5.11. Models, Quantifiers, and Validity: Examples

With formal semantics in hand for names and predicate letters and
quantifiers, we can at last tackle the real topic of interest in logic: the
validity of arguments.

In sentence logic the informal notions surrounding validity were retooled in
terms of valuations — so that a validity counterexample became a valuation
where all the premises of the argument are true, but the conclusion false.
Now that we have recast our semantics in terms of models, a validity
counterexample will be a model where all the premises of the argument are
true, but the conclusion false.

What follows are simple examples illustrating the mechanics of validity
within this enhanced semantics.

Example 1. The following English argument appears intuitively invalid.

1. Some men are Americans.
2. Socrates is a man.

. Socrates is an American.

For a situation where only some men are American, and Socrates is among
the non-American men, would be a validity counterexample for this
argument.

Evaluating the argument for validity formally involves securing its logical
form via translation, and testing that form semantically. Using the following
translation key, the argument translates formally like so.
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A: Socrates H: is an American
G:isaman

1. X (Gx A HX)
2. GA

~ HA

As in previous chapters, it is shrewd to test for validity indirectly: assuming
a validity counterexample for the argument, then appealing to the formal
semantics to assess the coherence of that assumption. So here we picture a
validity counterexample, with both premises true and the conclusion false.

1 1.3x(Gx A Hx)
1 2. GA

0 .. HA
Any model must have a certain minimal structure, which we can set out

from the outset. First, every model must have a domain containing at least
one object.

D: {2}
Since we also require every object to have a name, we call Object 2 “A”.
D: {2}
A:2

This argument uses two predicates, “G” and “H”. Each predicate must have
an extension in the model — though each such extension may be empty.
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So we begin with that minimum commitment: an empty extension for each
predicate letter.

D: {2}

A:2 G:{}
H: {}

From there we fill in further details of the alleged counterexample in light of
the truth conditions for each sentence in the argument.

For instance, the second premise “GA” is true here. So the referent of “A” —
Object 2 — must be in the extension of “G”. Likewise the conclusion “HA” is
false; so Object 2 must not be in the extension of “H”.

1 1.3x(Gx A Hx)
1 2. GA

0 .. HA

D: {2}

A:2 G: {2}
H: {}

The first premise is a true existential sentence, requiring for its truth at least
one true instance, obtained from its scope formula “(Gx A Hx)” by replacing
every free “x” with a name letter from the model.

The model so far uses only name letter “A”. But the instance “(GA A HA)”
won’t be true as the model stands; for with “GA” true and “HA” false, the
conjunction “(GA A HA)” will be false.

And it’s no good trying to fix this by adding Object 2 to the extension of
“H”. While that would make “(GA A HA)” true, it would do so only by
making “HA” true. But then the conclusion of the argument would be true,
disqualifying the model as a validity counterexample.
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Instead we need to add another object to our model — say, Object 3 — with a
corresponding name letter, “B”.

D: {2, 3}

G: {2}

A2
B:3 H: {}

With name letter “B” added, the model yields another instance for Premise
1: “(GB A HB)”. For that conjunction to be true, both “GB” and “HB” must
be true. So we add Object 3 to the extensions of “G” and “H”

1 1.3x(Gx A Hx)

1 2. GA
0 .. HA
D: {2, 3}
A:2 G: {2, 3}
B:3 H: {2}

Instances of “3IX (GX A Hx)”:

(GAAHA):O (A/X)
(GBAHB): 1 (B/x)

With at least one true instance, the first premise is true. And since “A” has
its referent in the extension of “G” but not of “H”, the second premise is
true, but the conclusion is false. This model thus qualifies as a validity
counterexample for the argument, establishing the argument’s invalidity.
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Example 2. Consider next this simple English argument.

1. All men are mortal.

.. Raphael is mortal.

Intuitively the argument seems invalid, since Raphael may not be a man.We
translate this into formal language using the following translation key.

1. All men are mortal.

.. Raphael is mortal.

A: Raphael G:isaman
H: is mortal

1. VX (GX = HXx)

. HA
Again we assume a validity counterexample for the argument.

1 1.vx(Gx — Hx)

0 .. HA

As always, we begin our model minimally, with at least one named object,
and empty extensions for all the predicate letters in the argument.

D: {2}

A:2 G:{}
H: {}

Since “HA” is false, we leave Object 2 out of the extension of “H”. But do
we need another object, to make the premise true?

In fact we don’t; for the model as it stands already makes that sentence true.
Premise (1) is a universal sentence, true only if each of its instances in the



5-6 Chapter Five: Names, Predicates, Quantifiers

model is true. Since “A” is the only name in the model, there is only one
instance for Premise (1).

