3.9. Nested Conditional Form

1. Nested Conditionals. We established already that the language {—, ~} is
expressively adequate, because it is provably equivalent to a language such as

{A, ~} which is known to be expressively adequate. But that argument didn’t
provide the sort of general procedure we had in DNF, for matching each truth table
with a corresponding sentence. Here we return to the {—, ~} language and
consider how to build a {—, ~} sentence for any given truth table. Central to this
task will be understanding a nested conditional matching a series of sentences.

A series of sentences is just a list of sentences, in a certain order. (We show the
intended order in the usual way: starting from the left, we list the first sentence in
the series, the second, and so on.) The following is a simple example.

~P,(PA~Q), (RVS)
Corresponding to such a series of sentence letters we build a nested conditional: a
conditional containing a smaller conditional as consequent, where that smaller
conditional may itself contain a (yet) smaller conditional as consequent, and so on.
We build a nested conditional out of a series of sentences by working our way
backwards through the list. We first building a conditional with the last sentence

as consequent and next-to-last letter as antecedent. So from the above series of
three sentences we begin like this.

(PA~Q)—(RvYS))

If there is a yet earlier sentence in the series — here, “~P”” — we build a conditional
with the previous conditional as consequent and this sentence as antecedent.

(~P=>((PA~Q) —>(RVYS))

3.9. Nested Conditional Form 5.8.17 3-121

After doing this as many times as needed to include each sentence in the series, we
have a nested conditional that correspond to the original series of sentences.

~P,(PA~Q),(RVYS)

(~P=>((PA~Q) —(RVYS))

And while such a series can contain any sort of formal sentence from our current
formal language, we will be especially interested in series of sentence letters,
listed in alphabetical order! — for example, the following.

P,Q,R,S

Corresponding to such a series of sentence letters we build a nested conditional.
So the above series of sentence letters yields this nested conditional.

P->Q—->R-Y9))

So a nested conditional of sentence letters corresponds to a series of sentence
letters in the following general pattern.

A series of sentence letters is a list of sentence letter listed in alphabetical

order (with the first sentence listed first, i.e., on the left; followed by the
second letter, and so).

@, ..., @, (for k many sentence letters)

! To be completely general: sentence letters are listed in the order “P”, “Q” ... “Z”, “P1” “Q1” ... “Z1”, “P2”, etc.

3-122 Chapter Three: “If” (And More)

A nested conditional corresponding to this series is a conditional with the
first letter in the list, @1, as antecedent, and as consequent a smaller
conditional itself having the second letter in the list, @, as antecedent, and
so on, ending with a conditional having the next-to-last sentence ®y.; as
antecedent and last sentence @y as consequent.

(‘1%(oo (.k'l% .k) "'))

We will then modify this nested conditional by inserting tildes before some
sentence letters. Our goal will be to replicate the behavior of valuation and
counter-valuation sentences, but phrased entirely in the language {—, ~}.

Recall that a valuation sentence is a sentence in the language {~, A}) true in
exactly one valuation, while a counter-valuation sentence is a sentence of the

{~, v} language false in just one valuation. 2 To construct a {—>, ~} counterpart of
a counter-valuation sentence, we first build a nested conditional featuring just the
sentence letters listed in that valuation. So for the following valuation we begin
with this nested conditional.

Valuation:

P|Q|R| S
1\0\1\1

(P—>(Q—->R—Y9)

2 Discussed in 2.26 and 2.27. Note that semantically conditionals are more like disjunctions than like conjunctions,
because in the semantics both the disjunction and conditional rules are true in three out of the four lines. The result,
with disjunctions, was a counter-valuation sentence (built from a family of sentence letters) false in only one
valuation. So we’ll find it easiest here to replicate that result with conditions and negations (and then simulate a
valuation sentence by adding a tilde).

3.9. Nested Conditional Form 5.8.17 3-123

Next we add tildes according to following rule.

For all but the last sentence letter: add a tilde to that sentence letter if (and
only if) that letter is false in the given valuation.

For the last sentence letter: add a tilde if (and only if) that letter is true in
the given valuation.

So we modify the nested conditional by adding tildes: to “Q” (because it’s false in
this valuation) and to “S” (because it’s the last letter and is true in this valuation).

Valuation:

P|Q|R| S
1 1] 1

(P—>(-Q—>(R—~9)

We know from the semantic rule for conditionals that this sentence will be false in
only one sort of valuation: where the antecedent “P” is true but the consequent is
false. And the only valuation where the consequent “(~Q — (R — ~S)) is false is
one where “~Q” is true (hence where “Q” is false) and the consequent “(R — ~S)”
is false. Finally, “(R — ~S)” is false only where its antecedent “R” is true and its
consequent “~S” is false (hence where “S” is true).

Summing up: “(P = (~Q > (R —> ~3)))” is false only where “P” is true, “Q” is
false, “R” is true, and “S” is true. But that’s just the valuation we started with.
So by adding tildes to a nested conditional we get a conditional false in exactly the
valuation given. We thus have a general recipe for building the {—, ~}
counterpart to a counter-valuation sentence — call it a “counter-valuation
conditional”.

Counter-Valuation Conditional: a nested conditional false in exactly one
valuation.,

3-124 Chapter Three: “If” (And More)

And since such a sentence is false only in the valuation given, its negation will be
true only in that valuation. So from a given valuation we can build the negation of
a nested conditional which is true in just that valuation. Call such a negation of a
counter-valuation conditional a “valuation negation”.

