
   

 

2.27. Valuation Disjunctions, Expressive Adequacy, 

and Disjunctive Normal Form  

 

 

1. Expressive Adequacy.  Because each construction rule is matched by a 

semantic rule, we know that each formal sentence has a truth table. Less obvious 

perhaps, is whether the reverse is true as well: whether each truth table – an array 

of 2N 1s and/or 0s – is guaranteed to have a matching formal sentence. 

 

If the answer is no, there will be some truth table matched by no sentence in the 

formal language.  In that case the construction rules, in providing all the sentences 

available in the formal language, wouldn’t keep up with the set of all possible truth 

tables.  In the jargon of formal logic, that would make our formal language 

expressively inadequate. 

 

But that unhappy outcome is, happily, not the case.  In fact our formal language is 

expressively adequate: for any possible truth table, the formal language is 

guaranteed to have a matching sentence. 

 

Proving this involves a general procedure which starts with a truth table and ends 

with a matching formal sentence.  (And by “matching” we mean: a sentence 

which, according to the semantic rules, really does take that truth table.)   

 

 

2. Valuation Sentences Revisited: Valuation Disjunctions.  In search of our 

general procedure we return to sentences discussed in the previous section. 

 

Note first that for an array of 1’s and 0’s to qualify as a truth table, it must contain 

2N 1s and/or 0s.  (A truth table can’t have three 1s and/or 0s, or five of them; it 

must have two, or four, or eight, etc.)  Our task is only to find a formal sentence for 

each genuine truth table – that is, for each array of 2N 1s and/or 0s.  When we 

speak below of a “mystery truth table” we mean such an array of 1s and/or 0s.  
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The general sentence-matching technique begins by lining up such a ‘mystery truth 

table’ with truth tables for sentences letters – N many sentence letters, for the 2N 

valuations in the mystery truth table. So if the truth table has 4 (22) valuations, we 

precede it by truth tables for 2 sentence letters (say, “P” and “Q”); whereas if we 

face 8 (23) valuations, we attach truth tables for 3 sentence letters (say, “P,” “Q,” 

and “R”). 

 

So consider this mystery truth table. 

 

? 

1 

0 

0 

1 

 

Having 4 valuations, we attach before it truth tables for two sentence letters. 

 

P Q ? 

1 1 1 

1 0 0 

0 1 0 

0 0 1 

 

Next we focus on the ‘true valuations’ (those with a 1).  For each such ‘true 

valuation’ we construct a sentence true in only that valuation. 

 

Thanks to our earlier explorations we know just what sort of sentence fills the bill: 

a valuation sentence is a sentence true in exactly one valuation.   (Recall that for a 

given set of sentence letters, a valuation sentence is a conjunction where each 

sentence letter in the set appears exactly once – either as-is, or negated.) 
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So {P, Q} yields the following four valuation sentences. 

 

(P  Q) 

(~P  Q) 

(P  ~Q) 

(~P  ~Q) 

 

As truth tables illustrate, each of these sentences is true in just one valuation. 

 

P Q ~P ~Q (P  Q) (P  ~Q) (~P  Q) (~P  ~Q) 

1 1 0 0 1 0 0 0 

1 0 0 1 0 1 0 0 

0 1 1 0 0 0 1 0 

0 0 1 1 0 0 0 1 

 

And since no two of these sentences are true in the same valuation, each valuation 

sentence is paired with its own unique valuation.  That means that any ‘true 

valuation’ – a valuation with a 1 – has a corresponding valuation sentence. 

 

The general procedure for pairing a ‘true valuation’ with a valuation sentence 

requires us to look at values of the sentence letters in that valuation, and construct 

our valuation sentence accordingly. 

 

 If the sentence letter is true in that valuation, the valuation sentence should 

include that sentence letter. 

 

 If the sentence letter is false in that valuation, the valuation sentence should 

include the negation of that sentence letter. 
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So, for example, in a valuation where “P” and “Q” are both true, the corresponding 

valuation sentence features both these sentence letters: “(P  Q)”. 

 

P Q (P  Q) 

1 1 1 

0 1 0 

1 0 0 

0 0 0 

 

Whereas in a valuation where “P” is true and “Q” is false, the corresponding 

valuation sentence will feature “P” and “~Q”. 

 

P Q ~Q (P  ~Q) 

1 1 0 0 

1 0 1 1 

0 1 0 0 

0 0 1 0 

 

Now, our mystery truth table was true in the first and fourth valuations.  Hence 

we build a valuation sentence to match each of these valuations: “(P  Q)” for the 

first, and “(~P  ~Q)” for the fourth. 

