

 Proofs and Deductions 

5.13. Quantifiers: Rules of Deduction

We noted earlier that the language of names, predicates, and quantifiers

brings two innovations to the construction rules: a predicate letter followed

by a name letter or variable, and quantified sentences. Any extensions this

language brings to the deductive system of the previous chapter will be just

those needed to capture the further valid arguments and logical truths of this

extended language.

Since a predicate-letter-followed-by-sentence-letter or -variable forms an

atomic formula, with no smaller formulas as parts, their addition to the

formal language occasions no new rules of inferences (just as there are no

deductive rules devoted to sentence letters). That means any new deductive

rules needed will be solely for inferences involving quantifiers.

1. Quantifier Negation. The simplest rule for quantified sentences is an

argument form encountered earlier: Quantifier Negation, in four forms.1

Quantifier Negation (QN)

 Inward QN: Outward QN:

~∀x 

∃x ~

~∃x 

 ∀x ~

 ∃x ~

~∀x 

∀x ~

 ~∃x 

1 This form of inference was first encountered in 5.5. In fact we only need Inward QN as a basic rule here;

Outward QN can be treated as a derived rule. See 5.13.1 Problem 1.

5.13. Quantifiers: Rules of Deduction 3.16.17 5-93

This formally implements intuitive arguments such as the following.

 Not everything is made of limestone.

 Something isn’t made of limestone.

 Everything is non-physical

  Nothing is physical.

 Something isn’t made of limestone.

 Not everything is made of limestone.

 Nothing is physical

  Everything is non-physical

Already this allows us deduction of the following argument.2

1. If everything is made of limestone, then Neko is.

2. (But) Neko’s not made of limestone.

 Something’s not made of limestone.

A: Neko G__: is made of limestone

1. (∀x Gx  GA)

2. ~GA

 Get: ∃x ~Gx

3. ~∀x Gx 1, 2, MT

4. ∃x ~Gx 3, QN

2 As we will later show, the first premise here is a logical truth; so the conclusion follows validly from the

second premise alone. See the discussion of the Universal Elimination rule, below, and 5.13.1 Problem 2.

5-94 Chapter Five: Names, Predicates, Quantifiers

2. Universal Elimination. We retain here our semantic focus on full-

fledged sentences (rather than mere quasi-sentences), by retaining as well

the earlier concept of an instance of a quantified sentence. Recall that to

build an instance of a quantified sentence we remove the quantifier from the

sentence, and then replace the variable in that quantifier according to the

following three conditions.3

(A) Replace all free occurrences of the variable with name letters.

(B) Replace only free occurrences of that variable with name letters.

(C) Replace all free occurrences of that variable with the same name

letter.

For example, to build an instance of “∀x ((Jx  Hx)  ∃x ~Gx)” we remove

the quantifier “∀x”, and replace all and only the free occurrences of its

variable – “x” – by a name letter.

So of the following formulas, only (1) and (2) are instances of

“∀x ((Jx  Hx)  ∃x ~Gx)”.4

(1) ((JA  HA)  ∃x ~Gx) (A/x)

(2) ((JB  HB)  ∃x ~Gx) (B/x)

(3) ((JA  Hx)  ∃x ~Gx) (A/x)

(4) ((JA  HA)  ∃x ~GA) (A/x)

(5) ((JA  HB)  ∃x ~Gx) (A,B/x)

(3) violates the ‘all free occurrences’ requirement: the occurrence of “x” in

“Hx” is left free. (4) violates the ‘only free occurrences’ requirement:

when “∀x” is removed from “∀x ((Jx  Hx)  ∃x ~Gx)” the occurrence of

“x” in “∃x ~Gx” remains bound by “∃x”. And (5) violates the ‘same name

letter’ requirement: when “∀x” is removed, the two free occurrences of “x,”

in “Jx” and “Hx,” aren’t replaced by the same name letter.

3 As set out and explained in 5.8.
4 As in earlier readings, the notation on the right side – for example, “(A/x)” – records which name letter

replaces the quantified variable. In the case of (A/x) – pronounced “A for x” – name letter “A” replaces

variable “x”.

5.13. Quantifiers: Rules of Deduction 3.16.17 5-95

With this understanding of “instance”, the inference rule for universal

sentences is straightforward.

Universal Elimination (“A-Elim”)(–)5

∀x

 I

where I is an instance of the scope formula 

This rule implements formal counterparts of intuitively valid inferences such

as the following.

1. Everything is made of matter.

 The Cathedral of Learning is made of matter.

For instance, armed with – we can demonstrate the validity of the

following intuitively valid English argument.

