” of the form v; ® v, in a tensor product, and the whole space Vi ®k V5.
Indeed, the linear maps f;,, associated to a pure tensor are exactly the linear maps
Vi — V, of rank < 1 (the rank is 1, unless w = 0 or ¢ = 0), since the image of fy,, is
contained in the space generated by w. In particular this shows that most elements of
Vi ®k V5 are not of the special form v; ® vs!

EXAMPLE 11.2.6. A very useful construction based on the tensor product is that it
can be used to associate naturally to a vector space over Q or R a vector space over C
that is “the same”, except that one can multiply vectors with complex numbers instead
of just real vectors.
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ProrosiTiON 11.2.7. Let K = Q or K = R. Let V' be a K-vector space. View C
as a K-vector space. Let Vo =V ® C. Then Ve has a structure of vector space over C
such that the zero vector and the addition are the same as the zero vector and addition
as K-vector space, and such that

(11.2) z-(v®1)=v®z
for all ze C and v e V. Moreover:

(1) If B is a basis of V', then the set Bc = {v® 1 | v e B} is a basis of Vi, and in
particular

dll’IlK V = dlIIlC VC;

(2) If Vi and V4 are real vector spaces and [ € Homg (V,Vs), then the linear map
f®lIde: Vic — Vo is C-linear.

(3) If f: Vi — V4 is a linear map of finite-dimensional K-vector spaces, and B; is an
ordered basis of V;, then

Mat(f; B, B) = Mat(fc; B1,07 Bg,c)

where we denote fc the C-linear map f ® Idc.

PrROOF. We first interpret (11.2) more precisely: for any z € C, we have a multipli-
cation map m, on C such that m,(w) = zw. This map is also a K-linear endomorphism
of C. Hence, we have a K-linear endomorphism n, = Idy ® m, of Vg, which satisfies

n,(v®w) =v zw
for all v e V and w € C. In particular, we have n,(v®1) = v ® z. We will show that the
definition
z-v=mn,(v)
gives Vi a structure of C-vector space. It then satisfies (11.2) in particular.

By construction, V¢ is a K-vector space, so the addition and the zero vector satisfy
conditions (2.2) and (2.5) in Definition 2.3.1, which only involve addition and zero.

We check some of the other conditions, leaving a few as exercises:

e (Condition (2.3)): we have 0-v = ng(v); but ng = Idy ® mp = Idy ® 0 = 0, as
endomorphism of Ve (Example 11.1.8 (1)), so 0-v = 0 for all v € V; similarly,
we have m; = Id¢ (Example (11.1.8) (2)), hence n; = Idy ® Idc is the identity
on Veg,and 1-v=wv forallveV,

e (Condition (2.6)): for z; and z3 € C, we have m,,,, = m,, o m,, (this is Exam-
ple 11.1.8 (3)), and from this we deduce that n.,., = n,, o n.,; then

(z129) v =Ny, N2y (V) = Ny (22 - 0) = 21+ (22 - V).
e (First part of Condition (2.8)): since n, is K-linear, we have
z- (v +v) =n. (v +v) =n,(v1) + ny(v) =2 v + 2 va.

We now discuss the complements of the statement. First, let B be a basis of V' as
K-vector space, and By a basis of C as K-vector space. Then the K-vector space Vi has
{v®w | ve B, we By} as basis (this is the remark following Proposition 11.2.2). Since

vRw=w-(v®1),

in Vg, this shows that {v® 1 | v € B} generates Vg as a C-vector space. But moreover,

for any finite distinct vectors vy, ..., v, in B, and any z; in C, writing
Zj = Z QW
’LUGBO
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for some a;,, € K, with all but finitely many equal to 0, we have

Dz ®@1) = >0 aju(v;@w)

Vi we By j

and therefore the linear combination is zero if and only if a;,, = 0 for all j and all w,
which means that z; = 0 for all j. So the vectors {v® 1 | v € B} are also linearly
independent in V.

