
 

2.42. The Deductive Challenge: 

Proofs (and Deductions) without Derived Rules 

 

 

The derived rule of De Morgan’s Law streamlined and simplified the deductive 

apparatus so much that we could be forgiven for never wanting to go without it.  

Yet valuable lessons can found in using only the leaner, original set of rules – of 

somewhat the same sort learned by those undertaking survival training in the 

wilderness.  For with practice a set of strategies emerge that are handy to know for 

any deductive purposes, and which moreover better reveal the nature of our 

deductive system.  Deliberate adoption of such a ‘no-frills’ approach to deduction 

constitutes The Deductive Challenge. 

 

 

1. Disjunctions.  The most obvious piece of strategy comes from proofs (which 

lack any premises); for here Indirect Deduction is the only route open to us.  And 

even for deductions (which have premises) it’s already our practice to reach for 

Indirect Deduction automatically unless some obvious alternative presents itself. 

 

So consider how we construct a proof for even so simple a theorem as T2. 

 
 

       Get: (P  ~P) (ID) 
 

1.     ~(P  ~P)             AID 

 

 

 

Without De Morgan’s law to dispatch this inconvenient AID, it’s not immediately 

clear what move to make. 

 

But it’s important to keep in mind that in an Indirect Deduction, if the argument is 

valid (or sentence really a theorem) there’s bound to be a pair of contradictory 

sentences lurking inside the AID box.  And in fact, as we noted earlier, if there’s 

one such contradictory pair to be had – say, “P” and “~P” – then all the others are 

available as well.1  So our immediate task is to decide which pair of contradictory 

sentences to get, and how to get them. 

 

                                           
1 As noted in 2.39. 
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A ‘brute force’ approach suggests itself here: construct two smaller IDs (within the 

main ID box), one for each of the two contradictory sentences – say, “P” and “~P”.  

But that would be a strategic mistake.  For suppose we succeed in building a 

smaller ID for “P”, and then begin the ID for “~P”. 

 
 

            Get: Theorem (ID) 
 

1.     ~Theorem              (AID) 
 

     Get: P (ID) 
 

3.      ~P    AID 

         

   (etc.) 
  

 

         10.     P                3, 8, 9, ID 

 

     Get: ~P (ID) 
 

         11.      ~~P    AID 

         
     

 

 

The second smaller ID for “~P” wins us as AID only “~~P” – a sentence already 

available, since we’d proven “P” earlier.  Anything we get from “~~P” within the 

ID box we could have gotten without that ID box.  So it’s never sensible strategy to 

show the two contradictory sentences in smaller, parallel IDs.      

 

Instead of such an exhaustive sweep, a better approach is to show one of those two 

sentences, then survey the proof afterward to see what possibilities that sentence 

opens up. 

 

Two points of strategy are helpful here.  First, it’s usually best to aim for the 

simplest of contradictory pairs: a sentence letter and its negation.  Second: it’s 

obviously strategic to pick a sentence letter that appears in a previous line – either 

in a premise or an AID. 
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So returning to our proof of T2, we first build a smaller ID to get “P”. 
 

 

             Get: (P  ~P) (ID) 
 

1.    ~(P  ~P)              (AID) 
 

    Get: P (ID) 
 

2.      ~P    AID 

3.      (P  ~P)   2, + 

4.      ~(P  ~P)   1, R 

 

5.     P               2, 3, 4, ID 

 
 

Now it’s clear that the same strategy would get “~P”; so it’s perfectly legal to write 

a “Get” line for “~P” and build another three-line ID here.  But that ID box would 

be a waste of time, since the strategy we’d use inside that box can be executed on 

“P”, from Line 5. 
 

 

             Get: (P  ~P) (ID) 
 

1.    ~(P  ~P)              (AID) 
 

    Get: P (ID) 
 

2.      ~P    AID 
 

3.      (P  ~P)   2, + 
 

4.      ~(P  ~P)   1, R 

 

5.     P               2, 3, 4, ID 
   

 6.     (P  ~P)   5, + 
 
 

 7.     (P  ~P)   1, 3, 4, ID 

 

 

This is a fairly general strategy for Chapter Two proofs: get one half of a 

contradictory pair of sentences – here, “P” on Line 5 – then see what new things 

that sentence allows us to deduce.  For what we typically find is that the same 

strategy which worked inside the smaller ID (in this case, the one for “P”) can be 

repeated in the larger ID box. 
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That point accounts for the ‘echo chamber’ often encountered in proofs, as 

illustrated even in this simple example.  Note that “(P  ~P)” appears three times 

in seven lines: once as half of the contradiction in the smaller ID (Line 3), once as 

half the contradiction of the larger ID (Line 6), and finally as the sought-after 

sentence (Line 7). 
 

 

             Get: (P  ~P) (ID) 
 

1.    ~(P  ~P)              (AID) 
 

    Get: P (ID) 
 

2.      ~P    AID 
 

3.      (P  ~P)   2, + 
 

4.      ~(P  ~P)   1, R 

 

5.     P               2, 3, 4, ID 
   

 6.     (P  ~P)   5, + 
 
 

 7.     (P  ~P)   1, 3, 4, ID 

 

 

And finally this proof illustrates that + is our friend when it comes to deducing 

with a minimal toolbox.  For while + yields a conjunction only when we have 

both halves, + needs only one half of the disjunction to yield the whole sentence.  

In the Spartan climes of the unadorned proof, an inference rule that makes do with 

half-rations is especially welcome.    