A: Jack G__: is a surfer

H__: is an athlete

1. All surfers are athletes.

2. Jack is a surfer.

 Jack is an athlete.

1. ∀x (Gx  Hx)

2. GA

 HA

5 This is sometimes called “Universal Instantiation”. We call it “A Elim” for short (rather than “U Elim” for

“universal”) because the upside-down “A” is being removed. This is in keeping with the naming system of

earlier chapters, which featured the rules “Wedge Elim” (rather than “Conjunction Elim”) and “Vel Elim”

(rather than “Disjunction Elim”).

5-96 Chapter Five: Names, Predicates, Quantifiers

1. ∀x (Gx  Hx)

2. GA

 Get: HA

3. (GA  HA) 1, – (A/x)

4. HA 2, 3, MP

3. Existential Elimination. Matters are trickier with existential sentences.

For on the one hand it seems intuitive that here too a quantified sentence

licenses an instance: if there exists something G, then there must be some

particular object which is truly said to be G. Yet as we saw earlier with truth

trees, matters can’t be as simple as just instantiating an existential to a single

name letter. The following argument is obviously invalid, but will be easy

to deduce if existential instantiation is left unconstrained.

 Invalid ! 

Dr. Slim is a man. Someone stole the crown jewels. (Therefore,) Dr.

Slim is a man who stole the crown jewels.

B: Dr. Slim I__: is a man

J__: stole the crown jewels

1. IB

2. ∃x Jx

 Get: (IB  JB)

3. JB 2, Existential Elimination (B/x)

4. (IB  JB) 1, 3, +

Since the name letter “B” appears already on Line (1), it’s ‘already taken’ by

someone; so instantiating the existential sentence to that name letter is far

from innocent. (Likewise in English: while it’s fine to call the jewel thief

“Mr. X,” or some other name which no one is using, the name “Dr. Slim” was

already taken; so it was a mistake to use that name for the culprit.)

5.13. Quantifiers: Rules of Deduction 3.16.17 5-97

Therefore in deductions (as in truth trees) we impose a ‘new name’

requirement on existential instantiation: the name being instantiated to must

be new to the deduction – i.e., must not have appeared on previous lines

of the deduction.

But care is needed when speaking of “previous lines”. For instantiating the

existential sentence to a name letter can be invalid even if no earlier

numbered line in the deduction featured that name letter. The following

argument, for instance, is clearly invalid.

 Invalid ! 

Something is made of marshmallow. (Therefore,) the Cathedral of

Learning is made of marshmallow.

C: The Cathedral of Learning K__: is made of marshmallow

1. ∃x Kx

 Get: KC

2. KC 1, Existential Elimination (C/x)

But the only numbered line before the existential elimination is Line (1),

which does not contain the name letter “C”; so “C” is new to the numbered

lines when the instantiation occurs on Line (2). Since the argument is

clearly invalid, simply requiring the name to be new among the

numbered lines is not a strong enough constraint on existential

elimination.

Note that “C” does appear before Line (2) – on the “Get” line. We don’t

count the “Get” line as a line in the deduction, in the sense that we could

apply any rule of inference to it; it’s just a memo off to the side, reminding

us what the deduction is aiming for. Still, if we include the “Get” line as

5-98 Chapter Five: Names, Predicates, Quantifiers

part of the ‘new-ness’ constraint on instance variables, we correctly block

the deductive system from counting the above argument as valid.6

So we impose this strengthened ‘newness’ condition on names in existential

elimination.

Existential Elimination (E-Elim) (–)7

∃x

 I

where (i) I is an instance of the scope formula ,

and

(ii) the name letter used in that instance (to replace the

quantified variable) is “new to the deduction” – that is, does

not appear on any previous lines, including “Get” lines.

6 So the mere mention of the name letter (in the “Get” memo) rules out its use in – afterwards. Though

truth trees don’t feature “Get” lines, they impose the same constraint on existential instances: since the first

steps of a truth tree are listing the premises (on the left) and conclusion (on the right), any name letters

appearing in that conclusion will be barred from appearing in later existential instances, thanks to the

newness constraint on the True Existential rule. See

In this respect the “Get” line serves as a filter on existential instances just as the “Show” line does in (Kalish
and Montague 1964: 100). While the “Show” line in Kalish and |Montague’s system is a numbered line to

which (once the word “Show” is crossed off) rules of inference can be applied, it acts as a filter on

existential instances whether or not it’s cancelled. As noted in the second edition (Kalish, Montague, and
Mar 1980: 154-155), even a weaker ‘newness’ constraint blocks the inference both in cases where a prior

‘Show’ line is already cancelled and in cases where it’s not. See likewise the discussion of Problem 69 on

(ibid: 159) and Problem 70 on (ibid: 160).