Now consider a K-linear map V; — V5. The map f ® Id¢ is then at least K-linear.
But furthermore, for z € C and v € Vi, we get

(f®Idc)(z- (v®1)) = (f®Idc)(v®2) = f(v) ®z =z (f(v)®1).

Since the vectors v ® 1 generate Vo as a C-vector space, we deduce that f ® Idg is
C-linear.

Finally, let By = (vq,...,v,) and By = (wy, ..., w,,) and write Mat(f; By, Ba) = (a;;).
Then for a basis vector v; ® 1 of B; ¢, we have

folv; ®1) = fo;) @1 =) ay(w; ®1),
i=1
which means that the j-th column of Mat(fc; Bi.c, Ba.c) is (@ij)1<i<m, hence that
Mat(fc; Bic, B2.c) = Mat(f; By, Ba).
O

In some cases, this construction is not really needed: nothing prevents us to view a
real matrix as a complex matrix and to speak of its eigenvalues as complex numbers. But
in more abstract cases, it can be very useful. We illustrate this in the next example.

ExaAMPLE 11.2.8. We now present a simple and quite concrete application of the
tensor product. We begin with a definition:

DEFINITION 11.2.9 (Algebraic number). A complex number z is an algebraic number
if there exists a non-zero polynomial P € Q[.X ] with rational coefficients such that P(z) =
0.

For instance, z = 1/2 is algebraic (one can take P = X2—2), z = %™/ is algebraic for
any n > 1 (one can take P = X™—1); moreover /2 + 1/2 is also (take P = (X2—2)2-2).
What about v/2 + v/2 + €¥™/™_ or e?™/"\/2 4+ 1/2 or more complicated sum or product?

THEOREM 11.2.10. Let z; and zo be algebraic numbers. Then z; + 2o and z129 are
also algebraic numbers.

We give a simple proof using tensor products, although more elementary arguments
do exist. For this we need a lemma showing that algebraic numbers are eigenvalues of
rational matrices.

LEMMA 11.2.11. Let z be an algebraic number and Q) + 0 a polynomial with rational
coefficients of degree n =1 such that Q(z) = 0. There exists a matriz A € M, ,,(Q) such
that z is an eigenvalue of A.

PROOF. Let V = Q[X] and let W < V' be the subspace
W ={QpP | PeQ[X]}

(in other words, the image of the linear map P — P on V). Consider the quotient
space £ = V /W and the quotient map p: V' — E. The space FE is finite-dimensional,
and in fact the space W,, of polynomials of degree < n —1 is a complement to W, so that
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the restriction of p to W, is an isomorphism W,, — E. To see this, note that for any
polynomial P € V| by Euclidean Division of P by @ (Theorem 9.4.7), we see that there
exist unique polynomials P; € Q[X] and R € V,, such that

P=PQ+R

This means that P € W + W,,. Since W n W,, = {0} (because non-zero elements of W
have degree > deg(®) = n), this gives the formula W W, = V.

Now consider the endomorphism f(P) = XP of V. Since f(QP) = (XP)Q, the
image of W is contained in W. Let then f; be the endomorphism of the n-dimensional
space E induced by f by passing to the quotient modulo W.

We claim that z is an eigenvalue of the matrix Mat(f; B, B) for any basis B of E.
This can be checked by a direct computation of this matrix for a specific basis, but it has
also a nice explanation in terms of “change of field”, as in the previous example, although
we will avoid using the formal construction.

Precisely, let Vo = C[X]| and W = {PQ | P € V¢}, and define Ec = V/We.
As above, we define fc(P) = XP for P € Vg, and we obtain an induced quotient
endomorphism f; ¢ € Endc(Ec).

Since Q(z) = 0, there exists a polynomial ); € C[X] (of degree n — 1) such that @ =
(X —2)@Q; (e.g., by euclidean division of @ by X — z in C[X], we get Q = (X —2)Q1+ R
where R is constant; but then Q(z) = 0 + R(z) so that R = 0; note that we cannot do
this division in V, since z is in general not in Q). Since (); is non-zero and of degree
< deg(Q), the vector v = pc(Q1) € E¢ is non-zero. Now we compute

fic(v) = ficlpc(@1)) = p)C(fc(Q1)) = pc(XQ1).
But XQ; = (X — 2)Q1 + 2Q1 = Q + 2Q; implies that pc(X Q1) = pc(2Q1) = 2pc(Q1).

