

5.3. Names and Predicates: Formal Semantics

1. Models. The semantics for sentence logic sharpened the intuitive idea of

possible situation into the technical concept of valuation. With the formal

language expanded to include names and predicates, we expand its

semantics as well by extending valuations into models.

For those parts of the formal language inherited from previous chapters, the

semantics remains unchanged in models: a model assigns one (and only one)

truth value to each sentence letter; and negations, conjunctions,

disjunctions, and conditionals follow the familiar semantic rules.

This much semantics addresses A1, along with 2 through 6 of the

construction rules.

Revised Construction Rules (First Draft)

 Atomic Sentences:

A1. Sentence letters are atomic sentence

A2. A predicate letter followed by a name letter is an atomic sentence.

 Formal Sentences:

1. Atomic sentences are formal sentences.

2. If  is a formal sentence, then ~ is a formal sentence.

3. If  and  are formal sentences, then (  ) is a formal

sentence.

4. If  and  are formal sentences, then (  ) is a formal

sentence.

5. If  and  are formal sentences, then (  ) is a formal

sentence.

6. If  and  are formal sentences, then (  ) is a formal

sentence.

Here we provide semantics for the one new type of sentence, introduced by

A2: a predicate-letter-plus-name-letter.

5.3. Formal Semantics: Names and Predicates 4.29.17 5-15

2. Names and Reference. Note that neither an English predicate like “is a
cat” nor a name like “Neko” is a natural candidate for truth or falsehood.

Yet in combination they form something which can be true or false: a

sentence such as “Neko is a cat”. And the same is true of predicate and

name letters. So our formal semantics needs to give each predicate letter

and name letter a non-1/0 value – but in a way that allows those values,

when combined, to yield a value of 1 or 0 for the whole sentence.

A proper name such as “Neko” serves to refer to some individual – and

unlike a short-term, reusable pointer like “it,” a proper name always refers to

the same individual. A name letter, as the formal counterpart to a proper

name, likewise refers invariably to a particular individual.

In order to represent such reference in models, the expanded formal

semantics will include a set of objects populating a domain of discourse –

or “domain” for short. A little three-member domain would look like this.

𝔻: {Neko, Letitia, Lucretia}

(Don’t be misled by the need to depict things on the printed page by words:

the three members of this domain aren’t three names, but those three people

themselves.)

And when we don’t already have particular individuals (such as Letitia or

Lucretia) in mind, but just need some generic objects to populate a model, a

quick way to meet that need is to use numbers as the objects of the domain.

𝔻: {2, 3, 4}

(We start with 2 to avoid confusion – because the numerals “0” and “1” are

already used in the semantics to represent True and False.)

In order for the semantics to produce the desired results concerning validity,

we insist that the domain cannot be empty. Every model must have a

domain with at least one object.1

1 On why we don’t allow an empty domain, see 5.5.1 Problem E.

5-16 Chapter Five: Names, Predicates, Quantifiers

Already in the early days of modern logic the logician Augustus De Morgan

noted that the domain of discourse – the objects under discussion – isn’t

typically intended to be every single object in the universe.

Thus when we say “All animals require air”, or that the name

requiring air belongs to everything to which the name animal

belongs, we should understand that we are speaking of things of this

earth: the planets, etc., of which we know nothing, not being included.

(De Morgan 1847: 55; cited in Lambert and van Fraassen 1972: 83)

And the domain of discourse will vary as discourse varies. So the sentence

“Everyone showed up for the exam” will be judged true if, say, the students

in the course all showed up for the exam; whereas the sentence “Everyone
needs oxygen to live” will be judged true if everyone on the planet (but not

necessarily everyone in the universe) needs oxygen to live. The domain of

discourse is usually taken for granted in conversation, and for that reason

usually goes unstated. So a certain amount of reflection and reconstruction

may be needed to state the domain of discourse for a specific discussion.

With a domain of discourse in hand, the semantics can then specify a

referent – an object referred to – for each name letter, drawing these from

the domain of that model. While the semantics of Chapters Two and Three

was governed by a single fundamental principle – the Principle of

Bivalence – the expanded semantics imposes an additional principle of

equal importance: the Principle of Reference.2

Principle of Reference: each name letter refers to one and only

one object in the domain.

Just as a valuation assigns exactly one truth value to a sentence letter, a

model assigns exactly one referent to each name letter being used – as in the

following example.