Valuation Negation: the negation of a counter-valuation conditional (hence:
the negation of a nested conditional, which is true in exactly one valuation)

So “~(P - (-Q = (R — ~S)))” is true only where “P” is true, “Q” is false, “R”
is true, and “S” is true.

And of course, beginning with a valuation negation we can always work
backwards to see which valuation makes it true, by modifying the earlier tilde-
inserting rules.

For all but the last sentence letter: that letter is false in the given valuation
if it has a tilde before it (and true in that valuation if has no tilde).

For the last sentence letter: that letter is true in the given valuation if it has
a tilde before it (and false in that valuation if has no tilde)

For instance, the sentence “~(~P > (Q > (R > (=S —> ~T)))” is (in a 32-
valuation truth table for “P” through “T”) true in just the following valuation.

P/ Q|R|S | T
o 1]1]o0] 1

2. Nested Conditional Form. Recall that once we had valuation sentences in hand
in Chapter Two, we could match any single valuation with a corresponding {~, A}
sentence (namely, a valuation sentence). But for a sentence true in more than one
valuation we proceeded to build a disjunction of valuation sentences (one
valuation sentence matching each valuation where that sentence is true) — resulting
in Disjunctive Normal Form (DNF). An equivalent move, performed in a manner

3.9. Nested Conditional Form 5.8.17 3-125

not taking us outside the {~, —»} language, calls for a {~, -} equivalent of a
disjunction.

That is easily come by — for “(P v Q)” is equivalent to “(~P — Q),”

“(Pv (QvR))”is equivalent to “(~P — (~Q — R)),” and so on. In general:
for a set of (two or more) valuation negations {~A1, ..., ~An}, each true in
exactly one valuation, we can build a nested conditional of the general form

(Al — (Az - ... (A|\/|-1 — “'A|v|)).3

For example, the following truth table makes a (mystery) sentence true in just the
first and last valuations.

O|O|R|—|T
olr|orO
==l N

For the first valuation we build the valuation negation “~(P — ~Q)”, and for the
fourth the valuation negation “~(~P — Q)”. To disjoin them together we build the
nested conditional “(~~(P — ~Q) —» ~(~P — Q))”. Clearing the double negation

from the antecedent leaves “((P — ~Q) — ~(~P — Q))”. This sentence matches
the truth table.

PIQIPIQIP>-Q|(-P>Q) |~(-P>Q)|(P>~Q) —>~(-P>Q))
110 0 0 1 0 1
1700 1 1 1 0 0
0|11 0 1 1 0 0
0j0|1 1 1 0 1 1
3 Since the valuation negations {~ A1, ..., ~Awm} already begin with a tilde, inserting these negations into a sentence

of the form “(~@®1 — (... > (~®n.1 — O®y)...)” (where all of the antecedents are negated) yields a nested
conditional of the form “(~~A&1— (... > (~~Am1 —> ~Awm)...)". Eliminating double negations on the
antecedents yields the simplified form listed above: “(A1— (... > (Am1—> ~Awm)...)".

3-126 Chapter Three: “If” (And More)

A sentence true in one valuation is thus equivalent to a valuation negation, and a
sentence true in more than one valuation is equivalent to a nested conditional of
valuation negations and a counter-valuation conditional. We round out this list by
assigning ~(P — P) to the truth table false in every valuation.

Call any sentence in one of these forms a sentence in Nested Conditional Form
(NCF). We are guaranteed that any possible truth table will be matched by some
NCF sentence; and all these sentences are in the {~, —} language. We thus have a
general method for finding a {~, —} sentence for any given truth table.

3.9. Nested Conditional Form 5.8.17

3-127

Summary

Nested Conditionals:

e A series of sentence letters is a list of sentence letter listed in
alphabetical order (with the first sentence listed first, i.e., on the
left; followed by the second letter, and so).

®,, ..., O, (for k many sentence letters)

e A nested conditional corresponding to this series is a conditional
with the first letter in the list, @1, as antecedent, and as consequent
a smaller conditional itself having the second letter in the list, @,
as antecedent, and so on, ending with a conditional having the

next-to-last sentence @ .1 as antecedent and last sentence @y as
consequent.

Counter-Valuation Conditionals: a counter-valuation conditional is a
nested conditional false in exactly one valuation. From a given
valuation, a counter-valuation conditional is built from a nested
conditional according to the following rule.

e For all but the last sentence letter: add a tilde to that sentence
letter if (and only if) that letter is false in the given valuation.

e For the last sentence letter: add a tilde if (and only if) that letter is
true in the given valuation.

3-128 Chapter Three: “If” (And More)

Valuation Negation: the negation of a counter-valuation conditional
(hence: the negation of a nested conditional, which is true in exactly one
valuation)

A sentence is in Nested Conditional Form (NCF) if it is in one of the
following three forms.

e For atruth table true in just one valuation, the corresponding NCF
sentence is the valuation negation true in that valuation.

e For atruth table true in more than one valuation, where each
valuation is matched by a valuation negation, the corresponding
NCF sentence is a nested conditional of those valuation negation
built according to the following rule.

For a set of (two or more) valuation negations

{~A,, ..., ~ Ay}, each true in exactly one valuation, build a
nested conditional of the general form:

(Al—)(Az—) (AMl—)“‘AM))

This sentence will be true in just those valuations where the truth
table is true.

e For atruth table false in every valuation, the corresponding NCF
sentence is the negated conditional “~(P — P)”.

