3.16.1. Derived Rule Problems

For each of the following deductive systems, show that one or more of our
deductive rules are derived rules in that system (by constructing a deduction
of that rule, in that system).

1. Show that the rule MP can be treated as a derived rule in our Chapter
Three deductive system, by providing a deduction of the argument
“(P—>Q).P .. Q”that doesn’t use MP.

2. Show that the rule MT can be treated as a derived rule in our Chapter
Three deductive system, by providing a deduction of the argument
“(P—>Q).~Q .. ~P” that doesn’t use MT.

3. The deductive system DS1 has only ID, plus the the rules A—, A+, v—,
v+, and “Negated Conditional” (“~—").

Negated Conditional (~—)

~(® > A) (@ A~A)

. (@ A~A) ;. ~(® > A)

Thanks to ~—, any CD from our system of deduction can be converted into
an ID in DS1.!

3a. Show that MT is a derived rule in DS1.

3b. Show that MP is a derived rule in DS1.

! Because DS2 has ID and the rules v — and v+, the rules R, ~—, and ~+ are already derived rules in this
system — as shown in 2.40.1 Problems 2, 3, and 5.
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4. The deductive system DS2 is like our Chapter Three deductive system
except that it lacks the rule v—and instead has the rule Separation of Cases
(SC).

Separation of Cases (SC)

(®vY)
(® > A)
(Y>> A)

A

So the following argument is an example of (SC).

1.(PvQ)
2.(P—>R)
3.(Q—>R)

R
4a. Show that the above argument is deducible in the Chapter Three
deductive system (and hence that SC can act as a derived rule in the Chapter

Three system).

4b. Show that the following argument is deducible in the system DS3 (and
hence that v— is a derived rule in DS3) using only CD, ID, R, and SC.

1.(PvQ)
2.~P

- Q
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5. The following argument is an instance of the rule Double Disjunction
(DD), discussed in Chapter Two.

1. PvQ)
2. (Pv~Q)

P

Show that Double Disjunction is a derived rule, by providing a deduction of
the above argument using only ~+, v—, SC, and CD.

6.
Separation of Cases (SC) Negated Conjunction (~A)
(OVvY) ~®
(@A)
(Y>> A) (@A)
A

Provide a deduction for the following argument using only SC, ~A, and CD.
(~Pv~Q)
S ~PAQ)
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7. Note that the argument “(P —> (P —> Q)) .. (P —> Q)” is valid. We can use
the rule Separation of Cases to explain the validity of this rule deductively:
from the sentence “(P — (P — Q)),” when accompanied by the sentences
“(Pv~P)”and “(~P - (P — Q)),” the conclusion “(P — Q)” follows as an
instance of Separation of Cases.

1. (Pv~P)

2.P> (P—>Q))

3.(~-P—>P—>0Q)

L (P>Q) 1,2,3,SC
But the other two premises, “(P v ~P)” and “(~P — (P — Q)),” are
theorems provable without appeal to premises? — in effect, built in the
deductive system. In that sense, from the deductive system alone
“(P > (P > Q))” entails “(P - Q)” by Separation of Cases.
For each of the following arguments, use Separation of Cases plus
theorems to deductively explain the validity of that argument.
7a.(PvQ). P—>Q) ..Q
70.(~-P—>P) .. P
7¢c.(P—> ~(PAQ)) .. ~(PAQ)
7d.(P—> (Q—>~P)) .. (Q—~P)

7e.(P—> Q) —>P)..P

2P v ~P)” is theorem T2.2 from 2.41.1, and “(~P — (P — Q))” is theorem T3.3b from 3.13.1 C.
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8. Using the rule Double Conditional (DC), in two forms, we can remove
Indirect Deduction and a number of rules.

Double Conditional (DC)

(1) (I1)

(® > A) (~® > A)
(®>-A) (-®>-A)

° . : .

MT, for example, can be replaced with a deduction of the following form.

1. (P>Q)
2. ~Q
&et. ~P
Get: (P - Q)
3.|P ACD
4. | ~Q 2,R
5 (P> ~Q) 3,4,CD
6. ~P 1,5,DC (1)

Provide deductions of each of the following arguments using only DC, R,
A+, A=, v+, v— and CD.

1.(P—>Q).P..Q

(Hint: use DC (II) and the MT deduction given above.)
2. P..~P
3.~—~P .. P