Hence v is an eigenvector of f; ¢ for the eigenvalue z.
Now take the basis

B = (pc(1),...,pc(X")
of Fc. If we compute any matrix A representating fi; ¢ with respect to this basis, we see

that this is the same as the matrix representating f in the basis (p(1),...,p(X"1) of E,
and therefore A € M, ,(Q), and z is an eigenvalue of A. U

ProOF OF THEOREM 11.2.10. Suppose P; + 0 are polynomials with rational coef-
ficients of degree n; > 1 such that P;(z;) = 0.

By Lemma 11.2.11, there exist matrices A; € M, (Q) such that z; is an eigenvalue of
A;, viewed as a complexr matriz, say for the eigenvector v; € V; = C™. Denote f; = fa, €
Endc(V;). Now form the endomorphism

f=f1®f2€EndC(V), V:%@{/Q:Cn1®cn2

Let w = vy ® v9 € V. This is a non-zero element of V since v; and vy are non-zero in
their respective spaces (Corollary 11.1.4). We have

fw) = f(v1 ®@v2) = f1(v1) ® fa(va) = (2101) ® (2202) = (2122) (V1 @ v2) = 2120w

by bilinearity of (v, vs) — v; ®vy. So w is an eigenvector of f with respect to z;z5. Con-
sequently z125 is a root of the characteristic polynomial of f. However, this polynomial
has rational coefficients, because if we take for instance the standard bases B; = (e;) and
By = (€) of Vi and V3, and the basis

B = (¢ ®e;)
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of V, the fact that A; has rational coefficients implies that Mat(f; B, B) has rational
coefficients: f (ei®e;~) is a linear combination involving the coefficients of A; and As of the
basis vectors of B. Hence 212, is an eigenvalue of the rational matrix A = Mat(f; B, B),
therefore a root of its characteristic polynomial, and hence is algebraic.

For the sum, we consider

g = fi®Idy, +1dy; ® f2 € Endc(V).
Then we get
g(w) = fi(v1) @2 + 11 ® fa(v2) = 21(v1 @ v2) + 22(v1 ®V2) = (21 + 22)w,

so that z;+2 is an eigenvalue of ¢, hence a root of the (non-zero) characteristic polynomial
of g, and a similar argument shows that this is a rational polynomial. U

11.3. Exterior algebra

For the last section of the course, we consider another very important abstract con-
struction that is essential in many applications, especially in differential geometry: the
exterior algebra of a vector space. We only present the simplest aspects.

Let K be a field. For a K-vector space V', an integer £ > 0 and any other K-vector
space, we define Alt,(V'; W) to be the space of all alternating k-multilinear maps

a:VE > W

(see Definition 3.1.3). This is a vector subspace of the space of all maps V¥ — W.
If a € Alt,(V; W) and f: W — E is a linear map, then f oa in a k-multilinear map
from V to F, and it is in fact in Alt,(V; E).

ProPOSITION 11.3.1 (Exterior powers). Let V' be a K-vector space and k = 0 an
integer. There exists a K-vector space /\k V' and an alternating k-multilinear map

ap: V¥ — /k\ 1%
such that, for any K-vector space W, the map
J— foag
is an isomorphism Homg (A" V, W) — Alt,(V; W).
We denote

ag(Vy, ..., Uk) = V1 AUy A -t A U

PRrROOF. This is a variant of the construction of the tensor product: let E be the
K-vector space with basis V¥, and E|, the subspace generated by the vectors of the type

