5.3. Names and Predicates: Formal Semantics

1. Models. The semantics for sentence logic sharpened the intuitive idea of
possible situation into the technical concept of valuation. With the formal
language expanded to include names and predicates, we expand its
semantics as well by extending valuations into models.

For those parts of the formal language inherited from previous chapters, the
semantics remains unchanged in models: a model assigns one (and only one)
truth value to each sentence letter; and negations, conjunctions,
disjunctions, and conditionals follow the familiar semantic rules.

This much semantics addresses Al, along with 2 through 6 of the
construction rules.

Revised Construction Rules (First Draft)

Atomic Sentences:
Al. Sentence letters are atomic sentence
A2. A predicate letter followed by a name letter is an atomic sentence.

Formal Sentences:

1. Atomic sentences are formal sentences.

2. If @ is a formal sentence, then ~® is a formal sentence.

3. If ® and A are formal sentences, then (® A A) is a formal
sentence.

4. If ® and A are formal sentences, then (® v A) is a formal
sentence.

5.1f ® and A are formal sentences, then (® — A) is a formal
sentence.

6. If ® and A are formal sentences, then (® <> A) is a formal
sentence.

Here we provide semantics for the one new type of sentence, introduced by
A2: a predicate-letter-plus-name-letter.



5.3. Formal Semantics: Names and Predicates 4.29.17 5-15

2. Names and Reference. Note that neither an English predicate like “is a
cat” nor a name like “Neko” is a natural candidate for truth or falsehood.
Yet in combination they form something which can be true or false: a
sentence such as “Neko is a cat”. And the same is true of predicate and
name letters. So our formal semantics needs to give each predicate letter
and name letter a non-1/0 value — but in a way that allows those values,
when combined, to yield a value of 1 or O for the whole sentence.

A proper name such as “Neko” serves to refer to some individual — and
unlike a short-term, reusable pointer like “it,” a proper name always refers to
the same individual. A name letter, as the formal counterpart to a proper
name, likewise refers invariably to a particular individual.

In order to represent such reference in models, the expanded formal
semantics will include a set of objects populating a domain of discourse —
or “domain” for short. A little three-member domain would look like this.

D: {Neko, Letitia, Lucretia}

(Don’t be misled by the need to depict things on the printed page by words:
the three members of this domain aren’t three names, but those three people
themselves.)

And when we don’t already have particular individuals (such as Letitia or
Lucretia) in mind, but just need some generic objects to populate a model, a
quick way to meet that need is to use numbers as the objects of the domain.

D: {2, 3, 4}

(We start with 2 to avoid confusion — because the numerals “0” and “1” are
already used in the semantics to represent True and False.)

In order for the semantics to produce the desired results concerning validity,
we insist that the domain cannot be empty. Every model must have a
domain with at least one object.!

1 On why we don’t allow an empty domain, see 5.5.1 Problem E.



5-16 Chapter Five: Names, Predicates, Quantifiers

Already in the early days of modern logic the logician Augustus De Morgan
noted that the domain of discourse — the objects under discussion — isn’t
typically intended to be every single object in the universe.

Thus when we say “All animals require air”, or that the name
requiring air belongs to everything to which the name animal
belongs, we should understand that we are speaking of things of this
earth: the planets, etc., of which we know nothing, not being included.
(De Morgan 1847: 55; cited in Lambert and van Fraassen 1972: 83)

And the domain of discourse will vary as discourse varies. So the sentence
“Everyone showed up for the exam” will be judged true if, say, the students
in the course all showed up for the exam; whereas the sentence “Everyone
needs oxygen to live” will be judged true if everyone on the planet (but not
necessarily everyone in the universe) needs oxygen to live. The domain of
discourse is usually taken for granted in conversation, and for that reason
usually goes unstated. So a certain amount of reflection and reconstruction
may be needed to state the domain of discourse for a specific discussion.

With a domain of discourse in hand, the semantics can then specify a
referent — an object referred to — for each name letter, drawing these from
the domain of that model. While the semantics of Chapters Two and Three
was governed by a single fundamental principle — the Principle of
Bivalence — the expanded semantics imposes an additional principle of
equal importance: the Principle of Reference.?

Principle of Reference: each name letter refers to one and only
one object in the domain.

Just as a valuation assigns exactly one truth value to a sentence letter, a
model assigns exactly one referent to each name letter being used — as in the
following example.