 

P Q ~P ~Q ? (P  Q) (~P  ~Q) 

1 1 0 0 1 1 0 

1 0 0 1 0 0 0 

0 1 1 0 0 0 0 

0 0 1 1 1 0 1 

 

The sentence matching the mystery truth table will be true in both the first and 

fourth valuations.   Neither of our valuation sentences here fits that pattern, since 

each is true in only one valuation.  But these two valuation sentences can figure as 

parts of a larger sentence which is true whenever one of its parts is true. 
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That, of course, describes the truth conditions for a disjunction.  Sure enough: a 

disjunction of the two valuation sentences matches the mystery truth table. 

 

P Q ~P ~Q ? (P  Q) (~P  ~Q) ((P  Q)  (~P  ~Q)) 

1 1 0 0 1 1 0 1 

1 0 0 1 0 0 0 0 

0 1 1 0 0 0 0 0 

0 0 1 1 1 0 1 1 

 

 

Such a disjunction of valuation sentences will be called a valuation disjunction.  

And we’ve already shown enough to recognize the following. 

 

Any truth table ‘true’ in a single valuation has a matching valuation 

sentence.  And any truth table ‘true’ in more than one valuation has a 

matching valuation disjunction. 

 

A larger, eight-valuation truth table provides another illustration.  The three ‘true’ 

valuations are matched with valuation sentences like so. 

 

P Q R ? Valuation Sentences 

1 1 1 1 ((P  Q)  R) 

1 1 0 0  

1 0 1 1 ((P  ~Q)  R) 

1 0 0 0  

0 1 1 0  

0 1 0 1 ((~P  Q)  ~R) 

0 0 1 0  

0 0 0 0  

 

And these three valuation sentences are combined into a disjunction. 

 

((((P  Q)  R)  ((P  ~Q)  R))  ((~P  Q)  ~R)) 
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Now while we’ve generally been fastidious about parentheses in the formal 

language, their proliferation here is an eye-boggling impediment.  So for valuation 

sentences and disjunctions we allow this convenience: when multiple parts are 

disjoined together, we’ll delete all inner parentheses. “((P  Q)  R)” will then 

become “(P  Q  R)”.  And the above disjunction will likewise be (mildly) 

simplified. 

 

( ((P  Q)  R)    ((P  ~Q)  R)   ((~P  Q)  ~R) ) 

 

We can afford this notational laxity because disjunctions are associative1: the 

grouping of parts in a disjunction makes no difference to truth or falsity.  For 

instance, whenever “((P  Q)  R)” is true “(P  (Q  R))” is true (and vice versa). 

 

The same holds for conjunctions: whenever “((P  Q)  R)” is true  

“(P  (Q  R))” is true (and vice versa).  So we allow the same loosening of 

notation for many-part valuation sentences – permitting a further simplifying of  

valuation disjunctions. 

 

( (P  Q  R)    (P  ~Q  R)   (~P  Q  ~R) ) 

 

Leaving off outermost parentheses (but only when they are indeed the outermost of 

all symbols!) provides a final bit of simplification – and the final form of our 

valuation disjunction. 

 

(P  Q  R)    (P  ~Q  R)   (~P  Q  ~R) 

 

(Note that returning this sentence to official construction format is easy: because 

grouping doesn’t affect truth, we can use parentheses to group the parts however 

we please. For example, we can always group parts in pairs, from the left, to return 

to the original sentence, above.) 

 

                                           
1 As noted in 2.7 § 2. 
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Truth tables confirm that this sentence does indeed take our mystery truth table. 

 

                       (P  Q  R)  (P  ~Q  R)  (~P  Q  ~R)  

 

 


P Q R ~P ~Q ~R (P  Q  R) (P  ~Q  R) (~P  Q  ~R) 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 
0 

0 

1 

0 

1 

0 

0 

1 
0 

0 
 

 

3. Valuation Sentences, Valuation Disjunctions, and Disjunctive Normal 

Form.  Alas, the method of valuation sentences and valuation disjunctions falls 

just short of the general procedure we’re seeking.  If a mystery truth table is true in 

just one valuation, a valuation sentence is sure to match it; and if it’s true in more 

than one, a valuation disjunction will.  But that overlooks the case where a mystery 

truth table is true in no valuations.  Neither valuation sentences nor valuation 

disjunctions are any help here, since they can never be false in every valuation.  (In 

semantic jargon: every valuation sentence and valuation disjunction is bound to be 

satisfiable.) 