D: {2}

A: 2

= -
—

(GA —> HA)

Object 2 is not in the extension of “G” or “H,” rendering both “GA” and
“HA” false; so the conditional “(GA — HA)” is true.

Since all (one) of its instances are true in the model, the universal sentence
“¥X (Gx — Hx)” is true as well. So the model already makes the premise
true and the conclusion false — qualifying as a validity counterexample. No
further objects are needed in its domain. (In a world populated only by the
immortal angel Raphael, all men in that world would be mortal — all zero of
them — but Raphael wouldn’t be.)

A Remark on Universals and Truth

While that last result might seem unintuitive, our semantics for
universal sentences makes the following universal sentence true
when there are no objects that are G.

VX (GX = HXx)

That is a direct consequence of the semantic rule for conditionals
— specifically, that a conditional with a false antecedent is true.
For with no object in the extension of “G”, any instance for “(Gx
— Hx)” is a conditional with a false antecedent, hence a true
conditional.
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By the same token, with no objects in the extension of “G” the
following universal will also be true.

VX (GX = ~HX)
For again: the antecedent of each instance will be false, rendering
every instance true — and so making the universal sentence true as
well.
In the actual world where there are no unicorns, for example, our
formal semantics counts both “All unicorns are pink™ and “All
unicorns are non-pink™ as true in our world.

But the oddness of having both universals true is ‘quarantined’.
For the only time both

(1) Vx(Gx = HXx)

and
(2) VX(Gx = ~Hx)

are both true is when no object is G — that is, when the sentence
(3) ~axGx

Is also true.

In fact, we will show that Sentence (3) follows validly from (1)

and (2). Likewise Sentences (1) and (2) follows validly from the
sentence (3).
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Example 3. Next we consider a slightly more complex English argument.

1. All doctors are university graduates.
2. Some doctors are women.

.. Some women are university graduates.
The following translation key translates the argument formally like so.

1. All doctors are university graduates.
2. Some doctors are women.

.. Some women are university graduates.

G: __isadoctor
H: s auniversity graduate
I isawoman

1. VX (GXx = HXx)
2. AIX(GX A IX)

S 3AX(IX A HX)

We assume a validity counterexample.

1 1. vX(Gx = Hx)
1 2.3x(GxAlx)

0 .. 3ax(Ix A HX)

As usual we begin the model minimally, with one named object and an
empty extension for each predicate letter in the argument.

D: {2}

~— I
A A
e
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1 1. vx(Gx — Hx)
1 2.3Ix(Gx A IX)

0 .. Ix(Ix A HX)
Since the second premise is true, it must have at least one true instance. To
keep our model as lean as possible, we try having Object 2 yield that true
instance, “(GA A 1A)”.

For that conjunction to be true, both its parts must be true. So Object 2 must
be in the extension of both “G” and “I”.

D: {2}

2}
¥
2}
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The first premise “vx (Gx — Hx)” is also true. For a universal sentence to
be true in a model, every one of its instances must be true in the model.
With “A” the only name in the model so far, “(GA — HA)” must be true.

Since Object 2 is already in the extension of “G,” the antecedent of that
conditional, “GA,” is already true. The truth rule for conditionals tells us
there’s only one way to have the whole conditional and its antecedent true at
the same time: when the consequent is also true.
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Hence the consequent “HA” must also be true. Object 2 must be in the
extension of “H”.

D: {2}

A:2 G: {2}
H: {2}
I: {2}
1 1. vx(Gx—>Hx) v
1 2.3x(GxAlx) v

0 .. 3Ix(Ix AHx)

The conclusion “3Ix (Ix A Hx)” is false, so every instance must be false.
With only one name letter “A” in the model, there is only one such instance:
“(1A AHA)”. So “(IA A HA)” must be false.

But it’s not possible for “(IA A HA)” to be false in this model. With Object
2 already in the extension of both “I”” and “H,” both “IA” and “HA” are true
— making the conjunction “(IA A HA)” true as well. And with at least one
true instance, the conclusion is then true.

So there’s no possible way the premises of this argument could be true,
while the conclusion is false. That is: if the premises are true, the conclusion
must also be true. This argument is valid.

(Note: it’s no use trying to add further objects to the domain of the model to
yield a validity counterexample. For no matter how many objects we add, or
what predicate extensions they fall in, some object must be in the extension
of “G” and “I” to make Premise (2) true; and that object then has to be in the
extensions of both “G” and “H” to keep Premise (1) true. But that suffices
to make the conclusion true.)