 

 

[2. Other Sentence Types.  While our example here has been a proof of a 

disjunction – and though our listed theorems in this chapter have been almost 

without exception disjunctions – that doesn’t mean only disjunctions can be 

Chapter Two theorems.  As a trivial example: for every disjunction that’s a 

theorem, its double negation will also be a theorem; and for any two disjunctions 

that are theorems, their conjunction is also a theorem.   

 

Still, we can make some general observations on what sorts of sentences will be 

theorems in this formal language, and what strategy we should adopt to prove such 

a sentence. 
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It is first of all obvious that no basic – sentence letter or negation of a sentence 

letter – could be a theorem.  For every basic is true in some valuation and false in 

some valuation, and so will be neither a theorem nor a contradiction.   

 

Note also that since a conjunction is only true when both its parts are true, a 

conjunction can be a theorem only if both its parts are theorems.  From our 

previous point that means that no conjunction of basics could be a theorem. 

 

But it also means that any time we have a conjunction as a theorem we can prove 

each of its parts separately.  Our proof strategy for conjunctions will thus be to 

prove each part of the conjunction individually, then conjoin them with +. 

 

Similarly, for any double negation ~ ~ that’s a theorem  must also be a 

theorem; so we prove  and then derive ~ ~ with ~+.   

 

If a disjunction is a theorem we’re not guaranteed that both parts are theorems (as 

we were with a conjunction).  But we can be sure that either part follows validly 

from the negation of the other.  For otherwise that disjunction could not be a 

theorem.   

 

Consider: if one part of the disjunction, , fails to follow validly from the 

negation of the other part, , then there’s a validity counterexample for the 

argument ~   – a valuation where the premise ~ is true but the 

conclusion  is false.  But where ~ is true,  must be false.  So such a 

counterexample is a valuation where both parts of the disjunction,  and , are 

false – making the entire disjunction false in that valuation, thereby preventing that 

disjunction from being a theorem (a tautology). 

 

(A special case of this is when at least one part of the disjunction is itself a 

theorem.  For on the one hand a theorem (a tautology) follows validly from any 

sentence, and so in particular from the other half of the disjunction.  And 

conversely that other part of the disjunction is bound to follow from the negation 

of a theorem; for the negation of a theorem is a contradiction, from which any and 

every sentence follows.) 

 

That point suggests a deductive strategy for proving a theorem that’s a disjunction: 

show it indirectly, using the AID – the negation of that disjunction – repeatedly as 

half of the contradictory pair of sentences.  We know that we only need one part of 
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the disjunction to prove the whole through +.  We can show that part (either part) 

through ID in turn, confident that the AID entails the other part of the disjunction – 

which will likewise secure the whole disjunction through +. 

 

[Example] 

 

When the negation of a conjunction is a theorem, the conjunction itself must be a 

contradiction.  In that case we show the theorem indirectly, getting an AID that’s 

the double negation of a contradiction – equivalently (through ~–) a contradiction.  

This case is the dual of the previous one, where a disjunction is a tautology: while 

we’re not guaranteed that both parts of the conjunction will themselves be 

contradictions, we can be sure that either part of the conjunction entails the 

negation of the other.2   

 

That might tempt us to shake out each half of the conjunction through –, then do 

a smaller ID of the negation of one of those two sentences.  But strategically that 

smaller ID would be a waste of time, for the same reason we saw earlier: if we 

have each half of the conjunction (  ) –  and  – then start a smaller ID 

for, say, ~, the AID will just be , ~~, which we already had in .  Anything 

we could have got in the smaller ID we could get just as easily without it. 

 

We’re better off instead sticking with our earlier strategy: constructing a smaller 

ID for some basic that appears in an earlier line.  For example the negated 

conjunction “~((~P  ~P)  (P  (P  Q))” is a tautology, so there must a proof of 

this sentence through ID and the deductive rules.  We start in the way just 

described. 
 

 

           Get: ~((~P  ~P)  (P  (P  Q))) (ID) 
 

1.    ~~((~P  ~P)  (P  (P  Q)))  (AID) 

2.    ((~P  ~P)  (P  (P  Q)))  1, ~–            

3.    (~P  ~P)     2, – 

4.    (P  (P  Q))     2, – 
 

 

                                           
2 For further discussion of both these points – disjunction as tautology and conjunction as contradiction – see 3.6.1 

Problems C and D. 
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Now, instead of trying to get the negation of Line 3 or Line 4, we aim a smaller ID 

at getting “P” or “~P”.  It’s equally simple to get either one.  (Lines 5, 6, and 7 of 

the left proof are Lines 8, 9, and 10 of the right one, and vice versa.) 
 

 
 

3.      (~P  ~P)   2, – 

4.      (P  (P  Q))  2, – 

   Get ~P 

5.          ~~P       AID 

6.     P        5, ~–  

7.     ~P       3, 5, – 
 

8.         ~P   5, 7, ID 

9.    (P  Q)       4, 8, – 

10.   P        9, – 

 

11.  ~((~P  ~P)  (P  (P  Q))) 

    1, 8, 10, ID 

 
 

3.      (~P  ~P)   2, – 

4.      (P  (P  Q))  2, – 

   Get P 

5.          ~P       AID 

6.     (P  Q)       4, 5, –  

7.     P        6, – 
 

8.         P   5, 7, ID 

9.    ~~P       8, ~+ 

10.   ~P        3, 9, – 

 

11.  ~((~P  ~P)  (P  (P  Q))) 

    1, 8, 10, ID 

 

 

Finally, if the negation of a disjunction is a theorem, the disjunction itself is a 

contradiction.  And in this case we’re guaranteed that both parts of the disjunction 

are themselves a contradiction.3  [So… ] ] 

                                           
3 This is the dual of the earlier point that if a conjunction is a theorem then both its parts are theorems. 