('Ul,...,Uz‘,l,t’l}i,UiJrl,...,Uk) —t(vl,...,vk),
(Ul, ey Vi1, 0 + U;,Ui_;,_l, ce ,Uk) — (Ul, ey Vi1, Ui, Uity - - - ,Uk)
—(’Ul,...,Uz'_l,”Ug,Ui_i_l,...,Uk),
(Ul,...,’UZ'_l,Ui,Ui_;,_h...7’Uj_1,1]i,1}j+17...,1)k),

(where in the last case we have i < j). Define then A*V = E/Ey and ag(vy, . .., v;) =
p((v1,...,vx)), where p is the canonical surjective quotient map. The definition of Fy
shows that ay is a k-multilinear alternating map on V', and it is then a computation
similar to that in the proof of Theorem 11.1.2 to check that the space A"V and this
k-multilinear map have the desired properties. U
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COROLLARY 11.3.2. Let Vi and V5 be K-vector spaces and f: Vi — Vs be a K-linear
map. For any k = 0, there ezists a unique K-linear map N\* f: N*Vi = A"V such
that

k
(NN @A Av) = o) A A f(or).

Moreover, for f: Vi — V5 and g: Vo — V3, we have
k

k k
Ngof)=Ngo/\f

and /\k Id = Id. In particular, if f is an isomorphism, then so is /\k f, and

(A" =Ar

Proor. This is entirely similar to the proof of Proposition 11.1.7 for the tensor
product: the map

k
EnANE
mapping (vy,...,vx) to f(vy) A -+ A f(vg) is k-multilinear and alternating, so by Propo-
sition 11.3.1, there exists a unique linear map

k k
AVi— AW
that maps v; A -+ A vk to f(v) A A f(og).
The composition properties then follows from the uniqueness, as in Example 11.1.8,
(3). O

PROPOSITION 11.3.3. Let V' be a finite-dimensional K-vector space, with dim(V') =
n=0. Let B = (vy,...,v,) be an ordered basis of V.

(1) We have N*V = {0} if k > n; for 0 < k < n, we have

. A n
dlm/\ V= (k)
(2) For 0 <k <n, and for I c {1,...,n} a subset with cardinality k, let
V=V At A U
where I = {iy,...,ix} with iy <--- <ig. Then
By, = (vr)card(1)=k
is a basis of \" V.

For the proof, we will need the following property that also shows that the notation
U1 A - A U is not ambiguous if we think of grouping some of the factors together.

PROPOSITION 11.3.4. Let V' be a K-vector space and k = 0, { = 0 integers. There

exists a bilinear map
k+¢

a: /IC\VX/\VH/\V

(V1 A - Vg, gl A 5ot A Upgg) = U1 A -+ A Ugyg
for all vectors v; e V, 1 <1< k+ /(.

such that
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One denotes in general oz, y) = x Ay for any x € /\k Vand y e /\Z V', and one calls
this the exterior product or wedge product of x and y.

PROOF. We begin with a fixed 2 € A"V of the form
T=UL A A Uk,

and consider the map

k+20
ozx:Ve—>/\V
so that
(W, . We) = V1 Ao AUE AW A - A Wy

¢

One sees that «, is ¢-multilinear and alternating (because the “wedge product”) ist.
Hence by Proposition 11.3.1, there exists a linear map (that we still denote a, for sim-

plicity)
k+£

V4
/\va 1%

(W A AW) =VL A AU AW A A W

such that

We can now define a map
¢ k+0
a: VE - Homg (A V, /\ V)
with
(U1, .. Uk) = Gy peonuy -
It is again an elementary check that the map « itself is k-multilinear and alternating.
Therefore there exists a linear map (again denoted «)

k+L

k V4
a: \V — Homg(/\ V. \ V)

with a(vy A -+ A V) = Qyyaoonn,- Now we just define

Ay = a(r)(y),
and the result holds. O

PROOF OF PROPOSITION 11.3.3. The second part of course implies the first since
we get a basis with the right number of elements. To prove the second part, we first
observe that the alternating property of the wedge product implies that the vectors v;
generate /\k V. So the problem is to prove that they are linearly independent. Let t; be
elements of K such that