 

At least two different solutions are available to close this gap – neither a large 

departure from the method set out above. 

 

The first strategy is simply to specify a sentence to be used in this troublesome 

case.  A truth table with 2N 0s is a truth table for a contradiction; and since all 

contradictions are logically equivalent, they’re semantically interchangeable.  So 

we can add a rule to our method that in such a case the sentence matching the 

mystery truth table is, say, “(P  ~P)”.  Since “(P  ~P)” is a sentence of the 

Chapter Two language, we succeed in finding a matching Chapter Two sentence 

for the mystery truth table. 
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The general method for matching a Chapter Two sentence to each truth table will 

then run as follows. 

 

 If the truth table has no true valuations (is false for every valuation), use  

“(P  ~P)” as the matching sentence. 

 

 If the truth table has exactly one true valuation, build a valuation sentence 

matching that valuation. 

 

 If the truth table has more than one true valuation, build a valuation 

disjunction true in just those valuations. 

   

Since every truth table is bound to fall into one of these three categories, every 

truth table is guaranteed a matching Chapter Two sentence. 

 

The second, more traditional strategy involves relaxing our original restrictions on 

valuations sentences – and so, by association, on valuation disjunctions.  When 

building a family of valuation sentence from a set of sentence letters we required 

that each sentence letter in the set appear exactly once.  If that restriction is lifted, 

we return to the larger family of basic conjunctions.2  These include all the 

valuation sentences of old, but also sentences such as the following. 

 

(P  ~P) 

((P  Q)  ~P) 

((P  Q)  ~R)  ~P) 

 

Since each of these conjunctions contains both “P” and “~P,” each yields a truth 

table false in every valuation; and that’s exactly the sort of case left out by 

valuation sentences. 

 

We can build disjunctions of these basic conjunctions, just as we did earlier out of 

valuation sentences.  But now some such disjunctions may have one or more parts 

which are contradictions.  (In the limit case, where every part of the disjunction is 

                                           
2 From 2.26 §1. 
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a contradiction, the entire disjunction will itself be a contradiction.  For instance, 

“((P  ~P)  (Q  ~Q))” is a contradiction.) 

    

Basics, basic conjunctions, and disjunctions of them, form the family of sentences 

said to be in Disjunctive Normal Form (or “DNF” for short).  The following 

construction rules offer precise conditions for being a DNF sentence.3  

 

Basics: 

1. Sentence letters are basics. 

2. Negations of sentence letters are basics. 

 

 

Basic Conjunctions: 

1. Basics are basic conjunctions. 

2. If  and   are basic conjunctions,  

  then (  ) is a basic conjunction. 

 

 

Sentences in Disjunctive Normal Form (DNF): 

1. Basic Conjunctions are DNF sentences 

2. If  and   are DNF sentences,  

  then (  ) is a DNF sentence. 

 

 

DNF sentences include contradictions such as “(P  ~P),” valuation sentences, and 

valuations disjunctions – plus further sentences falling into none of those 

categories.   

 

Yet despite the greater sentence-building power DNF offers over the earlier 

method of valuation disjunctions, this excess is largely irrelevant to our purposes.  

Since the sentences used in the first method – valuation sentences, valuation 

disjunctions, and contradictions such as “(P  ~P)” – all qualify as DNF sentences, 

the procedure for finding such a DNF sentence remains unchanged.  

                                           
3 The construction rules for DNF sentences can be summed up quite simply in terms of scope: in DNF a vel has 

wider scope than any wedge, and any vel or wedge has wider scope than any tilde. 
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 If the truth table is true in exactly one valuation, build a valuation sentence 

true in that valuation. 

 

 If the truth table is true in more than one valuation, build a valuation 

disjunction true in those valuations. 

 

 If the truth table is false in every valuation, use “(P  ~P)” as the matching 

sentence. 

 

In essence, the DNF approach over-generates wildly – allowing far more sentences 

than the first approach did – and then chops this jungle down to just those 

sentences of interest to us, through the three-part procedure above.  

 

Since either method provides a general procedure for matching each truth table 

with a formal sentence, we’re guaranteed that no truth table lies out of the reach of 

the Chapter Two language – the language of {~, , }, plus sentence letters.  Thus 

the formal language of Chapter Two is expressively adequate.   

 