2 This is sometimes called the Principle of Denotation.

5.3. Formal Semantics: Names and Predicates 4.29.17 5-17

𝔻: {Neko, Letitia, Lucretia}

P: 1 A: Neko

Q: 0 B: Letitia

R: 0 C: Lucretia

D: Neko

Note that the Principle of Reference allows an object to have more than one

name within the same model: here both “B” and “D” refer to the same

person, Neko. So if, for example, unbeknownst to friends and family Neko

moonlights as the dread assassin Mouse-Slayer, the names “Neko” and

“Mouse-Slayer” would refer to the same individual. Here again the

Principle of Reference parallels the Principle of Bivalance: each sentence

letter must have exactly one truth value, but different sentence letters can

have the same truth value.

For purposes of convenience we require further that every object in the

domain have at least one name. There’s no deep metaphysical point to this

stipulation – our logic isn’t committed to some claim that there couldn’t be

an unnamed object (such as the Tao is perhaps said to be in Chapter One of

the Tao Te Ching). The requirement is instead just a time-saving measure

useful later in the semantics of quantifiers. (While we could develop

quantifier semantics without employing this assumption, it would only be a

more complicated way of achieving the same results).

3. Predicates and Extensions. The merits of insisting that every object be

named become clearer when we turn to predicate letters. For while

predicates likewise aren’t true or false, they are, in logical tradition, said to

be “true of” something – that is, to make a true claim about that object. Of

course the predicate alone doesn’t make a claim; but the predicate letter can

yield a claim about an object by having that object’s name fill the blank in

the predicate. So in a domain containing of just Neko, Lucretia, and Letitia,

the predicate “ is a student” is true of two individuals in the domain, and

not true of one of them – because the sentences “Lucretia is a student” and

“Letitia is a student” are true, while “Neko is a student” is false.

5-18 Chapter Five: Names, Predicates, Quantifiers

The things a predicate ‘holds true of’ form the extension of that predicate.

In the last example the extension of “is a student” was Letitia and Lucretia.

In formal models the extension of a predicate letter is likewise the set of

objects in the model’s domain which that predicate letter ‘holds true of’.

Our semantics therefore specifies an extension for every predicate letter

listed in the model – each such extension being populated by objects drawn

from the domain of that model.3 We extend our earlier example to include

extensions for predicate letters “G” through “J”.

𝔻: {Neko, Letitia, Lucretia}

P: 1 A: Neko C: Lucretia

Q: 0 B: Letitia D: Neko

R: 0

G: {Letitia, Lucretia} I: {Neko, Letitia, Lucretia}

H: {Neko} J: { }

For instance, “G” might stand for “is a student”; “H” for “is a cat; “I” for “is
female”; and “J” for “is a unicorn”. Then our model works out sensibly

enough: in this little three-member domain Letitia and Lucretia are students;

Neko is a cat; all three are female; and none are unicorns.

Note that while every proper name must refer to an object, a predicate letter

isn’t required to have objects in its extension. In this model the extension of

“J” is empty. Exactly right: for reading “J” as “is a unicorn,” in a situation

involving just Neko, Letitia, and Lucretia, that predicate should indeed fail

to apply to anything.

But we do require that each predicate letter have only one extension in a

given model, so that name and predicate semantics in combination yield

truth or falsehood without violating Bivalence.

Securing truth or falsehood for a predicate-letter-plus-name-letter is then

straightforward: that sentence is true exactly when the object referred to by

the name letter is contained in the extension of the predicate letter.

3 The extension of each predicate letter will thus be some (proper or improper) subset of the domain.

5.3. Formal Semantics: Names and Predicates 4.29.17 5-19

In this model, name letter “A” refers to Neko, who is indeed in the extension

of “H” (“is a cat”). So the sentence “HA” (“Neko is a cat”) is true in this

model. But Neko’s not in the extension of “G” (“is a student”), so “GA”

(“Neko is a student”) is false.

Once the model assigns truth values to such atomic sentences, the Negation,

Conjunction, Disjunction, Conditional, and Biconditional Rules assign

values to molecular sentences built out of these atoms – as the following

examples illustrate.

𝔻: {Neko, Letitia, Lucretia}

P: 1 A: Neko C: Lucretia

Q: 0 B: Letitia D: Neko

R: 0

G: {Letitia, Lucretia} I: {Neko, Letitia, Lucretia}

H: {Neko} J: { }

GA: 0 HA: 1 IA: 1 JA: 0

GB: 1 HB: 0 IB: 1 JB: 0

GC: 1 HC: 0 IC: 1 JC: 0

GD: 0 HD: 1 ID: 1 JD: 0

~GA: 1

(GA  HA): 0

(GB  HD): 0

(GB  GC): 1

(JA  HA): 1

(GA  HA): 1

(HA  GA): 0

(HD  P): 1

(GA  Q): 0

(HB  GA): 1

(GA  JA): 1

(HB  GB): 0

