
 

 

 Proofs and Deductions  
 

5.13. Quantifiers: Rules of Deduction 
 

 

We noted earlier that the language of names, predicates, and quantifiers 

brings two innovations to the construction rules: a predicate letter followed 

by a name letter or variable, and quantified sentences.  Any extensions this 

language brings to the deductive system of the previous chapter will be just 

those needed to capture the further valid arguments and logical truths of this 

extended language. 

 

Since a predicate-letter-followed-by-sentence-letter or -variable forms an 

atomic formula, with no smaller formulas as parts, their addition to the 

formal language occasions no new rules of inferences (just as there are no 

deductive rules devoted to sentence letters).  That means any new deductive 

rules needed will be solely for inferences involving quantifiers. 

 

 

1. Quantifier Negation.  The simplest rule for quantified sentences is an 

argument form encountered earlier: Quantifier Negation, in four forms.1 

 

Quantifier Negation (QN) 

 

              Inward QN:             Outward QN: 
 

~∀x  
 

∃x ~ 

~∃x  
 

 ∀x ~ 

 ∃x ~ 
 

~∀x  

∀x ~ 
 

 ~∃x  
 

 

 

 

 

                                                 
1 This form of inference was first encountered in 5.5.  In fact we only need Inward QN as a basic rule here; 

Outward QN can be treated as a derived rule.  See 5.13.1 Problem 1. 
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This formally implements intuitive arguments such as the following. 
 

 

 Not everything is made of limestone. 

 

 Something isn’t made of limestone. 
 

 

  Everything is non-physical 

 

  Nothing is physical. 

 Something isn’t made of limestone. 

 

 Not everything is made of limestone. 

  Nothing is physical 

 

  Everything is non-physical 
 

 

Already this allows us deduction of the following argument.2 

 

1. If everything is made of limestone, then Neko is. 

2. (But) Neko’s not made of limestone. 

 

  Something’s not made of limestone. 

 

 

A: Neko  G__: is made of limestone 

 

 

1. (∀x Gx  GA) 
 

2. ~GA 
 

         Get: ∃x ~Gx 
 

3.  ~∀x Gx   1, 2, MT 
 

4.   ∃x ~Gx    3, QN 

 

                                                 
2 As we will later show, the first premise here is a logical truth; so the conclusion follows validly from the 

second premise alone. See the discussion of the Universal Elimination rule, below, and 5.13.1 Problem 2.  
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2. Universal Elimination.  We retain here our semantic focus on full-

fledged sentences (rather than mere quasi-sentences), by retaining as well 

the earlier concept of an instance of a quantified sentence.  Recall that to 

build an instance of a quantified sentence we remove the quantifier from the 

sentence, and then replace the variable in that quantifier according to the 

following three conditions.3 

 

(A) Replace all free occurrences of the variable with name letters. 

(B) Replace only free occurrences of that variable with name letters. 

(C) Replace all free occurrences of that variable with the same name 

letter. 

 

For example, to build an instance of “∀x ((Jx  Hx)  ∃x ~Gx)” we remove 

the quantifier “∀x”, and replace all and only the free occurrences of its 

variable – “x” – by a name letter.   

 

So of the following formulas, only (1) and (2) are instances of  

“∀x ((Jx  Hx)  ∃x ~Gx)”.4 

 

(1) ((JA  HA)  ∃x ~Gx) (A/x) 

(2) ((JB  HB)  ∃x ~Gx) (B/x) 

(3) ((JA  Hx)  ∃x ~Gx) (A/x) 

(4) ((JA  HA)  ∃x ~GA) (A/x) 

(5) ((JA  HB)  ∃x ~Gx) (A,B/x) 

 

(3) violates the ‘all free occurrences’ requirement: the occurrence of “x” in 

“Hx” is left free.  (4) violates the ‘only free occurrences’ requirement: 

when “∀x” is removed from “∀x ((Jx  Hx)  ∃x ~Gx)” the occurrence of 

“x” in “∃x ~Gx” remains bound by “∃x”.  And (5) violates the ‘same name 

letter’ requirement: when “∀x” is removed, the two free occurrences of “x,” 

in “Jx” and “Hx,” aren’t replaced by the same name letter. 

                                                 
3 As set out and explained in 5.8. 
4 As in earlier readings, the notation on the right side – for example, “(A/x)” – records which name letter 

replaces the quantified variable.  In the case of (A/x) – pronounced “A for x” – name letter “A” replaces 

variable “x”. 



5.13. Quantifiers: Rules of Deduction     3.16.17 5-95 

 

  

With this understanding of “instance”, the inference rule for universal 

sentences is straightforward. 

 

 

Universal Elimination (“A-Elim”)(–)5 

 

∀x 
     

     I 
 

where I is an instance of the scope formula  

 

 

This rule implements formal counterparts of intuitively valid inferences such 

as the following. 

 

1. Everything is made of matter. 

 

  The Cathedral of Learning is made of matter. 

 

For instance, armed with – we can demonstrate the validity of the 

following intuitively valid English argument. 

