5.12. Quantified Predicate Logic: Truth Trees

We adapt our earlier truth tree rules to the expanded formal semantics.

We’ve added only two new aspects to the semantics of previous chapters: a
truth rule for predicate-letter-plus-name letter, and truth rules for universal
and existential generalizations.

A predicate-letter-plus-name-letter is, in terms of truth and falsehood, an
atom (since its ‘sub-atomic’ parts — predicate letter and name letter — aren’t
themselves true or false). And for that reason these sentences pose no new
challenges for truth trees. They’re like the other semantic atoms — the
sentence letters — in not being further broken down in a truth tree.

For universal and existential generalizations, truth comes by way of
instances, which act as semantic stand-ins for the scope formula. Based on
the truth value of the instances, the quantifier yields a value for the whole
quantified sentence. So while the truth value of a quantified sentence does
depend on the truth value of a smaller sentence, that smaller sentence is not,
technically, a part of that larger whole. (It’s the scope formula which is part
of a quantified sentence — not its stand-in, the instance.)

That will mark something unprecedented in truth trees. For truth tree rules
have so far ‘un-built’ a sentence the same way a construction tree would —
only with truth values added. But, following the semantic developed so far,
truth tree rules for existential and universal generalizations will not break
such a sentence into its immediate part (the scope formula), but instead into
close relatives of that sub-part (one or more instances).

That innovation poses a new challenge: since there is no end to the number
of instances we can build for a quantified sentence, truth trees threaten to
spin out of control unless the rules for quantified sentences are constrained.
To ensure a finite test, truth tree rules will need to focus on just those
instances useful either to constructing a counterexample for the argument, or
to showing that no such counterexample exists.

5-2 Chapter Five: Names, Predicates, Quantifiers

1. True Existentials, False Universals. Consider first a true existential
sentence such as “Something is made of steel,” translated into the formal
language as follows.

“Something is made of steel.”
G: is made of steel.

IxXGX

For this existential sentence to be true, there must be at least one true
instance of its scope formula “Gx” — for example, “GA”.

Instance of Gx: GA (A/X)

Our truth tree rule for true existentials reflects this.

v IAxGx

GA

In general: if an existential sentence is true, some instance of it is true.

True Existential (First Draft)

v Ix®
L]

(Here @, is an instance of the scope formula @.)

5.12. Quantifier Truth Tree Rules 3.6.17 5-3

But we must restrict this rule to avoid mistaking invalid arguments for valid
ones. The following argument, for instance, is glaringly invalid.

1. Something is made of steel.

. Rex is made of steel.
Adapting the previous translation key, we translate like so.

A: Rex
G: is made of steel.

1. IxGx
. GA

The tree test begins as usual: premises on the left, conclusion on the right.

IxGx
GA

But if we now build an instance “GA,” the tree will close — because the atom
“GA” is on both the left and right of the line.

2 ABad Tree £

v AXGX
GA
GA

x

In closing every line, the tree judges the original argument to be valid —
clearly the wrong result.

5-4 Chapter Five: Names, Predicates, Quantifiers

Our misstep came in using the instance “GA” — in English, “Rex is made of
steel”. The true existential sentence “Something is made of steel” certainly
promised us that some-object-or-other is made of steel. But it was a bold
and invalid leap to assume that the object in question was Rex.

The same sort of mistake is illustrated in the following passage.

Someone broke in to the museum between midnight and 2 AM, and
stole the crown jewels. Let’s call that person “Rex”. So then: Rex
broke into the museum and stole the jewels. Quick — grab Rex before
he gets away!

While it’s fine to call the thief “Mr. X,”” or some other name that no one is
using, the name “Rex” was already taken; so it was far from innocent to use
that name for the burglar.

To avoid this sort of error, we insist that with a true existential the name
used in its instance can’t already be used by something in the model — or
that tree path. For true existential sentences the name used in the instance
must be new to that path — i.e., a name not appearing previously on that path
of the tree.

True Existential

v IAx®

(Restriction: @ must use a new name letter)

False universal sentences present a parallel case. With a true universal, all
of its instances must be true. And that means even one false instance
suffices for a false universal sentence.

5.12. Quantifier Truth Tree Rules 3.6.17 5-5

So: a false universal sentence is guaranteed to have at least one false
Instance — as the tree rule recognizes.

