2.24. Truth Tree Restrictions

Truth trees combine two desirable results: (i) a general test of validity, for
arguments in our formal language, and (ii) a great savings in labor compared to the
truth table test. Here we review two restrictions on truth trees needed to preserve
those nice results. Without the first restriction, the truth tree test would fail as a
generally reliable test of validity — instead yielding incorrect verdicts on some
arguments. Without the second restriction, truth trees would needlessly multiply
the work the test involves.

1. Multiple Open Lines. This simple English argument seems intuitively valid.

1. We’re having ice cream or cake, but not both.
2. We’re having ice cream

.. We’re not having cake.

And truth tables confirm its validity: the one valuation satisfying both the premises
also satisfies the conclusion.

P: We’re having ice cream
Q: We’re having cake

L(PvQ)A~(PAQ)

2. P
. ~Q
(2) (1)
Pl Q |PvQ | (PAQ) | ~(PAQ) [(PVvQA~(PAQ)) | —Q
1 [1 1 1 0 0 0
—> 1 | 0 1 0 1 1 1
0|1 1 0 1 1 0
0|0 0 0 1 0 1

2-166 Chapter Two: “And,” “Or,” “Not”

A truth tree test of the argument’s validity begins with both premises on the left,
and conclusion on the right.

(PvQ)A~(PAQ))

P
~Q
“~Q” on the right follows the False Negation rule.
False Negation (PvQ)a~(P AQ))
P
~@ v _ Q .
’ Q

With both “P” and “Q” true, this line does not yet close; it obeys Bivalence.

“((Pv Q) A~(P AQ))” on the left is a large conjunction, following the True
Conjunction rule: if the whole conjunction is true, both its parts are true.

True Conjunction v (PvO)A~(PAQ))

P

v (OAA) -0~
® Q
A (Pv Q)

~(PAQ)

2.24. Truth Tree Restrictions 1.4.17 2-167

“~(P A Q)” on the left follows the True Negation rule: since “~(P A Q)” is true,
“(P AQ)” 1s false.

True Negation v((PvQ)A~(PAQ))
P
v ~@ ~Qv
[Q
(PvQ)

v ~(P Q)
(PAQ)

“(P v Q)” on the left calls for the True Disjunction rule: if “(P v Q)” is true, then
either “P” or “Q” must be true.

v(PvQ)A~(PAQ))
True Disjunction P
~Q v
/(®vA) v (T v Q))
v ~PAQ
o A Q
(PAQ)

J

Both of these paths stay open, since each obeys Bivalence. (Each path assigns “P”
and “Q” only one value: true.)

2-168 Chapter Two: “And,” “Or,” “Not”

Finally, “(P A Q) follows the False Conjunction rule: if “(P A Q)” is false, then
one or the other of its parts must be false. (This is where the problem arises.)

£ A Suspicious Move £

v(PvQ)A~(PAQ))
False Conjunction P
_...Q v
(.AA) v v (P \4 Q)
v ~(PAQ)
o |a Q
(PAQ)v
P Q ‘
Bk
x ®

Those last two paths each close: the left one because it made “P” both true and
false; the right one because it made “Q” both true and false.

Now every molecular sentence is checked; but one of the paths remains open. The
truth tree test of validity therefore judges the argument to be invalid.

That’s a problem — because both our English language intuitions and the truth
table test agree that this argument is perfectly valid. The truth tree test is giving
the wrong result.

The trouble was in the last step. Note that when we added that last branch,
following the False Conjunction rule, we only hung a copy of the branch off the
end of the left path. That’s why the right path stayed open — leading to a mistaken
verdict of invalidity.

2.24. Truth Tree Restrictions 1.4.17 2-169

If we instead make two copies of the False Conjunction branch — one hung off each
open path below “(P A Q)” — we get very different results.

False Conjunction Step, Performed Properly

v(PvQ)A~(PAQ))
False Conjunction P
...Q v
ST o
o |a Q
(PAQ)v
P Q

P Q |P Q
x x % x

Each of these four new paths closes: two because they make “P” false, and also
true; the other two because they make “Q” false, and also true. With every path
closed, this truth tree correctly judges the argument valid.

