
 

 

 Proofs and Deductions  
 

2.35. Fundamentals of Deduction 
 

 
“‘You reasoned it out so beautifully’ I exclaimed in unfeigned admiration.  ‘It is so long a chain, 

and yet every link rings true.’” 

 

– Doctor Watson, in Arthur Conan Doyle, The Adventures of Sherlock Holmes 

 

 

Though they mark a significant departure from the earlier semantic methods, 

deductions provide another means for formally demonstrating argument 

validity – as well for achieving other results familiar from our earlier 

semantic approach.  And like the semantic procedures, deductions can trace 

their roots back to informal logic. 

 

In general, formal logic aims to develop a test of validity which agrees with 

our intuitive grasp of simple, obvious arguments, but ‘scales up’ to manage 

arbitrarily large arguments outstripping those intuitions.  With deductions, 

an inspiration for handling complex cases on the basis of simple ones comes 

from the construction rules of the formal language. 

 

Because they are recursive – capable of ‘recycling’ – those rules generate 

an infinite number of formal sentences using only finite resources.  The trick 

is to repeatedly apply a limited number of procedures to a (growing) set of 

accepted items.  From an initial stock, those procedures generate new items 

which are then recycled as fresh input – and so on. 

 

In the construction rules, the items accepted at the outset are the sentence 

letters – the most basic sort of formal sentence.  The procedures applied to 

those items are the three molecular rules – the Negation, Conjunction, and 

Disjunction Rules.  They are recursive rules because the output of any of 

them can be ‘recycled’ as new input for any of them. 

 

So in staking out the entire family of formal sentences, construction began 

by accepting the sentence letters as formal sentences. 

 

Set of accepted sentences: {P, Q, R, …} 
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The Negation Rule would then draw a member of this set – say, “P” – as 

input, yielding “~P” as a new grammatical sentence. 

 

Set of accepted sentences: {P, Q, R, ~P, …} 

 

Since the recursive rules can take any formal sentence as input, the Negation 

Rule is then free to draw “~P” from this set as a new input, yielding the 

further sentence “~~P”. 

 

Set of accepted sentences: {P, Q, R, ~P, ~ ~P, …} 

 

And so on. 

 

The same strategy can be applied to generate an infinite number of logically 

acceptable arguments – all the valid arguments in that logical language.  

With any such valid argument, we can begin with a set of accepted 

sentences – the premises – and apply a finite stock of procedures to this set 

to generate further accepted sentences. 

 

The ‘procedures’ in this case will be uncontroversially valid argument 

forms – where the premises of that argument form act as the ‘input’, and its 

conclusion serves as ‘output’. 

  

The following is an uncontroversial example of a valid argument pattern. 
 

(   ) 

~ 

  

  

 

Since it begins with a disjunction, and extracts from it one of the parts, we 

call this argument pattern Vel Elimination – or “Vel Elim” (“-Elim”) for 

short. 
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We recognize any instance of -Elim as a valid argument – such as the 

following familiar English example. 

 

1. Either the Chess Club won the prize, or the Surf Club won the 

prize. 

2. The Chess Club did not win the prize. 

 

 The Surf Club won the prize. 

 

But when used recursively, this same argument pattern allows us to 

recognize the validity of more complicated arguments as well.  The 

following English argument, for instance, is a bit more complex. 

 

1. We’ll have either ice cream or cake, or we’ll have pie. 

2. We won’t have pie. 

3. We won’t have cake. 

  

 We’ll have ice cream. 

 

Perhaps it’s still simple enough that your intuitions can judge its validity 

immediately.  But suppose there were someone whose intuitions were very 

quickly boggled by complexity: he can recognize -Elim as a valid pattern, 

but is stumped by this longer argument.  Using only -Elim, in a recursive 

fashion, we can show such a logically myopic friend that this larger 

argument is indeed valid. 

 

Validity being a matter of logical form, we first use a translation key to 

translate the argument into formal language. 

 

P: We’ll have ice cream 

Q: We’ll have cake 

R: We’ll have pie 

 

1. ((P  Q)  R)  

2. ~R 

3. ~Q 

  

  P 
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The premises are the only sentences accepted so far. 

 

Set of accepted sentences: { ((P  Q)  R),  ~R,  ~Q }   

 

But with the first two premises we have a disjunction “((P  Q)  R),” and 

the negation of its right part, “~R”. 

 

1. ((P  Q)  R)    Disjunction 

2. ~R              Negation of Right Part 

 

Recognizing this as an instance of -Elim, we see as well that the left part of 

the disjunction, “(P  Q),” follows validly. 