Ztﬂ}] = O7
I

where the sets I are all the k-elements subsets of {1,...,n}. Take any such set J, and
let K < {1,...,n} be the complement. Apply the “wedge with vx” operation to the
relation: this gives

Et[UK NV = 0.
I
For any set I except I = J, the vector vg A vy is a wedge product of n vectors, two of
which are repeated, hence is zero by the alternating property. So we get
tJ’UK NVy = 0.
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It is therefore enough to show that vg A v; £ 0 in A" V. This is an ordered wedge
product of n vectors which form an ordered basis B’ of V. To show that this is non-zero,
we use determinants: by Theorem 3.1.7, there exists an n-multilinear alternating map
D: V" — K such that D(B’) = 1. By Proposition 11.3.1, there is therefore a linear
form D: A"V — K such that D(vg A vy) = 1. This implies that the vector vgx A vy is
NoN-zero. U

ExAMPLE 11.3.5. One important use of exterior powers is that they can reduce a
problem about a finite-dimensional subspace W of a vector space V' to a problem about
a one-dimension space, or a single vector.

PROPOSITION 11.3.6. Let V' be a finite-dimensional vector space.

(1) Let (vq,...,vx) be vectors in V. Then (vy,...,vx) are linearly independent if and
only if vy A~ Avg+0 i A"V,

(2) Let (vq,...,v%) and (wy,...,wy) be vectors in 'V, which are linearly independent.
Then the k-dimensional spaces generated by (v1,...,vx) and by (wy, ..., wg) are equal if

and only if there exists t + 0 in K such that
WL A AW =1V A"+ A Ug.
We begin with a lemma:
LEMMA 11.3.7. Let W < V be a subspace of V. If f denotes the linear map W — V'

that corresponds to the inclusion of W in V., then the map A* f: N"W — AV is
mjective.
In other words, we may view /\k W as a subspace of /\k V' by the “obvious” linear
map
WL A s AW — Wy A - AW

for wy, ..., wg in W, where the right-hand side is viewed as an element of /\]C V.

PROOF. Let (v1,...,v,) be an ordered basis of W and (vy,...,v,) an ordered basis

of V. Then the vectors vy, where I < {1,...,n} has cardinality k, form a basis of /\k V.
Among them we have the vectors v; where I < {1,...,m} has cardinality k, which are

therefore linearly independent. However, by construction, such a vector in /\k V' is the
image by A" f of the corresponding vector in A* W. Hence A" f sends a basis of A" W

to linearly independent vectors in /\k V', and this means that this is an injective linear
map. Il

This result means that for some questions at least, the k-th exterior power can be
used to reduce problems about a k-dimensional subspace of a vector space to a problem
about a single vector in /\k V' (or about a one-dimensional subspace). For instance, this
gives a nice parameterization of the set of all k-dimensional subspaces of an n-dimensional
space, by non-zero vectors of /\k V', up to multiplication by a non-zero element of K.

PROOF. (1) If vy, ..., vy are linearly dependent, we can find elements ¢; in K, not all
zero, with

tivg + -+ tu, = 0.

Assume for instance that ¢; + 0. Then

1
Uj = _EZtﬂ}“

210



and hence

le~~-/\vkz—;Zvl/\~~/\vj_1Avi/\vj+1/\‘~-/\vk=0
T itj
by the alternating property of the wedge product, since each term contains twice the
vector v;.

Conversely, assume that vy, ..., vy are linearly independent. Let then vy 1, ..., v,
be vectors such that (vq,...,v,) is an ordered basis of V. From Proposition 11.3.3, the
vector v1 A --+ A U 1S an element of a basis of /\lC V', and therefore it is non-zero.

(2) If oy, ..., v}y = {wr, ..., wg}), then both vy A -+ A v, and wy A -+ A wy, are
non-zero elements of the space /\k W, seen as a subspace of /\Ic V by Lemma 11.3.7.
Since /\k W has dimension one by Proposition 11.3.3, this means that there exists t + 0
such that

Wi A AW =T U] A+ A Ug,
as claimed.