False Universal (First Draft)

VX® v
o,

But again we had better restrict the name in that instance, if we don’t want
the tree test to yield mistaken judgments of validity. The following English
argument is clearly invalid.

1. The Cathedral of Learning is made of limestone.

.. Everything is made of limestone.

B: The Cathedral of Learning
H: is made of limestone.

1. HB

oo VX HX

Testing the formal argument for validity begins as usual.

HB
V' x Hx

5-6 Chapter Five: Names, Predicates, Quantifiers

But the false instance “HB” leaves that atom on both the left and right sides
of the line — hence marking the argument valid.

£ ABad Tree &

HB

VXHX v
HB

x

Again the error lay in allowing the instance to use a name already appearing
on that tree path. We therefore impose the same restriction on the False
Universal Rule.

False Universal

Vx® v
L]

(Restriction: @ must use a new name letter)

2. True Universals, False Existentials: ‘Star Rules’. Compared with the
truth tree rule for the false universal, the rule for a true universal sentence is
quite simple. A true universal requires a true instance for every name used
in the model.

5.12. Quantifier Truth Tree Rules 3.6.17 5-7

So for this model, featuring name letters “A,” “B,” and “C,” the true
universal “VX GXx” brings in its wake a true instance for each.

D: {2, 3, 4}

G: {2, 3, 4}

Qwx
AW

Instances of “Vx Gx”:

GA: 1 (A/X)
GB: 1 (B/x)
GC: 1 (C/x)

That means that, unlike the previous tree rules for quantified sentences, the
rule for a true universal won’t be finished with just one instance. And while
we used a three-name model here for illustration, in building a tree we won’t
know in advance how many objects (or names) might be needed for a
validity counterexample.

Indeed, in the course of a truth tree for an invalid argument we back our way
into the appropriate model — just as, in previous chapters, we backed into a
valuation which qualified as a counterexample. Instead of beginning with a
model (and then constructing the appropriate instances) as we did in the
above example, in a truth tree we have the model only when the tree is
completed. And without a ready-made model to appeal to, we won’t know
in the course of the tree how many instances are called for.

Yet it would be madness for the tree rule to require every possible instance.
For with an infinite number of name letters in the formal language, an
infinite number of instances are possible for a quantified sentence. A tree
rule requiring an infinite number of steps creates a truth tree test that never
ends, for any (finite) number of steps — and that’s no test at all.

True universals thus pull us in opposite directions: potentially requiring any
number of instances, yet also requiring a cap on that number to keep the test
from spinning out of control.

5-8 Chapter Five: Names, Predicates, Quantifiers

We address the first requirement with an addition to our bookkeeping
notation. Whereas all previous tree rules checked a molecular sentence, and
never returned to it, when extracting a true instance from a true universal we
Instead star the universal sentence — thereby noting that we may return to it
later for further instances.

True Universal

* Vx®
L]

We cap the potential explosion of instances with two restrictions.

First, so long as there are already one or more name letters on that tree path,
the True Universal rule builds instances only for those names. That is: the
True Universal rule will never introduce new name letters (provided
there’s already a name letter on that path). Whereas we applied the True
Existential and False Universal rules only to new name letters, here we do

basically the opposite: whenever possible applying the True Universal rule
only to ‘old’ name letters.

In the following tree, with name letters “A” and “B” already appearing, we
build two instances for “Vx Gx”: “GA” and “GB”.

HA

VX Gx
HB

5.12. Quantifier Truth Tree Rules 3.6.17 5-9

So in these three applications of the True Universal rule, the third is
Improper, since it builds an instance for new name letter “C”.

£ ABad Tree &

HA

-*Vx Gx

HB
—> GA
—> GB
—> GC

We will, however, apply the True Universal Rule to ‘old’ (i.e. pre-existing)
names whenever possible — specifically, to every ‘old’ name letter on that
path. Since two name letters, “A” and “B,” were already present in that last
tree, it would have been equally improper to build only “GA” with the True
Universal rule; for in leaving out instance “GB” we overlook ‘old’ name
“B”.

The proper application of the True Universal Rule in this case is as follows.