 

((P  Q)  R)    Disjunction 

~R                   Negation of Right Part 

 

(P  Q)          Left Part 

 

So “(P  Q)” is added to our set of accepted sentences 

 

Set of accepted sentences: { ((P  Q)  R),  ~R,  ~Q,  (P  Q) }   

 

The last two sentences in this set are the disjunction “(P  Q)” and negation 

of its right part, “~Q”.  This is just another instance of -Elim: since these 

two sentences are accepted as true, -Elim directs us to accept as well the 

left half of that disjunction – “P”. 

 

Set of accepted sentences: { ((P  Q)  R),  ~R,  ~Q,  (P  Q) }   

 

 

(P  Q)    Disjunction 

~Q     Negation of Right Part 

  

P      Left Part 

 

Hence “P” is added to the set of accepted sentences as well. 

 

Set of accepted sentences: { ((P  Q)  R),  ~R,  ~Q,  (P  Q),  P }   
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We’ve demonstrated that if the first three sentences are accepted as true, “P” 

should be as well.  So anyone accepting -Elim as valid should recognize 

this argument form as valid too. 

 

 

1. ((P  Q)  R)  

2. ~R 

3. ~Q 

  

  P 

 

 

Starting from a set of accepted premises, we collected a series of new 

sentences using only accepted argument patterns (in this case just one) to 

demonstrate the validity of a logical form.  We call such a procedure a 

deduction: we deduced the conclusion “P” from the original three 

premises.1   

 

And just as sentence construction needed only a few recursive rules to build 

an infinite number of formal sentences, we can likewise demonstrate the  

validity of any valid argument in the logical language, using a finite stock of 

valid argument patterns – -Elim, and other uncontroversial logical forms – 

in a recursive fashion.2  

                                                 
1 Following, e.g., (Quine 1959: 154) and (Kleene 1967: 35).  Some authors instead call them “derivations” 

– e.g., (Suppes 1957:23-26), (Kalish and Montague 1964: 14), (Mates 1965: 107), (Lambert and van 

Fraassen 1972: 29), and (Gamut 1982/1991: 116).  
2 Construction rules are sometimes called “formation rules,” and rules for deduction are called 

“transformation rules”. 
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 Construction Deduction 

 

Original Set of 

Accepted Sentences: 

 

 

Sentence Letters 

 

Premises of the 

Argument 

 

 

Rules: 

 

Molecular 

Construction Rules  

(Rules 2, 3, and 4) 

 

 

-elim (and Other 

Uncontroversial 

Logical Forms) 

 

 
Final Output: 

 

 

Formal Sentence being 

Constructed 

 

 

Conclusion of the 

Argument 

 

 

We said at the outset that deductions find their origins in informal logic.   

Now we see how: deductions are really just a formal extension of chain 

arguments. 

 

Just as a chain argument reaches a sub-conclusion only to use it as a premise 

supporting a further conclusion, so deductions accept the conclusion of an 

argument form only to then use it as further input for an argument form.   

 

 

((P  Q)  R)        ~R 

 

 

         (P  Q)         ~Q 

 

 

         P 

 

 

And just as a chain argument was only as valid as its weakest link – so that 

with a chain of valid arguments, the entire chain inherits that validity – so 

deductions show that an argument form is valid by tracing a chain of valid 

links from premises to conclusion. 
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We close with a bit of bookkeeping. 

 

It will prove convenient to trade in the ‘set of accepted sentences’ for a 

simple vertical list, with an account of why each sentence in the list is 

accepted.  The above deduction then begins with just the premises listed. 

 

1. ((P  Q)  R)  

2. ~R       Premises 

3. ~Q 

 

(And just as in standard form from informal logic, we impose the 

requirement that all the premises of the argument be numbered and listed 

first, before any further lines in the deduction.  With that requirement in 

mind we can then skip writing “Premises” as a justification on the right –

taking for granted that premises come first.3) 

 

To keep in mind the conclusion we’re seeking to deduce – here “P” – we add 

a memo to get that sentence.  (This isn’t a line of the deduction, like the 

premises are – just a reminder on the side.  So we don’t number this “Get” 

line.) 

 

1. ((P  Q)  R)  

2. ~R        

3. ~Q 

     Get: P 

 

Each inference from there is listed with its justification on the right: the 

argument pattern used, and the lines that were its input (premises). 

 

1. ((P  Q)  R)  

2. ~R        

3. ~Q 

     Get: P 

4. (P  Q)  1, 2, -Elim 
  

5. P   3, 4, -Elim 

 

                                                 
3 While the requirement is here just a convenience sparing us the need to write “Premises”, in a later 

chapter it will prove useful for preventing invalid application of deductive rules; see 5.13 §3. 
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Once we’ve deduced the conclusion, we cross out the “Get” line – like 

checking it off our list of things to do.  The deduction is then complete. 

 

1. ((P  Q)  R)  

2. ~R        

3. ~Q 

     Get: P 

4. (P  Q)  1, 2, -Elim 
  

5. P   3, 4, -Elim 