Conversely, suppose that

WL A AW =TV A" AU

for some ¢ # 0. Let ¢ be an integer such that 1 < ¢ < k. Assume that v; ¢ ({wy, ..., wi}).
Then, since (wy, ..., wy) are linearly independent, the vectors (v;, wy, . .., wy) are linearly
independent. But then there exists a basis of V' containing them, and in particular the

vector
k+1

viAwlA---Awke/\V

is non-zero. However, this is also the exterior product v; A y where y = wy A -+ A wy
(Proposition 11.3.4). Since y = tv; A -+ A vy, the vector is

togn (v A Av) =0,

by the alternating property. This is a contradiction, so we must have v; € ({wy, ..., wi})
for all ¢, and this means that

Hor, .o yue)) © g, .o wi ).

Since both spaces have dimension k, they are equal. U

This can be used very concretely. For instance, consider V = K? and the space
W = {{vy, v2}) generated by two vectors

X1 U1
V1= |22, V2= 1]Y2
X3 Ys

When is W of dimension two? In other words, when are v; and v, linearly independent?
To answer, we compute v; A v9 using the basis

€1 A ea, €1 A es, €y A €3
of A\”K3, where (e, ez, e3) is the standard basis of K3. We get first
V1 A vg = (w161 + To€s + x3€3) A (Y101 + Y2e2 + Y3€3)
= T1Y1€1 A €1 + T1lYae1 A €2 + T1Y3e1 A Y3
+ Tayr1€2 A €1+ Talze2 A €2 + Talyzea A Y3

+ T3y1€1 A €3 + T3lYalz A €2 + T3Yses A Y3
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since the wedge product is multilinear. Since it is also alternating, this becomes
VI AUy =ae; Aey+be Aes+ceynes
where
a = T1Y2 — T2¥Y1, b= x1y3 — x3y1, €= T2Yy3 — T3Y2-
Hence the space W has dimension 2 if and only if at least one of the numbers a, b, ¢ is

non-zero. (Note that these are the determinants of the 2 x 2 matrices obtained from

H
(Ul Uz) = | T2 Y2
r3 Y3

by removing one row; this illustrates a general feature.)
Moreover, the spaces generated by vy, v and

/ /

Ty Y1

/ /

w =Ty |, W2=|VYy
/ /

T3 Ys

are then equal if and only if there exists a non-zero element ¢ € K such that

!,/ !,/
T1Y2 — T2l LYy — LYy
Tys — a3y | =t | 2y — 25
/! VA
T2Y3 — T3Y2 LoYs — T3Ys

(because this condition implies also that the right-hand side is non-zero in K3, so w; and
wy also generate a 2-dimensional space, and the proposition applies).
ExAMPLE 11.3.8. Our last example is also very important.

ProrosITION 11.3.9. Consider n = 1 and an n-dimensional K-vector space V. Let
f € Endk (V) be an endomorphism of V. Then the endomorphism /" f of the 1-
dimensional vector space \"V is the multiplication by det(f). In other words, for any
(v1,...,0,) 10 V"™, we have

for) Ao A flop) =det(f) vp A -+ A vy
In particular, this provides a definition of the determinant of an endomorphism that
is independent of the choice of a basis of V!

ProOOF. We illustrate this in the case n = 2 first: if B = (v, v2) is an ordered basis
of V, and

Mat(f; B, B) = (Z Z)

then

2
(/\ f> (e1 A ea) = fler) A flea) = (aey + cea) A (bey + des)

=abe; Ae;+ade; Aeat+beey Aer+cedey A ey
=ad e; A ey +bcey A ey
= (ad — bc) e1 A es.

Since e; A ey is a basis of the one-dimensional space A”V, this implies that A f(z) =

det(f)z for all z€ A*V.
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Now we consider the general case. One possibility is to generalize the previous com-
putation; this will lead to the result using the Leibniz Formula. Another approach is to
use the “axiomatic” characterization of Theorem 3.1.7, and this is what we will do.

