
 

5.8. Quantifier Semantics Revisited: Instances 
 

 

1. Instances.  We have so far examined only instances of very simple quantified 

sentences, such as “∀x Gx” and “∃y ~Gy,” where the scope formula is an atom or 

negation of an atom.  But the full treatment of sentence instances, holding even for 

complex scope formulas, requires more attention to detail than those simple cases 

did.  In order to ward off logical missteps, we here impose general conditions on 

which sentences qualify as an instance of a quantified sentence, no matter how 

complex that quantified sentence. 

 

Previously an instance of a quantified sentence was constructed by (i) removing 

the quantifier from the left of that sentence, then (ii) replacing the variable of 

quantification (the variable appearing in the just-removed quantifier) with a name 

letter in the scope formula that remains.  For example, with “∃x Gx” we remove 

“∃x,” leaving just the scope formula “Gx”; and then replace the “x” in “Gx” with a 

name letter – yielding, say, “GA” or “GB”. 

 

Scope Formula: 

 

Gx 

Instances of This Formula 

 

GA 

GB 

GC 

(etc.) 

 

We add the following three conditions to the second part of that procedure, where 

name letters replace variables.1 

 

(A) Replace all free occurrences of the variable with name letters. 

(B) Replace only free occurrences of that variable with name letters. 

(C) Replace all free occurrences of that variable with the same name letter. 

 

The reason for imposing condition (A) is obvious: in a given model, we want the 

truth or falsehood of a quantified sentence to depend on the truth or falsehood of its 

instances.  But since only sentences (not quasi-sentences) are capable of being true 

or false, an instance of a quantified sentence had better contain no free variables.  

                                           
1 A sentence logic version of these conditions was discussed in 3.17.1 Problem E. 



5.8. Quantifier Semantics Revisited: Instances     11.19.16 5-75 

 

Were an instance to retain any free occurrence of a variable, it would fail in its role 

as a semantic stand-in for the scope formula. 

 

An illustration of condition (B) – that only free occurrences of a variable be 

replaced with name letters – comes in the following existential claim. 

 

For some object, x: that object’s a cat, but there’s something that isn’t a cat. 

 

(1) ∃x (Gx  ∃x ~Gx) 

 

Consider the following model, containing just Neko, who’s a cat, and Rex, who 

isn’t.   

 

A: Neko  G__: is a cat 

B: Rex 

 

D: {Neko, Rex} 

A: Neko   G: {Neko} 

B: Rex 

 

Condition (B) has us construct the following instances of sentence (1). 

 

(2) (GA  ∃x ~Gx) 

(3) (GB  ∃x ~Gx) 

 

And we expect existential sentence (1) to be true in this model if it has at least one 

true instance. 

 

Now in fact (2) is true in this model.  Since Rex isn’t a cat here, clearly the right 

part of (2), “∃x ~Gx,” is true.  And since Neko is a cat, the left part of (2), “GA,” is 

true as well.  With both parts true, the whole conjunction (2) is true.  And since (2) 

is a true instance of existential sentence (1), (1) is true here as well.  

 

That makes intuitive sense: in a situation where Neko’s a cat and Rex isn’t, it’s 

true to say there’s an object (namely, Neko) such that: that object is a cat, but 

something isn’t.  Treating (2) and (3) as instances of (1) yields the right result. 
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By contrast, if we disregard Condition (B) (the “only free” restriction) and replace 

even bound variable occurrences in the scope formula of (1), the consequences 

are less happy.  For in that case the instances of (1) would be (4) and (5). 
 

   Instances of (1) “∃x (Gx  ∃x ~Gx)” ?    

(4) (GA  ∃x ~GA) 

(5) (GB  ∃x ~GB) 

 

In order to evaluate the truth of (4) and (5), note first that the right half of each 

contains a vacuous quantifier.  The “∃x” in “∃x ~GA” is vacuous because that 

quantifier has no occurrences of “x” to bind in its scope formula “~GA”.  Now as 

noted earlier2, a vacuous quantifier is semantically empty – making “∃x ~GA” 

semantically equivalent to “~GA”.  And the same holds for the right half of (5):  

“∃x ~GB” is semantically equivalent to just “~GB”.  

 

That means that (4) and (5) are semantically equivalent to (6) and (7), respectively. 

 

(6) (GA  ~GA) 

(7) (GB  ~GB) 

 

Both these sentences are contradictions, hence not true in any model.  In that case 

Sentence (1), “∃x (Gx  ∃x ~Gx),” has no true instances in this (or any) model – 

the wrong result. So: violating condition (B), and replacing even bound 

occurrences of a variable, yields the wrong results. 