HA

-*Vx GX

HB
—> GA
—> GB

Second, in applying truth tree rules we push the True Universal rule to the
back of the line. That is: we perform such a ‘star’ rule (a rule starring its
sentence, rather than checking it) only after completing all the available
‘check’ rules. That way, any name letters to be added by check rules (True
Existential, False Universal) will already be on the scene.

5-10 Chapter Five: Names, Predicates, Quantifiers

In practice those two restrictions work like so: beginning with a tree that
may already contain name letters, we milk out as many more name letters as
possible with the True Existential and False Universal Rules. Only after that
do we apply the True Universal rule — building an instance for each of the
names already found on that path of the tree.

The rule for false existential sentences is the mirror image of the True
Universal rule. Since an existential sentence is true so long as even one
instance is true, it is false only if every one of its instances is false.

Again we face a potential infinity of instances (here, false ones): if the
sentence “Something is a unicorn” is false, then also false will be the
sentences “Neko is a unicorn,” “Jack is a unicorn,” and so on. The
consequences are the same as with a true universal. First: no one instance
exhausts the potential of a false existential. Second: any attempt to build all
possible instances is doomed to infinite regress.

Our solution is the same as well. In recognition of its unlimited potential, a

false existential sentence is starred, not checked — leaving open the
possibility of revisiting it later for further instances.

False Existential

Ix@*

Once again we apply this ‘star’ rule only after all available ‘check’ rules are
used — seeking, whenever possible, to build an instance for (all and) only the
names already present on that tree path.

A final point completes our treatment of the ‘star’ rules. We said earlier that
‘star’ rules apply only to ‘old’ names so long as there are already (one or
more) name letters on that line of the tree. We appreciate the importance
of that final proviso (“’so long as...”) when considering a case where no
names appear, and only ‘star’ sentences remain to be broken down. The
following valid argument provides an example.

5.12. Quantifier Truth Tree Rules 3.6.17 5-11

1. Nothing is a unicorn.

. Not everything is a unicorn.
G: isa unicorn

1. ~3xGx

o ~VxGx

The truth tree test of validity begins as always; and we can easily dispatch
the tildes in “~3ax Gx” and “~Vx Gx” with the True Negation and False
Negation rules.

v ~3X GX
~VxGx v
dx Gx

Vx Gx

But then we hit a wall. Since false existentials and true universals are ‘star’
sentences, we seek to build instances of them using only names already
present on that tree path. Yet no names are present, and no ‘check’ rules can
be applied to supply a name. Counting the tree as finished, however, would
wrongly judge the argument invalid.

We need a single name here to break the logjam. So we add: if, in breaking
break down a ‘star’ sentence, there are no name letters present on that path
of the tree, nor further ‘check’ sentences to supply names, we allow the
‘star’ sentence to introduce one new name letter as an “ice-breaking
maneuver.

5-12 Chapter Five: Names, Predicates, Quantifiers

Here, for example, we allow “dXx GX” to introduce an instance by the False
Existential rule. (But then: no further new name letter may be introduced by
‘star’ sentences on this tree line.)

v ~dXx GX
~VxGx v
Ix Gx*
Vx Gx
GA

The True Universal rule then obligatorily applies “Vx Gx” to “A”.

v ~3Ax GX
~VxGX v
Ix Gx*
* VX Gx
GA
GA

With “GA” on both sides of the line, the tree closes — correctly judging the
argument valid.

v ~dX GX
~VxGx v
Ix Gx*
* VX Gx
GA
GA
x

With this last-resort, ‘ice-breaking’ policy in place, our account of the “star”
rules is complete.

5.12. Quantifier Truth Tree Rules 3.6.17 5-13

Summary: Quantifier Truth Tree Rules

True Existential False Existential
v dx @ =k 4 o
o, o,

(Restriction: @ must use a new name letter)

True Universal False Universal
*Vx @ V@
o, o,

(Restriction: @, must use a new name letter)

e “Star’ rules apply to a line after all ‘check’ rules for quantifiers
have been made.

e A ‘star’ sentence makes instances to all and only name letters
already on its line of the tree.

(‘Ice-breaking’ Exception: if there are no name letters on the
tree line, nor any ‘check’ rules on that line to introduce name
letters, a ‘star’ rule can introduce one new name letter.)

