
MAT 2550: TWO IMPORTANT THEOREMS ON DIMENSION

1. Preliminaries

Please recall the following fundamental facts, which were proven in class previously. Make sure
you understand the ideas behind the proofs, about which I will briefly remind you. We assume
throughout that all the vector spaces we are considering are finite dimensional. (There are infinite
dimensional vector spaces, but we won’t consider them in this course.)

Every finite-dimensional vector space has a well-defined dimension; that is, if there are two finite
bases for a vector space, they must contain the same number of vectors. This unique number of
called the dimension of V , and we will denote it by dimV . The idea of the proof is as follows:
replace the vectors in one basis with those in the other, one at a time. Each one you put in is a
linear combination of those already there. Because of the linear independence of the vectors you
are putting in, you will always be able to take one of the original basis vectors out, and you will
not run out of vectors in the first basis before you have replaced them all.

Given a linear transformation T : V ! W , there are two important subspaces associated to
it. One is the null space of T , NullT , defined as {v ∈ V : Tv = ~0 }. The proof that NullT is a
subspace rests on the linearity of T : a linear combination of vectors that map to the zero vector
will map to the same linear combination of zero vectors, hence to zero. The other is the image
or range of T , defined as {Tv : v ∈ V }. Our text uses the latter term and the notation RanT ,
so I will, too, in order to avoid confusion, although I prefer the former term, and you will see it
in the literature as well. RanT is simply the space of outputs of T ; since any linear combination
of outputs is the output of the same linear combination of inputs (again, by the linearity of T ),
RanT is a subspace of W .

Finally, given any collection of vectors v1, v2, v3, . . . , vn ∈ V , the span of these vectors, denoted
〈v1, v2, v3, . . . , vn〉 is a subspace of V .

Any collection of linearly independent vectors v1, v2, v3, . . . , vn ∈ V can be extended to a basis
for V by adding vectors that are not in the span of those already chosen. From any collection of
vectors that span V , a basis may be chosen by eliminating vectors that are linear combination of
the others.

2. The relation between the dimensions of the null space and range

First, consider as examples the linear maps R2 ! R2 given by the matrices
(

1 1
1 0

)
,
(

1 2
1 2

)
,

and
(

0 0
0 0

)
. For each of these, sketch the images of the two basis vectors, and also choose a basis

Date: March 16, 2018.
1



2 MAT 2550: TWO IMPORTANT THEOREMS ON DIMENSION

for the null space and range of each. You should find that the null spaces have dimension 0, 1, and
2, and the ranges have dimension 2, 1, and 0, respectively.

Next try the maps R2 ! R3 given by

1 1
1 0
0 0

,

1 2
1 2
0 0

, and

0 0
0 0
0 0

. What do you find? I

bet you can guess the result of our first major theorem, and perhaps come up with an idea of how
to prove it, before you read the proof below.

Theorem. Given a linear transformation T : V !W , dimNullT + dimRanT = dimV .

Proof. Let n = dimNullT , k = dimV , and r = k−n. Choose a basis v1, v2, v3, . . . , vn for NullT . Ex-
tend this to a basis for all of V by adding linearly independent vectors vn+1, vn+2, vn+3, . . . , vn+r =
vk, and let wi = vn+i, for i = 1, 2, 3, . . . , r. We claim that w1, w2, w3, . . . , wr is a basis for
RanT , from which the desired result clearly follows. We prove the claim in the two usual
steps. First, we must show that 〈w1, w2, w3, . . . , wr〉 = RanT . This is easy! Given Tv ∈ W ,
we have that v =

∑k
i=1 αivi, since v1, v2, v3, . . . , vk is a basis, and in particular a spanning

set, for V . Thus, Tv = T (
∑k

i=1 αivi) =
∑k

i=1 αiTvi =
∑k

i=n+1 αiTvi =
∑r

i=1 αiwi, since
Tvi = ~0 for i = 1, 2, 3, . . . , n. Next we must show the vectors w1, w2, w3, . . . , wr are linearly
independent. To that end, suppose ~0 =

∑r
i=1 αiwi =

∑r
i=1 αiTvn+i = T (

∑r
i=1 αivn+i). This

means that the vector
∑r

i=1 αivn+i is in NullT ; therefore, since v1, v2, v3, . . . , vn is a basis for
NullT , there must be coefficients β1, β2, β3, . . . , βn such that

∑n
i=1 βivi =

∑r
i=1 αivn+i. But then

−β1v1−β2v2−β3v3−· · ·−βnvn +α1vn+1 +α2vn+2 +α3vn+3 + · · ·+αrvn+r = ~0. Since the vectors
v1, v2, v3, . . . , vk are linearly independent, it follows that all the coefficients are zero. In particular,
α1 = α2 = α3 = · · · = αr = 0; hence, the vectors w1, w2, w3, . . . , wr are linearly independent. �

3. The relationship between the rows and columns of a matrix

The columns of an m × n matrix A with entries in a scalar field F (R or C, for our purposes)
span a subspace of Fm. It is called the column space of A, and its dimension is called the column
rank of A. Similarly, the rows of A span a subspace of Fn (viewed as row vectors rather than
column vectors, of course), called the row space, and its dimension is called the row rank. It turns
out that the column rank is equal to the row rank for any matrix, and that common dimension is
simply called the rank of the matrix. There are many different proofs of this fact, some of which
use the row operations we will study next; however, Dr. Petrenko and I have just completed a
draft of a paper that gives a particularly simple proof. It uses some of the ideas about injective
and surjective maps and their one-side inverses that we recently studied.

We know that a function has a inverse applied before it if and only if it is surjective, and an
inverse applied after it if and only if it is injective. Thus, a function has a two-sided inverse,
which we have shown to be unique, if and only if it is bijective. We showed that the inverse of a
bijective linear transformation is automatically linear. That is not the case for inverses that only
work on one side. However among the many such inverses, a linear one may be chosen, and that
is important for our proof. Here is how to do that.
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Suppose a linear transformation T : V !W is surjective. Given a basis v1, v2, v3, . . . , vk for V ,
the vectors w1 = Tv1, w2 = Tv2, w3 = Tv3, . . . , wk = Tvk span W . (You should be able to explain
why!) Choose a basis from among these vectors, say wi1 = Tvi1 , wi2 = Tvi2 , wi3 = Tvi3 , . . . , wir =
Tvir. Defining Swi1 = vi1 , Swi2 = vi2 , Swi3 = vi3 , . . . , Swir

= vir
and extending linearly (make

sure you know what that means!), we obtain a linear map S such that TSw = w for every w ∈W .
(You should check the details!) Thus we have obtained a linear inverse applied before T .

Suppose a linear transformation T : V ! W is injective. Given a basis v1, v2, v3, . . . , vk for V ,
the vectors w1 = Tv1, w2 = Tv2, w3 = Tv3, . . . , wk = Tvk are linearly independent. (You should
be able to explain why!). Extend this set to a basis w1, w2, w3, . . . , wk, wk+1, . . . , wr for W . Define

Swi =

vi, for i = 1, 2, 3, . . . , k
~0, for i = k + 1, k + 2, . . . , r

.

Extend linearly. You can check that STv = v for every v ∈ V , so we have obtained a linear inverse
applied after T .

I now refer you to my paper with Dr. Petrenko for the details of the proof that row rank equals
column rank.


