** Proofs and Deductions

2.35. Fundamentals of Deduction

““You reasoned it out so beautifully’ I exclaimed in unfeigned admiration. ‘It is so long a chain,
and yet every link rings true.””

— Doctor Watson, in Arthur Conan Doyle, The Adventures of Sherlock Holmes

Though they mark a significant departure from the earlier semantic methods,
deductions provide another means for formally demonstrating argument
validity — as well for achieving other results familiar from our earlier
semantic approach. And like the semantic procedures, deductions can trace
their roots back to informal logic.

In general, formal logic aims to develop a test of validity which agrees with
our intuitive grasp of simple, obvious arguments, but ‘scales up’ to manage
arbitrarily large arguments outstripping those intuitions. With deductions,
an inspiration for handling complex cases on the basis of simple ones comes
from the construction rules of the formal language.

Because they are recursive — capable of ‘recycling’ — those rules generate
an infinite number of formal sentences using only finite resources. The trick
Is to repeatedly apply a limited number of procedures to a (growing) set of
accepted items. From an initial stock, those procedures generate new items
which are then recycled as fresh input — and so on.

In the construction rules, the items accepted at the outset are the sentence
letters — the most basic sort of formal sentence. The procedures applied to
those items are the three molecular rules — the Negation, Conjunction, and
Disjunction Rules. They are recursive rules because the output of any of
them can be ‘recycled’ as new input for any of them.

So in staking out the entire family of formal sentences, construction began
by accepting the sentence letters as formal sentences.

Set of accepted sentences: {P, Q, R, ...}



2.35. Fundamentals of Deduction 5.19.17 2-273

The Negation Rule would then draw a member of this set — say, “P” —as
input, yielding “~P” as a new grammatical sentence.

Set of accepted sentences: {P, Q, R, ~P, ...}

Since the recursive rules can take any formal sentence as input, the Negation
Rule is then free to draw “~P” from this set as a new input, yielding the
further sentence “~~P”.

Set of accepted sentences: {P, Q, R, ~P, ~~P, ...}
And so on.

The same strategy can be applied to generate an infinite number of logically
acceptable arguments — all the valid arguments in that logical language.
With any such valid argument, we can begin with a set of accepted
sentences — the premises — and apply a finite stock of procedures to this set
to generate further accepted sentences.

The ‘procedures’ in this case will be uncontroversially valid argument
forms — where the premises of that argument form act as the ‘input’, and its
conclusion serves as ‘output’.

The following is an uncontroversial example of a valid argument pattern.

(®v A)
-0

A

Since it begins with a disjunction, and extracts from it one of the parts, we
call this argument pattern Vel Elimination — or “Vel Elim” (“v-Elim”) for
short.



2-274 Chapter Two: “And,” “Or,” “Not”

We recognize any instance of v-Elim as a valid argument — such as the
following familiar English example.

1. Either the Chess Club won the prize, or the Surf Club won the
prize.
2. The Chess Club did not win the prize.

.. The Surf Club won the prize.

But when used recursively, this same argument pattern allows us to
recognize the validity of more complicated arguments as well. The
following English argument, for instance, is a bit more complex.

1. We’ll have either ice cream or cake, or we’ll have pie.
2. We won’t have pie.
3. We won’t have cake.

.. We’ll have ice cream.

Perhaps it’s still simple enough that your intuitions can judge its validity
immediately. But suppose there were someone whose intuitions were very
quickly boggled by complexity: he can recognize v-Elim as a valid pattern,
but is stumped by this longer argument. Using only v-Elim, in a recursive
fashion, we can show such a logically myopic friend that this larger
argument is indeed valid.

Validity being a matter of logical form, we first use a translation key to
translate the argument into formal language.

P: We’ll have ice cream
Q: We’ll have cake
R: We’ll have pie

1.(PvQ)VR)
2.~R
3.~Q

P




2.35. Fundamentals of Deduction 5.19.17 2-275

The premises are the only sentences accepted so far.
Set of accepted sentences: { (Pv Q) vVR), ~R, ~Q }

But with the first two premises we have a disjunction “((P v Q) v R),” and
the negation of its right part, “~R”.

1. ((P v Q) vR) «< Disjunction
2. ~R < Negation of Right Part

Recognizing this as an instance of v-Elim, we see as well that the left part of
the disjunction, “(P v Q),” follows validly.