Our mistake the first time was that we had two open paths, and a new branch (from
the False Conjunction rule) — but we only made one copy of that branch. The
correct procedure, we now see, is: when a sentence causes a branch, we hang a
copy of the branch off every open path below that sentence. Since there were
two paths open below the branching sentence — False “(P A Q)” — we had to hang a
copy of the False Conjunction branch off both of those paths.

2-170 Chapter Two: “And,” “Or,” “Not”

2. Branching vs. Non-Branching Sentences: A Shortcut. Strictly speaking this
requirement, to hang a copy off every open path, applies to any breaking-down of
molecules — not just branchy ones. So consider the following valid argument.

1. We’re either having ice cream or cake.
2. We’re not having cake.

.. We’re having ice cream.

1.(PvQ)
2.~Q
L P
1 @
P Q] (PvQ) | —Q P
1 1 1 0 1
—> 1 |0 1 1 | 1 (=
0 1 1 0 0
0 0 0 1 0

Suppose in the truth tree test we start with the first premise,“(P v Q).

True Disjunction

~(PvQ)
v(@OvA) ~Q

o A

T

2.24. Truth Tree Restrictions 1.4.17 2-171
Suppose we (incorrectly) break down premise “~Q” only on the left path.

& True Negation (Done Incorrectly) £

True Negation v(PvQ)
v ~
v ~@ Q
PY P
P Q

Q

The left path closes (since “P” is both true and false). But the right path stays
open.

PV Q)
v -Q

P Q
Q

X

With the right path open to the end, this tree wrongly judges the argument invalid.

We’re familiar enough with truth trees now to spot the error here: with two paths
open below it, True Negation “~Q” must be broken down on both those paths.

2-172 Chapter Two: “And,” “Or,” “Not”

Putting a copy of False “Q” on both paths closes them both (the left path because it
makes “P” both true and false; the right because it makes “Q” true and false).
That’s the correct result.

v(PvQ)
v ~Q VALID!

But notice the extra work we made for ourselves here: because we broke down
“~Q” only after we had two open paths, we needed to break it down twice (once
on each path) to ensure the correct verdict.

If we instead broke down “~Q” before the branch, we’d only need one copy of its
part, False “Q” — while still (correctly) closing every path.

v ~(PvQ)
v ~Q
P
Q
P Q
® ®

Since True “~Q” doesn’t branch, it saves us labor to break it down before any
branching sentences — for that spares us making multiple copies of False “Q”.

2.24. Truth Tree Restrictions 1.4.17 2-173

Now, only two types of sentences introduce a branch: True Disjunctions and False
Conjunctions.

True Disjunction False Conjunction
V(OvA) (OAA) vV
[A ® A

To avoid unnecessary copying (and thereby reduce our workload) we will break
down such branching sentences only after we’ve finished with the non-
branching sentences (True Negations, False Negations, True Conjunctions, and
False Disjunctions). Our earlier rule — “Multiple Copies for Multiple Open Paths”
— then need only apply to the sentences remaining once we’ve taken care of all the
non-branchers. And of course those will be just the branchers we’d saved for last.

So breaking down non-branchers first not only lightens our workload, but also
permits a simplification of the “Multiple Copies” rule.

When a sentence branches, hang a copy of the branch off the end of every
open path below that sentence.

2-174 Chapter Two: “And,” “Or,” “Not”

Summary: Testing Arguments for Validity
Using Truth Trees

e Assume that there is a validity counterexample (a situation where
the premises are all true, but the conclusion is false) by putting
all the premises on the left (true) side of the tree trunk, and the
conclusion on the right (false) side of the tree trunk.

e Break down non-branching sentences before branching
sentences.

e Check off each sentence after that sentence is broken down.

e When a sentence branches, hang a copy of that branch off the end
of every open path below that sentence.

e |f a tree path has a sentence letter on both its left and right
sides, close that path with an “3%”.

e When all the sentences have been broken down (so that only
sentence letters remain unchecked), look at the end result:

If every path has closed, the argument is valid.
If even one path is still open, the argument is invalid.

