
 

3.9. Nested Conditional Form  

 

 

1. Nested Conditionals.  We established already that the language {, ~} is 

expressively adequate, because it is provably equivalent to a language such as  

{, ~} which is known to be expressively adequate.  But that argument didn’t 

provide the sort of general procedure we had in DNF, for matching each truth table 

with a corresponding sentence.  Here we return to the {, ~} language and 

consider how to build a {, ~} sentence for any given truth table.  Central to this 

task will be understanding a nested conditional matching a series of sentences.   

 

A series of sentences is just a list of sentences, in a certain order.  (We show the 

intended order in the usual way: starting from the left, we list the first sentence in 

the series, the second, and so on.)  The following is a simple example. 

 

~P, (P  ~Q), (R  S)  

 

Corresponding to such a series of sentence letters we build a nested conditional: a 

conditional containing a smaller conditional as consequent, where that smaller 

conditional may itself contain a (yet) smaller conditional as consequent, and so on.   

 

We build a nested conditional out of a series of sentences by working our way 

backwards through the list.  We first building a conditional with the last sentence 

as consequent and next-to-last letter as antecedent.  So from the above series of 

three sentences we begin like this. 

 

((P  ~Q)  (R  S)) 

 

If there is a yet earlier sentence in the series – here, “~P” – we build a conditional 

with the previous conditional as consequent and this sentence as antecedent. 

 

(~P  ((P  ~Q)  (R  S)) ) 
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After doing this as many times as needed to include each sentence in the series, we 

have a nested conditional that correspond to the original series of sentences. 

 

~P, (P  ~Q), (R  S)  
 

(~P  ((P  ~Q)  (R  S)) ) 

 

And while such a series can contain any sort of formal sentence from our current 

formal language, we will be especially interested in series of sentence letters, 

listed in alphabetical order1 – for example, the following. 

 

P, Q, R, S 

 

Corresponding to such a series of sentence letters we build a nested conditional.  

So the above series of sentence letters yields this nested conditional. 

 

(P  (Q  (R  S) ) 

 

So a nested conditional of sentence letters corresponds to a series of sentence 

letters in the following general pattern. 

 

A series of sentence letters is a list of sentence letter listed in alphabetical 

order (with the first sentence listed first, i.e., on the left; followed by the 

second letter, and so). 

 

1, …. , k (for k many sentence letters) 

 

                                           
1 To be completely general: sentence letters are listed in the order “P”, “Q” … “Z”, “P1” “Q1” … “Z1”, “P2”, etc. 
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A nested conditional corresponding to this series is a conditional with the 

first letter in the list, 1, as antecedent, and as consequent a smaller 

conditional itself having the second letter in the list, 2, as antecedent, and 

so on, ending with a conditional having the next-to-last sentence k-1 as 

antecedent and last sentence k as consequent. 

 

(1  ( … (k-1  k) …) ) 

 

We will then modify this nested conditional by inserting tildes before some 

sentence letters.  Our goal will be to replicate the behavior of valuation and 

counter-valuation sentences, but phrased entirely in the language {, ~}. 

 

Recall that a valuation sentence is a sentence in the language {~, }) true in 

exactly one valuation, while a counter-valuation sentence is a sentence of the  

{~, } language false in just one valuation. 2  To construct a {, ~} counterpart of 

a counter-valuation sentence, we first build a nested conditional featuring just the 

sentence letters listed in that valuation.  So for the following valuation we begin 

with this nested conditional. 

 

Valuation: 

 

P Q R S 

1 0 1 1 

 

(P  (Q  (R  S))) 

 

                                           
2 Discussed in 2.26 and 2.27.  Note that semantically conditionals are more like disjunctions than like conjunctions, 

because in the semantics both the disjunction and conditional rules are true in three out of the four lines.  The result, 

with disjunctions, was a counter-valuation sentence (built from a family of sentence letters) false in only one 

valuation.  So we’ll find it easiest here to replicate that result with conditions and negations (and then simulate a 

valuation sentence by adding a tilde). 
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Next we add tildes according to following rule. 

 

For all but the last sentence letter: add a tilde to that sentence letter if (and 

only if) that letter is false in the given valuation. 

 

For the last sentence letter: add a tilde if (and only if) that letter is true in 

the given valuation. 

 

So we modify the nested conditional by adding tildes: to “Q” (because it’s false in 

this valuation) and to “S” (because it’s the last letter and is true in this valuation).  

 

Valuation: 

 

P Q R S 

1 0 1 1 

 

(P  (~Q  (R  ~S))) 

 

We know from the semantic rule for conditionals that this sentence will be false in 

only one sort of valuation: where the antecedent “P” is true but the consequent is 

false.  And the only valuation where the consequent “(~Q  (R  ~S)) is false is 

one where “~Q” is true (hence where “Q” is false) and the consequent “(R  ~S)” 

is false.  Finally, “(R  ~S)” is false only where its antecedent “R” is true and its 

consequent “~S” is false (hence where “S” is true). 

   

Summing up: “(P  (~Q  (R  ~S)))” is false only where “P” is true, “Q” is 

false, “R” is true, and “S” is true.  But that’s just the valuation we started with.  

So by adding tildes to a nested conditional we get a conditional false in exactly the 

valuation given.  We thus have a general recipe for building the {, ~} 

counterpart to a counter-valuation sentence – call it a “counter-valuation 

conditional”. 

 

Counter-Valuation Conditional: a nested conditional false in exactly one 

valuation. 
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And since such a sentence is false only in the valuation given, its negation will be 

true only in that valuation.  So from a given valuation we can build the negation of 

a nested conditional which is true in just that valuation.  Call such a negation of a 

counter-valuation conditional a “valuation negation”.  

