

2.40. Derived Rules of Inference

While the deductive system so far developed will reliably provide a deduction for

all (and only) the valid arguments in our formal language, many of these

deductions are extremely long. Here we develop a method of deductive ‘shortcuts’

to reduce the size and complexity of our deductions.

1. Derived Rules. We established the validity of the following little argument by

constructing an indirect deduction of it.

1. ~P

  ~(P  Q)

1. P

 Get ~(P  Q) (ID)

2. ~~(P  Q) AID

3. (P  Q) 2, ~ –

4. P 3, –

5. ~P 1, R

6. ~(P  Q) 2, 4, 5, ID

Now this general argument form reappears in larger arguments such as the

following.

1. (R  ~P)

  (R  ~(P  Q))

Certainly we can construct a deduction of the conclusion from the premise. But

doing so involve simply disassembling the conjunction on Line 1 using –;

deducing “~(P  Q)” from “~P” in an ID; and then assembling the conclusion

“(R  ~(P  Q))” from its two parts, via +.

2-316 Chapter Two: “And,” “Or,” “Not”

We are, in effect, simply pasting our earlier deduction of “~(P  Q)” from “~P”

into the middle of this larger deduction.

1. (R  ~P)

Get: (R  ~(P  Q))

2. R 1, –

3. ~P 1, –

 Get: ~(P  Q) (ID)

4. ~~(P  Q) AID

5. (P  Q) 4, ~ –

6. P 5, –

7. ~P 3, R

8. ~(P  Q) 4, 6, 7, ID

9. (R  ~(P  Q)) 2, 8, +

But we could bypass this repeated labor by instead treating the valid argument

“~P  ~(P  Q)” as an additional rule of inference. More precisely: we accept

the following general argument form as a rule of inference.

 Negation-Conjunction (~)

~

 ~(  )

2.40. Derived Rules 4.4.17 2-317

In that case the deduction is simplified, as follows.

1. (R  ~P)

Get: (R  ~(P  Q))

2. R 1, –

3. ~P 1, –

4. ~(P  Q) 3, ~

5. (R  ~(P  Q)) 2, 4, +

We’re confident that using this rule will never compromise the validity of a

deduction, since we can always instead paste in the deduction of the conclusion

from the premise, as we did in our original deduction of “(R  ~(P  Q))” from

“(R  ~P)”. Such a rule – added to the system, and justified by a deduction – is

called a derived rule (in contrast with the basic rules built into the deductive

system, which are ‘basic’ precisely because they’re not justified by a deduction)1.

Since the system is capable of all the same deductions without them, derived rules

are not essential parts of the deductive system – just convenient shortcuts.

Suppose we call our original system of deduction (without Rule ~) System 2 (“2”

for the chapter in which it’s presented). And let System 2.1 be the system just like

System 2 but also containing ~ as one of its basic (non-derived) rules. Whenever

System 2.1 invokes its rule ~ in a deduction, System 2 can paste in its deduction

matching that rule. So the same set of arguments are recognized as valid by both

systems – the only difference being that the System 2 deduction will be longer,

when pasting in the ~ deduction is necessary.

We will say that two systems are deductively equivalent when they pick out

exactly the same arguments as valid. Being deductively equivalent to System 2,

System 2.1 has no advantage except convenience: where an inference of the ~

form is involved, the System 2.1 deduction will be shorter. On the other hand,

from the perspective of System 2 the inference rules in System 2.1 contain excess

baggage – since throwing the rule ~ overboard brings no loss of deductive power.

1 Of course, in justifying the derived rule by a deduction, that deduction must not appeal to the very rule being

justified, or the justification will be circular. So in the above deduction of “~(P  Q)” from “~P,” we were careful

not to appeal to the rule ~ anywhere in the deduction.

2-318 Chapter Two: “And,” “Or,” “Not”

A slightly leaner third system – call it “System 2.2” – offers a further illustration

of deductive equivalence. System 2.2 is like our System 2, except that it has the

~ rule and lacks our – rule. It might seem that certain valid arguments would

escape the grasp of System 2.2 deductions– most obviously arguments of the

following sort.

1. (P  Q)

  P

But that is not so. For System 2.2 has a deduction of this argument using only its

basic inference rules.

1. (P  Q)

 Get: P (ID)

2. ~P AID

3. ~(P  Q) 2, ~

4. (P  Q) 1, R

5. P 2, 3, 4, ID

Systems 2 and 2.2 are thus deductively equivalent. (A user of System 2.2 could,

if she wished, treat our rule – as a derived rule.) The existence of different, yet

equivalent, deductive systems shows that we have some latitude in which

deductive system we use to pick out the valid arguments. In this respect choice of

deductive system is similar to our earlier choice among expressively equivalent

formal languages.2 In both cases, systems with quite different basic elements

nonetheless prove equivalent.

2. De Morgan’s Law. Our point in discussing the rule ~ was only to illustrate

the concept of a derived rule. We won’t bother adding ~ to our deductive system

– making the judgment call that the convenience it brings is insufficient to justify

complicating our list of inference rules.

2 In 2.30; and later in 3.9 through 3.12.

2.40. Derived Rules 4.4.17 2-319

But a different inference rule is useful enough to merit addition as a derived rule:

De Morgan’s Law.

