

5.12. Quantified Predicate Logic: Truth Trees

We adapt our earlier truth tree rules to the expanded formal semantics.

We’ve added only two new aspects to the semantics of previous chapters: a

truth rule for predicate-letter-plus-name letter, and truth rules for universal

and existential generalizations.

A predicate-letter-plus-name-letter is, in terms of truth and falsehood, an

atom (since its ‘sub-atomic’ parts – predicate letter and name letter – aren’t

themselves true or false). And for that reason these sentences pose no new

challenges for truth trees. They’re like the other semantic atoms – the

sentence letters – in not being further broken down in a truth tree.

For universal and existential generalizations, truth comes by way of

instances, which act as semantic stand-ins for the scope formula. Based on

the truth value of the instances, the quantifier yields a value for the whole

quantified sentence. So while the truth value of a quantified sentence does

depend on the truth value of a smaller sentence, that smaller sentence is not,

technically, a part of that larger whole. (It’s the scope formula which is part

of a quantified sentence – not its stand-in, the instance.)

That will mark something unprecedented in truth trees. For truth tree rules

have so far ‘un-built’ a sentence the same way a construction tree would –

only with truth values added. But, following the semantic developed so far,

truth tree rules for existential and universal generalizations will not break

such a sentence into its immediate part (the scope formula), but instead into

close relatives of that sub-part (one or more instances).

That innovation poses a new challenge: since there is no end to the number

of instances we can build for a quantified sentence, truth trees threaten to

spin out of control unless the rules for quantified sentences are constrained.

To ensure a finite test, truth tree rules will need to focus on just those

instances useful either to constructing a counterexample for the argument, or

to showing that no such counterexample exists.

5-2 Chapter Five: Names, Predicates, Quantifiers

1. True Existentials, False Universals. Consider first a true existential

sentence such as “Something is made of steel,” translated into the formal

language as follows.

“Something is made of steel.”

G: is made of steel.

∃xGx

For this existential sentence to be true, there must be at least one true

instance of its scope formula “Gx” – for example, “GA”.

Instance of Gx: GA (A/x)

Our truth tree rule for true existentials reflects this.

  ∃xGx

 GA

In general: if an existential sentence is true, some instance of it is true.

True Existential (First Draft)

  ∃x

 I

(Here I is an instance of the scope formula .)

5.12. Quantifier Truth Tree Rules 3.6.17 5-3

But we must restrict this rule to avoid mistaking invalid arguments for valid

ones. The following argument, for instance, is glaringly invalid.

1. Something is made of steel.

 Rex is made of steel.

Adapting the previous translation key, we translate like so.

A: Rex

G: is made of steel.

1. ∃xGx

 GA

The tree test begins as usual: premises on the left, conclusion on the right.

 ∃xGx

 GA

But if we now build an instance “GA,” the tree will close – because the atom

“GA” is on both the left and right of the line.

  A Bad Tree 

  ∃xGx

 GA

 GA

 

In closing every line, the tree judges the original argument to be valid –

clearly the wrong result.

5-4 Chapter Five: Names, Predicates, Quantifiers

Our misstep came in using the instance “GA” – in English, “Rex is made of
steel”. The true existential sentence “Something is made of steel” certainly

promised us that some-object-or-other is made of steel. But it was a bold

and invalid leap to assume that the object in question was Rex.

The same sort of mistake is illustrated in the following passage.

Someone broke in to the museum between midnight and 2 AM, and

stole the crown jewels. Let’s call that person “Rex”. So then: Rex

broke into the museum and stole the jewels. Quick – grab Rex before

he gets away!

While it’s fine to call the thief “Mr. X,” or some other name that no one is

using, the name “Rex” was already taken; so it was far from innocent to use

that name for the burglar.

To avoid this sort of error, we insist that with a true existential the name

used in its instance can’t already be used by something in the model – or

that tree path. For true existential sentences the name used in the instance

must be new to that path – i.e., a name not appearing previously on that path

of the tree.

True Existential

  ∃x

 I

(Restriction: I must use a new name letter)

False universal sentences present a parallel case. With a true universal, all

of its instances must be true. And that means even one false instance

suffices for a false universal sentence.

5.12. Quantifier Truth Tree Rules 3.6.17 5-5

So: a false universal sentence is guaranteed to have at least one false

instance – as the tree rule recognizes.