 

Valuation Negation: the negation of a counter-valuation conditional (hence: 

the negation of a nested conditional, which is true in exactly one valuation)  

 

So “~(P  (~Q  (R  ~S)))” is true only where “P” is true, “Q” is false, “R” 

is true, and “S” is true.  

 

And of course, beginning with a valuation negation we can always work 

backwards to see which valuation makes it true, by modifying the earlier tilde-

inserting rules. 

 

For all but the last sentence letter: that letter is false in the given valuation 

if it has a tilde before it (and true in that valuation if has no tilde). 

 

For the last sentence letter: that letter is true in the given valuation if it has 

a tilde before it (and false in that valuation if has no tilde) 

 

For instance, the sentence “~(~P  (Q  (R  (~S  ~T)))” is (in a 32-

valuation truth table for “P” through “T”) true in just the following valuation. 

 

P Q R S T 

0 1 1 0 1 

 

 

2. Nested Conditional Form.  Recall that once we had valuation sentences in hand 

in Chapter Two, we could match any single valuation with a corresponding {~, } 

sentence (namely, a valuation sentence).  But for a sentence true in more than one 

valuation we proceeded to build a disjunction of valuation sentences (one 

valuation sentence matching each valuation where that sentence is true) – resulting 

in Disjunctive Normal Form (DNF).  An equivalent move, performed in a manner 
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not taking us outside the {~, } language, calls for a {~, } equivalent of a 

disjunction. 

 

That is easily come by – for “(P  Q)” is equivalent to “(~P  Q),”  

“(P  (Q  R))” is equivalent to “(~P  (~Q  R)),” and so on.  In general: 

for a set of (two or more) valuation negations {~1, …, ~M}, each true in 

exactly one valuation, we can build a nested conditional of the general form  

(1  (2  … (M-1  ~M) … ). 3    

 

For example, the following truth table makes a (mystery) sentence true in just the 

first and last valuations. 

 

P Q ? 

1 1 1 

1 0 0 

0 1 0 

0 0 1 

 

For the first valuation we build the valuation negation “~(P  ~Q)”, and for the 

fourth the valuation negation “~(~P  Q)”.  To disjoin them together we build the 

nested conditional “(~~(P  ~Q)  ~(~P  Q))”.  Clearing the double negation 

from the antecedent leaves “((P  ~Q)  ~(~P  Q))”.  This sentence matches 

the truth table. 

 

  
P Q ~P ~Q (P  ~Q)  (~P  Q) ~(~P  Q) ((P  ~Q)  ~(~P  Q)) 

1 1 0 0 0 1 0 1 

1 0 0 1 1 1 0 0 

0 1 1 0 1 1 0 0 

0 0 1 1 1 0 1 1 

 

                                           
3 Since the valuation negations {~1, …, ~M} already begin with a tilde, inserting these negations into a sentence 

of the form “(~1  ( …  (~N-1  N)…)” (where all of the antecedents are negated) yields a nested 

conditional of the form “(~~1  ( …  (~~M-1  ~M)…)”.  Eliminating double negations on the 

antecedents yields the simplified form listed above: “(1  ( …  (M-1  ~M)…)”. 
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A sentence true in one valuation is thus equivalent to a valuation negation, and a 

sentence true in more than one valuation is equivalent to a nested conditional of 

valuation negations and a counter-valuation conditional.  We round out this list by 

assigning ~(P  P) to the truth table false in every valuation.  

 

Call any sentence in one of these forms a sentence in Nested Conditional Form 

(NCF).  We are guaranteed that any possible truth table will be matched by some 

NCF sentence; and all these sentences are in the {~, } language.  We thus have a 

general method for finding a {~, } sentence for any given truth table.     
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Summary 
 

 

Nested Conditionals: 

 

 A series of sentence letters is a list of sentence letter listed in 

alphabetical order (with the first sentence listed first, i.e., on the 

left; followed by the second letter, and so). 

 

1, …. , k (for k many sentence letters) 

 

 A nested conditional corresponding to this series is a conditional 

with the first letter in the list, 1, as antecedent, and as consequent 

a smaller conditional itself having the second letter in the list, 2, 

as antecedent, and so on, ending with a conditional having the 

next-to-last sentence k-1 as antecedent and last sentence k as 

consequent. 
 

 

Counter-Valuation Conditionals: a counter-valuation conditional is a 

nested conditional false in exactly one valuation.  From a given 

valuation, a counter-valuation conditional is built from a nested 

conditional according to the following rule. 

 

 For all but the last sentence letter: add a tilde to that sentence 

letter if (and only if) that letter is false in the given valuation. 

 

 For the last sentence letter: add a tilde if (and only if) that letter is 

true in the given valuation. 
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Valuation Negation: the negation of a counter-valuation conditional 

(hence: the negation of a nested conditional, which is true in exactly one 

valuation)  

 

A sentence is in Nested Conditional Form (NCF) if it is in one of the 

following three forms. 

 

 For a truth table true in just one valuation, the corresponding NCF 

sentence is the valuation negation true in that valuation. 

 

 For a truth table true in more than one valuation, where each 

valuation is matched by a valuation negation, the corresponding 

NCF sentence is a nested conditional of those valuation negation 

built according to the following rule. 

 

For a set of (two or more) valuation negations  

{~1, …, ~M}, each true in exactly one valuation, build a 

nested conditional of the general form: 

  

(1  (2  … (M-1  ~M) … ). 

 

This sentence will be true in just those valuations where the truth 

table is true. 

 

 For a truth table false in every valuation, the corresponding NCF 

sentence is the negated conditional “~(P  P)”. 

 
 

 

 

 

 