By including the “Get” line in the criterion for ‘newness’ of a line, without allowing rules of inference to

apply to any “Get” line (crossed off or not), the present system retains Kalish and Montague’s simplified

rule of Existential Instantiation (here, Existential Elimination) while also retaining the top-to-bottom

reading order of a Fitch-style deductive system (see e.g. Fitch 1952: xx or Thomason 1970: yy). Further

details on the two types of deductive systems can be found in (Pelletier 1999), which provides an extensive

discussion of their historical development.

7 This is sometimes called “Existential Instantiation” (EI).

5.13. Quantifiers: Rules of Deduction 3.16.17 5-99

The following deduction illustrates – and – in combination.

G__: is a cat H__: is a fish-eater

1. All cats are fish-eaters.

2. Cats exist.

 Fish-eaters exist.

1. ∀x (Gx  Hx)

2. ∃x Gx

 ∃x Hx

1. ∀x (Gx  Hx)

2. ∃x Gx

 Get: ∃x Hx (ID)

3. ~∃x Hx AID

4. GA 2, – (A/x)

5. (GA  HA) 1, – (A/x)

6. HA 4, 5, MP

7. ∀x ~Hx 3, QN

8. ~HA 7, – (A/x)

9. ∃x Hx 3, 6, 8, ID

4. Deductive Strategy. It was no coincidence that we used – before – in

that last deduction. For suppose instead we apply – to line 1 first.

1. ∀x (Gx  Hx)

2. ∃x Gx

 Get: ∃x Hx (ID)

3. ~∃x Hx AID

4. (GA  HA) 1, – (A/x)

5-100 Chapter Five: Names, Predicates, Quantifiers

If we then seek to set up MP on line 4, by getting its antecedent from line 2

by –, we’re stuck: since – requires that we instantiate to a new name

letter, we can’t – to “GA” on Line (5) (only, e.g., to “GB” or “GC”).

1. ∀x (Gx  Hx)

2. ∃x Gx

 Get: ∃x Hx (ID)

3. ~∃x Hx AID

4. (GA  HA) 1, – (A/x)

That points up an important bit of deductive strategy: since – is limited to a

new name letter while – isn’t, it’s shrewd to use – before using –.

Deduction Strategy: Use – before using –.

As their names make clear, – and – are Elim rules. So these two rules

are added to the Elim rules of Chapters Three and Four.

But, as noted already in the truth tree rules for quantifiers, a universally

quantified sentence can entail an unlimited number of instances. To avoid

such a limitless cascade of sentences, our strategy will be to use – within

an indirect deduction to deduce only as many instances of a universal as

needed to conflict with instances of existential sentences and other sentences

containing name letters. Here, as in truth trees, universals follow up on

(instances of) existential sentences and other sentences with name letters.

5.13. Quantifiers: Rules of Deduction 3.16.17 5-101

As regards Quantified Negation, our earlier division of the rule into Inward

and Outward versions was for a good cause. We count Inward QN as an

Elim rule, to be used whenever possible.

Inward Quantifier Negation

~∀x 

∃x ~

~∃x 

 ∀x ~

Outward QN is a setup rule, used – like the Intro rules – only to construct a

needed part of an inference or deduction.

Outward Quantifier Negation

∃x ~

~∀x 

∀x ~

 ~∃x 

Deduction Strategy: Treat Inward QN as an Elim rule, using it

whenever possible. Treat Outward QN as a Setup Rule (like an

Intro rule), using it only to get sentences needed to complete a

deduction or perform an Elim rule.

5-102 Chapter Five: Names, Predicates, Quantifiers

Quantifier Deduction Rules

Quantifier Negation (QN)

 Inward QN: Outward QN:

~∀x 

∃x ~

~∃x 

∀x ~

∃x ~

~∀x 

∀x ~

~∃x 

Universal Elimination (“A-Elim”)(–)

∀x

 I

where I is an instance of the scope formula 

Existential Elimination (“E-Elim”) (–)

∃x

 I

where (i) I is an instance of the scope formula ,

and (ii) the name letter used in that instance (to replace

the quantified variable) is new to the deduction – that is,

does not appear on previous lines, including “Get” lines.

5.13. Quantifiers: Rules of Deduction 3.16.17 5-103

Quantifier Deduction Strategy

 Treat – and – like Elim rules: use whenever possible.

 Use – before –.

 Treat Inward QN as an Elim rule: use whenever possible.

 Treat Outward QN as a Setup rule (like an Intro rule):

only to get a missing sentence to complete a deduction or

perform an Elim rule.