False Universal (First Draft)

 ∀x 

 I

But again we had better restrict the name in that instance, if we don’t want

the tree test to yield mistaken judgments of validity. The following English

argument is clearly invalid.

1. The Cathedral of Learning is made of limestone.

 Everything is made of limestone.

B: The Cathedral of Learning

H: is made of limestone.

1. HB

 ∀x Hx

Testing the formal argument for validity begins as usual.

 HB

 ∀x Hx

5-6 Chapter Five: Names, Predicates, Quantifiers

But the false instance “HB” leaves that atom on both the left and right sides

of the line – hence marking the argument valid.

  A Bad Tree 

 HB

 ∀x Hx 

 HB

 

Again the error lay in allowing the instance to use a name already appearing

on that tree path. We therefore impose the same restriction on the False

Universal Rule.

False Universal

 ∀x 

 I

(Restriction: I must use a new name letter)

2. True Universals, False Existentials: ‘Star Rules’. Compared with the

truth tree rule for the false universal, the rule for a true universal sentence is

quite simple. A true universal requires a true instance for every name used

in the model.

5.12. Quantifier Truth Tree Rules 3.6.17 5-7

So for this model, featuring name letters “A,” “B,” and “C,” the true

universal “∀x Gx” brings in its wake a true instance for each.

𝔻: {2, 3, 4}

A: 2 G: {2, 3, 4}

B: 3

C: 4

Instances of “∀x Gx”:

GA: 1 (A/x)

GB: 1 (B/x)

GC: 1 (C/x)

That means that, unlike the previous tree rules for quantified sentences, the

rule for a true universal won’t be finished with just one instance. And while

we used a three-name model here for illustration, in building a tree we won’t

know in advance how many objects (or names) might be needed for a

validity counterexample.

Indeed, in the course of a truth tree for an invalid argument we back our way

into the appropriate model – just as, in previous chapters, we backed into a

valuation which qualified as a counterexample. Instead of beginning with a

model (and then constructing the appropriate instances) as we did in the

above example, in a truth tree we have the model only when the tree is

completed. And without a ready-made model to appeal to, we won’t know

in the course of the tree how many instances are called for.

Yet it would be madness for the tree rule to require every possible instance.

For with an infinite number of name letters in the formal language, an

infinite number of instances are possible for a quantified sentence. A tree

rule requiring an infinite number of steps creates a truth tree test that never

ends, for any (finite) number of steps – and that’s no test at all.

True universals thus pull us in opposite directions: potentially requiring any

number of instances, yet also requiring a cap on that number to keep the test

from spinning out of control.

5-8 Chapter Five: Names, Predicates, Quantifiers

We address the first requirement with an addition to our bookkeeping

notation. Whereas all previous tree rules checked a molecular sentence, and

never returned to it, when extracting a true instance from a true universal we

instead star the universal sentence – thereby noting that we may return to it

later for further instances.

True Universal

 * ∀x

 I

We cap the potential explosion of instances with two restrictions.

First, so long as there are already one or more name letters on that tree path,

the True Universal rule builds instances only for those names. That is: the

True Universal rule will never introduce new name letters (provided

there’s already a name letter on that path). Whereas we applied the True

Existential and False Universal rules only to new name letters, here we do

basically the opposite: whenever possible applying the True Universal rule

only to ‘old’ name letters.

In the following tree, with name letters “A” and “B” already appearing, we

build two instances for “∀x Gx”: “GA” and “GB”.

 HA

 ∀x Gx

 HB

5.12. Quantifier Truth Tree Rules 3.6.17 5-9

So in these three applications of the True Universal rule, the third is

improper, since it builds an instance for new name letter “C”.

  A Bad Tree 

 HA

 *∀x Gx

 HB

GA

 GB

 GC

We will, however, apply the True Universal Rule to ‘old’ (i.e. pre-existing)

names whenever possible – specifically, to every ‘old’ name letter on that

path. Since two name letters, “A” and “B,” were already present in that last

tree, it would have been equally improper to build only “GA” with the True

Universal rule; for in leaving out instance “GB” we overlook ‘old’ name

“B”.

The proper application of the True Universal Rule in this case is as follows.