De Morgan’s Law (DM)

 Inward DM Outward DM

 ~(  )

 (~  ~)

 ~(  )

 (~  ~)

(~  ~)

~(  )

 (~  ~)

 ~(  )

We encountered these four valid argument forms earlier as semantic equivalences.3

But they now serve as two types of inference rule: inward DM, which pushes a

tilde into the parts of a disjunction or conjunction; and outward DM, which

‘extracts’ a tilde from the parts of a disjunction or conjunction. (We bother to label

the two varieties of DM because they play different roles in deduction.)

Most obviously: inward DM allows for the easy dispatch of otherwise vexing

AIDs, such as the following.

1. (~P  R)

2. (~Q  S)

3. (P  Q)

 Get: (R  S) (ID)

4. ~(R  S) AID

Armed only with the seven deductive rules and ID, the situation looks bleak. The

only move open to us here is to start a second ID within the first.

3 In 2.17 § 1.

2-320 Chapter Two: “And,” “Or,” “Not”

But with DeMorgan’s Law that fearsome AID is immediately tamed.

1. (~P  R)

2. (~Q  S)

3. (P  Q)

 Get: (R  S) (ID)

4. ~(R  S) AID

5. (~R  ~S) 4, In DM

What follows is a thoroughly automatic cascade of Elim rules, backing its way into

a contradiction.

1. (~P  R)

2. (~Q  S)

3. (P  Q)

 Get: (R  S) (ID)

4. ~(R  S) AID

5. (~R  ~S) 4, In DM

6. ~R 5, –

7. ~S 5, –

8. ~Q 2, 7, –

9. P 3, 8, –

 10. ~P 1, 6, –

 11. (R  S) 4, 8, 9, ID

2.40. Derived Rules 4.4.17 2-321

Of course, to use De Morgan’s Law as a legitimate derived rule we must supply

deductions establishing that the conclusion is indeed deducible from the premise in

each case. Here is the deduction of the form just used.4

1. ~(P  Q)

Get: (~P  ~Q) (ID)

2. ~(~P  ~Q) AID

 Get: ~P (ID)

3. ~~P AID

4. P 3, ~ –

5. (P  Q) 4, +

6. ~(P  Q) 1, R

7. ~P 3, 5, 6, ID

 Get: ~Q (ID)

8. ~~Q AID

9. Q 8, ~ –

 10. (P  Q) 9, +

 11. ~(P  Q) 1, R

 12. ~Q 8, 10, 11, ID

 13. (~P  ~Q) 7, 12, +

 14. ~(P  Q) 2, 13, ID

With DM added to our deductive system we’re in a position to simplify the

negation of any molecular sentence.5

4 Note that since Line 2 is not cited in the justification of Lines 3 through 13, we deduced Line 13 without using

Line 2. We could thus have avoided using ID to deduce “(~P  ~Q),” instead proceeding directly to the smaller IDs

for “~P” and “~Q”. In that case Line 13 would be the last line of the deduction, and the large ID box (with its AID

Line 2) would not appear – shaving two lines from the deduction.
5 The negation of a negation is already handled by the rule ~ –.

2-322 Chapter Two: “And,” “Or,” “Not”

3. Deductive Strategy, Revised. In terms of strategy, Inward DM is of particular

use in making an AID manageable. Whenever an ID begins with a negated

conjunction or negated disjunction as its assumption, we now automatically apply

inward DM to yield a disjunction or conjunction susceptible to Elim rules. For

instance, the AID “~(P  Q)” becomes “(~P  ~Q)” (and – is then applied if

possible); while the AID “~(P  Q)” becomes “(~P  ~Q)” (with – then applied).

Of course Inward DM proves handy for sentences other than an AID. In general,

inward DM acts like an Elim rule – in the sense that it cannot be applied an

unlimited number of times, and so can safely be executed whenever possible.

Outward DM can also only be applied a finite number of times, and so can also be

trusted not to run amok. Still, our strategy will be to employ outward DM

primarily as a ‘setup’ rule, using it in the same spots, and for the same reasons, as

the Intro rules. For Outward DM leaves us with a sentence – a negated

conjunction or negated disjunction – to which an Elim rule won’t automatically

apply. So we use Outward DM chiefly to get a missing sentence needed when the

deduction has ground to a halt: to complete an instance of –; or to get half of a

contradiction (when using ID) or the sentence on the “Get” line (when not using

ID).

The addition of DM to the deductive system streamlines deductions substantially –

so much so that adding further derived rules won’t prove necessary. Our system of

Chapter 3 deduction has thus reached its finished form.

2.40. Derived Rules 4.4.17 2-323

Summary: DeMorgan’s Law Strategy

Inward DM (In DM)

 ~(  )

 (~  ~)

 ~(  )

 (~  ~)

Outward DM (Out DM)

(~  ~)

~(  )

 (~  ~)

 ~(  )

 Treat Inward DM like an Elim rule: use whenever possible. In

particular: automatically apply inward DM when the AID is a

negated conjunction or negated disjunction.

 Treat Outward DM like an Intro rule: to supply (i) the missing

part to apply an Elim rule; (ii) half of a contradiction (when using

an ID); or (iii) the sentence on the “Get” line (when not using an

ID).