2 This is sometimes called the Principle of Denotation.



5.3. Formal Semantics: Names and Predicates 4.29.17 5-17

D: {Neko, Letitia, Lucretia}

1 A: Neko

0 B: Letitia

0 C: Lucretia
D: Neko

0O T

Note that the Principle of Reference allows an object to have more than one
name within the same model: here both “B” and “D” refer to the same
person, Neko. So if, for example, unbeknownst to friends and family Neko
moonlights as the dread assassin Mouse-Slayer, the names “Neko” and
“Mouse-Slayer” would refer to the same individual. Here again the
Principle of Reference parallels the Principle of Bivalance: each sentence
letter must have exactly one truth value, but different sentence letters can
have the same truth value.

For purposes of convenience we require further that every object in the
domain have at least one name. There’s no deep metaphysical point to this
stipulation — our logic isn’t committed to some claim that there couldn 'z be
an unnamed object (such as the Tao is perhaps said to be in Chapter One of
the Tao Te Ching). The requirement is instead just a time-saving measure
useful later in the semantics of quantifiers. (While we could develop
guantifier semantics without employing this assumption, it would only be a
more complicated way of achieving the same results).

3. Predicates and Extensions. The merits of insisting that every object be
named become clearer when we turn to predicate letters. For while
predicates likewise aren’t true or false, they are, in logical tradition, said to
be “true of” something — that is, to make a true claim about that object. Of
course the predicate alone doesn’t make a claim; but the predicate letter can
yield a claim about an object by having that object’s name fill the blank in
the predicate. So in a domain containing of just Neko, Lucretia, and Letitia,
the predicate “___is a student” is true of two individuals in the domain, and
not true of one of them — because the sentences “Lucretia is a student” and
“Letitia is a student” are true, while “Neko is a student” is false.



5-18 Chapter Five: Names, Predicates, Quantifiers

The things a predicate ‘holds true of” form the extension of that predicate.
In the last example the extension of “is a student” was Letitia and Lucretia.

In formal models the extension of a predicate letter is likewise the set of
objects in the model’s domain which that predicate letter ‘holds true of’.
Our semantics therefore specifies an extension for every predicate letter
listed in the model — each such extension being populated by objects drawn
from the domain of that model.> We extend our earlier example to include
extensions for predicate letters “G” through “J”.

D: {Neko, Letitia, Lucretia}

P:1 A: Neko C: Lucretia
Q:0 B: Letitia D: Neko
R: 0

G: {Letitia, Lucretia} |: {Neko, Letitia, Lucretia}
H: {Neko} J.{}
For instance, “G” might stand for “is a student”; “H” for “is a cat; “I” for “is
female”; and “J)” for “is a unicorn”. Then our model works out sensibly
enough: in this little three-member domain Letitia and Lucretia are students;
Neko is a cat; all three are female; and none are unicorns.

Note that while every proper name must refer to an object, a predicate letter
isn’t required to have objects in its extension. In this model the extension of
“)” is empty. Exactly right: for reading “J” as “is a unicorn,” in a situation
involving just Neko, Letitia, and Lucretia, that predicate should indeed fail
to apply to anything.

But we do require that each predicate letter have only one extension in a
given model, so that name and predicate semantics in combination yield
truth or falsehood without violating Bivalence.

Securing truth or falsehood for a predicate-letter-plus-name-letter is then
straightforward: that sentence is true exactly when the object referred to by
the name letter is contained in the extension of the predicate letter.

3 The extension of each predicate letter will thus be some (proper or improper) subset of the domain.



5.3. Formal Semantics: Names and Predicates 4.29.17 5-19

In this model, name letter “A” refers to Neko, who is indeed in the extension
of “H” (“is a cat”). So the sentence “HA” (“Neko is a cat”) is true in this
model. But Neko’s not in the extension of “G” (“is a student”), so “GA”
(“Neko is a student”) is false.

Once the model assigns truth values to such atomic sentences, the Negation,
Conjunction, Disjunction, Conditional, and Biconditional Rules assign
values to molecular sentences built out of these atoms — as the following
examples illustrate.

D: {Neko, Letitia, Lucretia}

P:1 A: Neko C: Lucretia

Q:0 B: Letitia D: Neko

R:0
G: {Letitia, Lucretia} |: {Neko, Letitia, Lucretia}
H: {Neko} J:{}
GA: 0 HA: 1 IA: 1 JA: 0
GB:1 HB: 0 IB: 1 JB: 0
GC: 1 HC: 0 IC: 1 JC: 0
GD: 0 HD: 1 ID: 1 JD: 0
~GA: 1 (HDAP): 1
(GAAHA): O (GAvQ):0
(GBAHD): 0 (HBe GA): 1
(GBAGC): 1 (GA© JA): 1
(JAVHA):1 (HB< GB): 0
(GA>HA): 1

(HA > GA): 0