We first consider V' = K™. Let (e;) be the standard basis of V. For a matrix A €
M, ,(K), since A" fa is an endomorphism of the 1-dimensional space A"V generated
by © = e; A -+ A e, there exists an element A(A) € K such that (A" fa)(y) = A(A)y
for all y € A\" V. Equivalently, this means that (A" fa)(x) = A(A)z, namely, that

faler) A falex) A+ A falen) = A(A) eg Aeg A+ A ey
We consider the map
A: K" - K
defined by mapping (vy, ..., v,) to A(A) for the matrix with column vectors (vy, ..., v,),
in other words, to the element ¢ of K such that

VI A AV, = faler) Ao A falen) =t e A Aey,.
Then A is n-multilinear: for instance, for the vectors (tv; + svy, va,...,v,), the relation
(tvy +sV) A Av =t A Av,) + SV A ADy)
= (tA(v1, ..., vn) + SA(V], V2, ... 0n))e1 A A ey

shows the multilinearity with respect to the first variable. Moreover, A is alternating,
because if v; = v;, then

O=v1 A AU, =AU, ...,00)e1 A+ A€y

means that A(vy,...,v,) = 0. Finally, it is clear that A(es,...,e,) = 1, and hence by
Theorem 3.1.7 and Corollary 3.1.8, we deduce that

A(vy,...,v,) = det(A) = det(fa),

where A is the matrix with column vectors (vy, ..., v,).
We now come to the general case. Let B = (vq,...,v,) be an ordered basis of V' and
j: K™ — V be the isomorphism mapping the vector (¢;) to

T = Z tﬂ)i eV.
Consider f € Endg (V') and the diagram

K" fa K"

ER
v L vy

where j~' o foj = fa for the matrix A = Mat(f; B, B). Applying Corollary 11.3.2, we
obtain

YN (RARENYNS L
s e
AV LAY
and /A" f is an isomorphism, so that
AT=(NI) Ao A
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From the special case previously considered, we know that A" f4 is the multiplication
by det(fa) = det(f). It follows that A" f is also the multiplication by det(f). O

REMARK 11.3.10. The computation we did shows also that the coordinates (a, b, c)
of v1 A vy with respect to the basis
(e1 A eg,€1 A €3,€2A3)
are the same as the coordinates of the classical vector product v, x v, defined as a map
K x K? - K3
This fact explains the appearance of the cross product in classical vector calculus in R?,

as representing concretely certain aspects of the general differential calculus of differential
forms on R".

ExXAMPLE 11.3.11. As a final remark, without proof, we note an alternative approach
to exterior powers, in the case of the dual space of an n-dimensional vector space V over a
field with characteristic 0. This is sometimes used in differential geometry (in the theory
of differential forms).

PROPOSITION 11.3.12. Let V' be an n-dimensional K-vector space. There is an iso-
morphism

k
B: \V* — Alty(V;K)

such that for linear forms Ay, ..., A\, on 'V, and for (wy, ..., w) € V¥, we have
B A AN (Wi, wi) = Y ()M (Wo)) -+ Me(Woir))-
oESK

One may then want to describe the exterior product
k+0

k ‘
in terms of Alty(V;K) and Alt,(V;K) only. This is a rather unpleasant formula: if
a; = B(z) and ay = B(y), then we have
6(37 A y)(vb B Jvk+€> = Z 8(0’)@1(110(1), s 7UU(’€)>CL2<UU(]€+1)7 B 7UU(k+€))7
O'EH)C’[
where Hy,, is the subset of permutations o € Sy, such that
o(l) <---<o(k), ok+1)<---<o(k+7).

Hence, although the description seems more concrete, the resulting formulas and
properties are much less obvious!

214



Appendix: dictionary

We give here a short English-German-French dictionary of important terms in linear
algebra.