 

The third restriction is that we replace the variable of quantification by the same 

name letter throughout. 

 

(C) Replace all free occurrences of that variable with the same name letter. 

 

                                           
2 In Section 1 of “5.6. Construction Revisited: Quantifiers, Variables, and Binding”.  
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Whereas (1) didn’t look like a contradiction, Sentence (8) does: intuitively, there 

should be no possible way for (8) to be true. 

 

(8) ∃x (Gx  ~Gx) 

 

To construct an instance of (8), we remove the quantifier “∃x”, and replace every 

free occurrence of “x” in scope formula “(Gx  ~Gx)” with a name letter.  Now if, 

following Condition (C), we use the same name letter throughout, we end up with 

an instance of the following sort. 

 

(GA  ~GA) 

(GB  ~GB) 

(GC  ~GC) 

(etc.) 

 

Since all of these are contradictions, true in no model, the same holds for (8) – the 

correct result. 

 

But suppose we disregard Condition (C), and replace different occurrences of “x” 

in “(Gx  ~Gx)” with different name letters.  Then Sentence (9) would be treated 

as an instance of (12). 
 

 Instance of “∃x (Gx  ~Gx)” ?   

(9) (GA  ~GB) 

 

(9) can certainly be true in a model.  In fact the same model as before will suffice: 

a model with just two objects, cat Neko and non-cat Rex. 

 

(8) ∃x (Gx  ~Gx) 

 

(9) (GA  ~GB) 

 

G__: is a cat 

 
D: {Neko, Rex} 

A: Neko   G: {Neko} 

B: Rex 
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If (9) counts as an instance of (8), then (8) has at least one true instance in a model, 

and so isn’t a contradiction after all. 

 

(8) ∃x (Gx  ~Gx) 

(9) (GA  ~GB) 

 

That seems like the wrong result.  Hence our insistence on Condition (C): when 

replacing free occurrences of a variable, use the same name letter throughout. 

 

 

2. Quantifier Semantics Revisited.  With the official version of “instance” in 

hand, the semantics for quantified sentences is straightforward. 

 

 

An existential sentence is true in a model if (and only if) it has at least 

one true instance in that model. 

An existential sentence is false in a model if (and only if) every instance 

of that sentence is false in the model. 

A universal sentence is true in a model if (and only if) every instance 

of that sentence is true in the model.  

A universal sentence is false in a model if (and only if) it has at least 

one false instance in that model. 
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So the following model assigns the truth value listed for each of the quantified 

sentences below.  

 

D: {2, 3, 4} 

 

A: 2   G: {4} 

B: 3   H: {3, 4} 

C: 4   I: {2, 3, 4} 

J: { } 

 

 

 

(10)  ∃x Hx: 1 

(11)  ∀x Hx: 0 

(12)  ∃x (Hx  Gx): 1 

(13)  (GA  ∃x Gx): 1 

(14)  (GB  ∃x Gx): 1 

(15)  ∀x (Ix  Hx): 0 

(16)  ∀x (Hx  Ix): 1 

(17)  ∃x (Jx  Gx): 1 

(18)  ∃x (Jx  Gx): 1 

 

(19)  ∀x (Jx  Gx): 0 

(20)  ∀x (Jx  Gx): 1 

(21)  ∀x (Jx  ~Gx): 1 

(22)  ∃x ((Hx  Jx)  Gx): 1 

(23)  ∀x ((Hx  Jx)  Gx): 0 

(24)  ∀x ((Hx  Ix)  ~Jx): 1 

(25)  ∀x ((Hx  Ix)  Ix): 1 

(26)  ∀x ((Hx  Ix)  Ix): 1 

(27)  ∃x ((Hx  Ix)  ~Gx): 1 
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Summary: Instances and Quantifier Semantics  

 

 Instance of a Quantified Sentence: an instance of a quantified 

sentence is the result of (i) removing the (left-most) quantifier 

from that sentence and then (ii) in the scope formula that remains, 

replacing the variable of quantification (the variable appearing in 

that quantifier) with a name letter, according to the following 

three constraints. 

 

(A) Replace all free occurrences of the variable. 

(B) Replace only free occurrences of the variable. 

(C) Replace occurrences of the variable by the same name 

letter throughout. 

 
 

 Existential Semantics: 

 

An existential sentence is true in a model if (and only if) it 

has at least one true instance in that model. 

An existential sentence is false in a model if (and only if) 

every instance of that sentence is false in the model. 

 

 Universal Semantics: 

 

A universal sentence is true in a model if (and only if) every 

instance of that sentence is true in the model.  

A universal sentence is false in a model if (and only if) it has 

at least one false instance in that model. 

  

 

 