((Pv Q) vR) «< Disjunction
=R < Negation of Right Part

(PvQ) < Left Part

So “(P v Q)” is added to our set of accepted sentences

Set of accepted sentences: { (Pv Q) vR), ~R, ~Q, (Pv Q) }

The last two sentences in this set are the disjunction “(P v Q)” and negation
of its right part, “~Q”. This is just another instance of v-Elim: since these
two sentences are accepted as true, v-Elim directs us to accept as well the
left half of that disjunction — “P”.

Set of accepted sentences: { (Pv Q) vR), ~R, ~Q, (Pv Q) }

(PvQ) < Disjunction
~Q < Negation of Right Part

P < Left Part

Hence “P” is added to the set of accepted sentences as well.

Set of accepted sentences: { (PvQ)VvR), ~R, ~Q, PvQ), P}



2-276 Chapter Two: “And,” “Or,” “Not”

We’ve demonstrated that if the first three sentences are accepted as true, “P”
should be as well. So anyone accepting v-Elim as valid should recognize
this argument form as valid too.

1.((Pv Q) vR)

2.~R
3. -Q
P

Starting from a set of accepted premises, we collected a series of new
sentences using only accepted argument patterns (in this case just one) to
demonstrate the validity of a logical form. We call such a procedure a
deduction: we deduced the conclusion “P” from the original three
premises.?

And just as sentence construction needed only a few recursive rules to build
an infinite number of formal sentences, we can likewise demonstrate the
validity of any valid argument in the logical language, using a finite stock of
valid argument patterns — v-Elim, and other uncontroversial logical forms —
in a recursive fashion.?

! Following, e.g., (Quine 1959: 154) and (Kleene 1967: 35). Some authors instead call them “derivations”
—e.g., (Suppes 1957:23-26), (Kalish and Montague 1964: 14), (Mates 1965: 107), (Lambert and van
Fraassen 1972: 29), and (Gamut 1982/1991: 116).

2 Construction rules are sometimes called “formation rules,” and rules for deduction are called
“transformation rules”.



2.35. Fundamentals of Deduction 5.19.17 2-277

Construction Deduction
Original Set of Sentence Letters Premises of the
Accepted Sentences: Argument
Molecular v-elim (and Other
Rules: Construction Rules Uncontroversial
(Rules 2, 3, and 4) Logical Forms)
. : Formal Sentence being Conclusion of the
Final :
al Output Constructed Argument

We said at the outset that deductions find their origins in informal logic.
Now we see how: deductions are really just a formal extension of chain
arguments.

Just as a chain argument reaches a sub-conclusion only to use it as a premise
supporting a further conclusion, so deductions accept the conclusion of an
argument form only to then use it as further input for an argument form.

(PvQ)VvR) ~R

(PvQ) ~Q

pYd

And just as a chain argument was only as valid as its weakest link — so that
with a chain of valid arguments, the entire chain inherits that validity — so
deductions show that an argument form is valid by tracing a chain of valid
links from premises to conclusion.



2-278 Chapter Two: “And,” “Or,” “Not”

We close with a bit of bookkeeping.

It will prove convenient to trade in the ‘set of accepted sentences’ for a
simple vertical list, with an account of why each sentence in the list is
accepted. The above deduction then begins with just the premises listed.

1L.(PvQ)VR)
2. ~R } Premises

3.Q

(And just as in standard form from informal logic, we impose the
requirement that all the premises of the argument be numbered and listed
first, before any further lines in the deduction. With that requirement in
mind we can then skip writing “Premises” as a justification on the right —
taking for granted that premises come first.?)

To keep in mind the conclusion we’re seeking to deduce — here “P” — we add
a memo to get that sentence. (This isn’t a line of the deduction, like the
premises are — just a reminder on the side. So we don’t number this “Get”
line.)

1.((Pv Q) vR)
2.~R
3.~Q

Get: P

Each inference from there is listed with its justification on the right: the
argument pattern used, and the lines that were its input (premises).

1.(PvQ)VR)

2.~R
3.~Q
Get: P
4. (Pv Q) 1,2, v-Elim
5P 3, 4, v-Elim

3 While the requirement is here just a convenience sparing us the need to write “Premises”, in a later
chapter it will prove useful for preventing invalid application of deductive rules; see 5.13 §3.



2.35. Fundamentals of Deduction 5.19.17 2-279

Once we’ve deduced the conclusion, we cross out the “Get” line — like
checking it off our list of things to do. The deduction is then complete.

1L(PvQVR)

2.~R
3.~Q
Get:
4. (Pv Q) 1, 2, v-Elim

5. P 3,4, v-Elim