Field / Kérper / Corps

Vector space / Vektorraum / Espace vectoriel

Vector subspace / Unterraum / Sous-espace vectoriel

Linear map / Lineare Abbildung / Application linéaire

Matrix, matrices / Matrix, Matrizen / Matrice, matrices

Kernel / Kern / Noyau

Image / Bild / Image

Linear combination / Linearkombination / Combinaison linéaire

Generating set / Erzeugendensystem / Ensemble générateur

Linearly (in)dependent set / Linear (un)abhéngig Menge / Ensemble linéairement
(in)dépendant

Basis (plural bases) / Basis (pl. Basen) / Base (pl. bases)

Ordered basis / Geordnete Basis / Base ordonnée

Dimension / Dimension / Dimension

Isomorphism / Isomorphismus / Isomorphisme

Isomorphic to... / Isomorph zu... / Isomorphe a...

Endomorphism / Endomorphismus / Endomorphisme

Change of basis matrix / Basiswechselmatrix / Matrice de changement de base
Row echelon form / Zeilenstufenform / Forme échelonnée

Upper/lower triangular matrix / Obere-/Untere- /Dreiecksmatrix / Matrices tri-
angulaire supérieure / inférieure

Determinant / Determinante / Déterminant

Permutation / Permutation / Permutation

Signature / Signum / Signature

Transpose matrix / Transponierte Matrix / Matrice transposée

Trace / Spur / Trace

Direct sum / Direkte Summe / Somme directe

Complement / Komplement / Complément

Stable or invariant subspace / Invarianter Unterraum / Sous-espace stable ou
invariant

Matrices similaires / Ahnliche Matrizen / Matrices similaires

Conjugate matrices / Konjugierte Matrizen / Matrices conjuguées

Eigenvalue / Eigenwert / Valeur propre

Eigenvector / Eigenvektor / Vecteur propre

Eigenspace / Eigenraum / Espace propre

Spectrum / Spektrum / Spectre

Characteristic polynomial / Charakteristisches Polynom / Polynéme caractéristique
Diagonalizable / Diagonalisierbar / Diagonalisable
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Multiplicity / Vielfachheit / Multiplicité

Involution / Involution / Involution

Projection / Projektion / Projection

Nilpotent / Nilpotent / Nilpotent

Dual space / Dualraum / Espace dual

Linear form / Linearform / Forme linéaire

Bilinear form / Bilinearform / Forme bilinéaire

Non-degenerate / Nicht-ausgeartet / Non-dégénérée

Positive definite / Positiv definit / Définie positive

Positive demi-definite / Positiv semi-definit / Semi-définie positive

Scalar product / Skalarprodukt / Produit scalaire

Euclidean space / Euklidisches Raum / Espace euclidien

Adjoint / Adjungierte / Adjoint

Orthogonal group / Orthogonale Gruppe / Groupe orthogonal

Self-adjoint map / Selbstadjungierte Abbildung / Application auto-adjointe
Quadratic form / Quadratische Form / Forme quadratique

Quadric / Quadrik / Quadrique

Singular values / Singuldrwerte / Valeurs singulieres

Sesquilinear form / Sesquilinearform / Forme sesquilinéaire

Hermitian form / Hermitesche Form / Forme hermitienne

Unitary space / Unitérer Raum / Espace hermitien ou pré-hilbertien
Unitary group / Unitdre Gruppe / Groupe unitaire

Normal map / Normale Abbildung / Application linéaire normale

Jordan Block / Jordanblock / Bloc de Jordan

Jordan Normal Form / Jordansche Normalform / Forme de Jordan

Dual basis / Duale Basis / Base duale

Transpose of a linear map / Duale Abbildung / Transposée d’une application
linéaire

Characteristic of a field / Charakteristik eines Kérpers / Caractéristique d’un
corps

Euclidean division of polynomials / Polynomdivision / Division euclidienne des
polynomes

Quotient space / Quotientenraum / Espace quotient

Tensor product / Tensorprodukt / Produit tensoriel

Exterior powers / Aussere Potenzen / Puissances extérieures

Exterior or wedge product / “Wedge” Produkt / Produit extérieur
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