 

 

A: Jack  G__: is a surfer 

H__: is an athlete 

 

1. All surfers are athletes.  

2. Jack is a surfer.  

   

  Jack is an athlete. 

1. ∀x (Gx  Hx) 

2. GA 
 

  HA 

 

 

                                                 
5 This is sometimes called “Universal Instantiation”.  We call it “A Elim” for short (rather than “U Elim” for 

“universal”) because the upside-down “A” is being removed.  This is in keeping with the naming system of 

earlier chapters, which featured the rules “Wedge Elim” (rather than “Conjunction Elim”) and “Vel Elim” 

(rather than “Disjunction Elim”). 
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1. ∀x (Gx  Hx) 
 

2. GA 
 

         Get: HA 
 

3.  (GA  HA)  1, – (A/x) 
 

4.   HA    2, 3, MP 

 

 

3. Existential Elimination.  Matters are trickier with existential sentences.  

For on the one hand it seems intuitive that here too a quantified sentence 

licenses an instance: if there exists something G, then there must be some 

particular object which is truly said to be G.  Yet as we saw earlier with truth 

trees, matters can’t be as simple as just instantiating an existential to a single 

name letter.  The following argument is obviously invalid, but will be easy 

to deduce if existential instantiation is left unconstrained. 

 

  Invalid !  
 

Dr. Slim is a man.  Someone stole the crown jewels. (Therefore,) Dr. 

Slim is a man who stole the crown jewels.  

 

B: Dr. Slim  I__: is a man 

J__: stole the crown jewels 

 

1. IB 
 

2. ∃x Jx 
 

         Get: (IB  JB) 
 

3.  JB    2, Existential Elimination (B/x) 
 

4.   (IB  JB)   1, 3, + 

 

 

Since the name letter “B” appears already on Line (1), it’s ‘already taken’ by 

someone; so instantiating the existential sentence to that name letter is far 

from innocent.  (Likewise in English: while it’s fine to call the jewel thief 

“Mr. X,” or some other name which no one is using, the name “Dr. Slim” was 

already taken; so it was a mistake to use that name for the culprit.) 
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Therefore in deductions (as in truth trees) we impose a ‘new name’ 

requirement on existential instantiation: the name being instantiated to must 

be new to the deduction – i.e., must not have appeared on previous lines 

of the deduction. 

 

But care is needed when speaking of “previous lines”.  For instantiating the 

existential sentence to a name letter can be invalid even if no earlier 

numbered line in the deduction featured that name letter.  The following 

argument, for instance, is clearly invalid.  
 

 

  Invalid !  
 

Something is made of marshmallow.  (Therefore,) the Cathedral of 

Learning is made of marshmallow.  

 

C: The Cathedral of Learning K__: is made of marshmallow 
 

 

1. ∃x Kx 
 

         Get: KC 
 

2.  KC   1, Existential Elimination (C/x) 

 

 

But the only numbered line before the existential elimination is Line (1), 

which does not contain the name letter “C”; so “C” is new to the numbered 

lines when the instantiation occurs on Line (2).  Since the argument is 

clearly invalid, simply requiring the name to be new among the 

numbered lines is not a strong enough constraint on existential 

elimination. 

 

Note that “C” does appear before Line (2) – on the “Get” line.  We don’t 

count the “Get” line as a line in the deduction, in the sense that we could 

apply any rule of inference to it; it’s just a memo off to the side, reminding 

us what the deduction is aiming for.  Still, if we include the “Get” line as  
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part of the ‘new-ness’ constraint on instance variables, we correctly block 

the deductive system from counting the above argument as valid.6  

 

So we impose this strengthened ‘newness’ condition on names in existential 

elimination. 

 

 

Existential Elimination (E-Elim) (–)7 

 

∃x 
     

     I 
 

where (i) I is an instance of the scope formula ,  

 

and  

 

(ii) the name letter used in that instance (to replace the 

quantified variable) is “new to the deduction” – that is, does 

not appear on any previous lines, including “Get” lines. 

 

 

                                                 
6 So the mere mention of the name letter (in the “Get” memo) rules out its use in – afterwards.  Though 

truth trees don’t feature “Get” lines, they impose the same constraint on existential instances: since the first 

steps of a truth tree are listing the premises (on the left) and conclusion (on the right), any name letters 

appearing in that conclusion will be barred from appearing in later existential instances, thanks to the 

newness constraint on the True Existential rule.  See    

 

In this respect the “Get” line serves as a filter on existential instances just as the “Show” line does in (Kalish 
and Montague 1964: 100).  While the “Show” line in Kalish and |Montague’s system is a numbered line to 

which (once the word “Show” is crossed off) rules of inference can be applied, it acts as a filter on 

existential instances whether or not it’s cancelled.  As noted in the second edition (Kalish, Montague, and 
Mar 1980: 154-155), even a weaker ‘newness’ constraint blocks the inference both in cases where a prior 

‘Show’ line is already cancelled and in cases where it’s not.  See likewise the discussion of Problem 69 on 

(ibid: 159) and Problem 70 on (ibid: 160). 