 HA

 *∀x Gx

 HB

GA

 GB

Second, in applying truth tree rules we push the True Universal rule to the

back of the line. That is: we perform such a ‘star’ rule (a rule starring its

sentence, rather than checking it) only after completing all the available

‘check’ rules. That way, any name letters to be added by check rules (True

Existential, False Universal) will already be on the scene.

5-10 Chapter Five: Names, Predicates, Quantifiers

In practice those two restrictions work like so: beginning with a tree that

may already contain name letters, we milk out as many more name letters as

possible with the True Existential and False Universal Rules. Only after that

do we apply the True Universal rule – building an instance for each of the

names already found on that path of the tree.

The rule for false existential sentences is the mirror image of the True

Universal rule. Since an existential sentence is true so long as even one

instance is true, it is false only if every one of its instances is false.

Again we face a potential infinity of instances (here, false ones): if the

sentence “Something is a unicorn” is false, then also false will be the

sentences “Neko is a unicorn,” “Jack is a unicorn,” and so on. The

consequences are the same as with a true universal. First: no one instance

exhausts the potential of a false existential. Second: any attempt to build all

possible instances is doomed to infinite regress.

Our solution is the same as well. In recognition of its unlimited potential, a

false existential sentence is starred, not checked – leaving open the

possibility of revisiting it later for further instances.

False Existential

 ∃x*

 I

Once again we apply this ‘star’ rule only after all available ‘check’ rules are

used – seeking, whenever possible, to build an instance for (all and) only the

names already present on that tree path.

A final point completes our treatment of the ‘star’ rules. We said earlier that

‘star’ rules apply only to ‘old’ names so long as there are already (one or

more) name letters on that line of the tree. We appreciate the importance

of that final proviso (“so long as…”) when considering a case where no

names appear, and only ‘star’ sentences remain to be broken down. The

following valid argument provides an example.

5.12. Quantifier Truth Tree Rules 3.6.17 5-11

1. Nothing is a unicorn.

 Not everything is a unicorn.

G: is a unicorn

1. ~∃x Gx

 ~∀x Gx

The truth tree test of validity begins as always; and we can easily dispatch

the tildes in “~∃x Gx” and “~∀x Gx” with the True Negation and False

Negation rules.

  ~∃x Gx

~∀x Gx 

 ∃x Gx

 ∀x Gx

But then we hit a wall. Since false existentials and true universals are ‘star’

sentences, we seek to build instances of them using only names already

present on that tree path. Yet no names are present, and no ‘check’ rules can

be applied to supply a name. Counting the tree as finished, however, would

wrongly judge the argument invalid.

We need a single name here to break the logjam. So we add: if, in breaking

break down a ‘star’ sentence, there are no name letters present on that path

of the tree, nor further ‘check’ sentences to supply names, we allow the

‘star’ sentence to introduce one new name letter as an “ice-breaking

maneuver.

5-12 Chapter Five: Names, Predicates, Quantifiers

Here, for example, we allow “∃x Gx” to introduce an instance by the False

Existential rule. (But then: no further new name letter may be introduced by

‘star’ sentences on this tree line.)

  ~∃x Gx

~∀x Gx 

 ∃x Gx *

 ∀x Gx

 GA

The True Universal rule then obligatorily applies “∀x Gx” to “A”.

  ~∃x Gx

~∀x Gx 

 ∃x Gx *

 * ∀x Gx

 GA

 GA

With “GA” on both sides of the line, the tree closes – correctly judging the

argument valid.

  ~∃x Gx

~∀x Gx 

 ∃x Gx *

 * ∀x Gx

 GA

 GA

 

With this last-resort, ‘ice-breaking’ policy in place, our account of the “star”

rules is complete.

5.12. Quantifier Truth Tree Rules 3.6.17 5-13

Summary: Quantifier Truth Tree Rules

 True Existential False Existential

  ∃       ∃  *

 I I

(Restriction: I must use a new name letter)

 True Universal False Universal

 * ∀       ∀  

 I I

(Restriction: I must use a new name letter)

 ‘Star’ rules apply to a line after all ‘check’ rules for quantifiers

have been made.

 A ‘star’ sentence makes instances to all and only name letters

already on its line of the tree.

(‘Ice-breaking’ Exception: if there are no name letters on the

tree line, nor any ‘check’ rules on that line to introduce name

letters, a ‘star’ rule can introduce one new name letter.)