 

By including the “Get” line in the criterion for ‘newness’ of a line, without allowing rules of inference to 

apply to any “Get” line (crossed off or not), the present system retains Kalish and Montague’s simplified 

rule of Existential Instantiation (here, Existential Elimination) while also retaining the top-to-bottom 

reading order of a Fitch-style deductive system (see e.g. Fitch 1952: xx or Thomason 1970: yy).  Further 

details on the two types of deductive systems can be found in (Pelletier 1999), which provides an extensive 

discussion of their historical development. 
 
7 This is sometimes called “Existential Instantiation” (EI). 
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The following deduction illustrates – and – in combination. 
 

G__: is a cat  H__: is a fish-eater 

 

1. All cats are fish-eaters.  

2. Cats exist.  

   

  Fish-eaters exist. 

1. ∀x (Gx  Hx) 

2. ∃x Gx 
 

  ∃x Hx 

 
 

 

1. ∀x (Gx  Hx) 
 

2. ∃x Gx 

         Get: ∃x Hx (ID) 
 

3.   ~∃x Hx   AID 
 

4.   GA   2, – (A/x) 
 

5.   (GA  HA)  1, – (A/x) 
 

6.    HA    4, 5, MP 
 

7.    ∀x ~Hx   3, QN 
 

8.    ~HA   7, – (A/x) 
    

9.    ∃x Hx   3, 6, 8, ID 

 

 

4. Deductive Strategy.  It was no coincidence that we used – before – in 

that last deduction.  For suppose instead we apply – to line 1 first.     
 

 

1. ∀x (Gx  Hx) 
 

2. ∃x Gx 

         Get: ∃x Hx (ID) 
 

3.   ~∃x Hx   AID 
 

4.   (GA  HA)  1, – (A/x) 
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If we then seek to set up MP on line 4, by getting its antecedent from line 2 

by –, we’re stuck: since – requires that we instantiate to a new name 

letter, we can’t – to “GA” on Line (5) (only, e.g., to “GB” or “GC”). 
 

 

1. ∀x (Gx  Hx) 
 

2. ∃x Gx 

         Get: ∃x Hx (ID) 
 

3.   ~∃x Hx   AID 
 

4.   (GA  HA)  1, – (A/x) 
 

 

That points up an important bit of deductive strategy: since – is limited to a 

new name letter while – isn’t, it’s shrewd to use – before using –. 

 

 

 

Deduction Strategy: Use – before using –. 

 

 

 

As their names make clear, – and – are Elim rules.  So these two rules 

are added to the Elim rules of Chapters Three and Four.   

 

But, as noted already in the truth tree rules for quantifiers, a universally 

quantified sentence can entail an unlimited number of instances.  To avoid 

such a limitless cascade of sentences, our strategy will be to use – within 

an indirect deduction to deduce only as many instances of a universal as 

needed to conflict with instances of existential sentences and other sentences 

containing name letters.  Here, as in truth trees, universals follow up on 

(instances of) existential sentences and other sentences with name letters.  
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As regards Quantified Negation, our earlier division of the rule into Inward 

and Outward versions was for a good cause.  We count Inward QN as an 

Elim rule, to be used whenever possible. 
 

 

Inward Quantifier Negation 

 

~∀x  
 

∃x ~ 

~∃x  
 

 ∀x ~ 

 

Outward QN is a setup rule, used – like the Intro rules – only to construct a 

needed part of an inference or deduction. 
 

 

Outward Quantifier Negation 

 

∃x ~ 
 

~∀x  

∀x ~ 
 

  ~∃x  

 

 

Deduction Strategy: Treat Inward QN as an Elim rule, using it 

whenever possible.  Treat Outward QN as a Setup Rule (like an 

Intro rule), using it only to get sentences needed to complete a 

deduction or perform an Elim rule.   
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Quantifier Deduction Rules  
 

 

Quantifier Negation (QN) 

 

             Inward QN:            Outward QN: 
   

~∀x  
 

∃x ~ 

~∃x  
 

∀x ~ 

∃x ~ 
 

~∀x  

∀x ~ 
 

~∃x  

 

 

Universal Elimination (“A-Elim”)(–) 

 

∀x 
     

     I 
 

where I is an instance of the scope formula  

 

 

Existential Elimination (“E-Elim”) (–) 

 

∃x 
     

     I 
 

where (i) I is an instance of the scope formula ,  

and (ii) the name letter used in that instance (to replace 

the quantified variable) is new to the deduction – that is, 

does not appear on previous lines, including “Get” lines. 

 
 

 

 



5.13. Quantifiers: Rules of Deduction     3.16.17 5-103 

 

  

 

  

 

Quantifier Deduction Strategy 

 
 

 Treat – and – like Elim rules: use whenever possible. 

 Use – before –. 

 Treat Inward QN as an Elim rule: use whenever possible. 

 Treat Outward QN as a Setup rule (like an Intro rule): 

only to get a missing sentence to complete a deduction or 

perform an Elim rule. 

 
 

 

 

 


