
 

5.5. A First Look at Quantifier Semantics 
 

 

1. Quasi-Sentences and Formulas.  Introducing name and predicate letters 

was a simple matter of adding a second kind of atomic sentence.  But 

variables bring a new complication to the formal language. 

 

We noted that a little English sentence such as “It is made of wood” doesn’t 

make a complete claim without help from some outside factor – a pointing 

finger, or prominent bit of background context.  For I can utter these words 

and make a true claim (when pointing at a log cabin), but in the same 

situation utter these words to make a false claim (while pointing at a stone 

cathedral).  Since variables are the formal counterpart to pronouns like “it,” 

a formal string such as “Gx” suffers the same incompleteness: without some 

outside factor pinning down what “x” is pointing to, “Gx” doesn’t make a 

complete claim. 

 

That’s in stark contrast to the atomic sentences encountered earlier.  “P”and 

“GA” are by themselves capable of being true or false, just like their English 

counterparts – say, “Exercise is bad for the soul” or “Neko is a cat”. 

 

So – taking sentences to be complete-claim makers, capable of truth or 

falsehood – we don’t count “Gx” as a formal sentence.  But we recognize its 

close resemblance to genuine sentences: it is, construction-wise, built the 

same way as our new atomic sentences (just a predicate-letter-plus-variable, 

rather than predicate-letter-plus-name-letter).  Coining a new bit of jargon, 

we say that such an incomplete-claim-maker is a quasi-sentence.1 

 

That rough, informal statement leaves undone the task of stating precisely 

what counts as a (complete) formal sentence and what is a (mere) quasi- 

sentence.  But even in advance of precise criteria, a further bit of jargon 

suffices to complete construction rules for the expanded formal language. 

 

We’ll use “formula” as an umbrella term covering any formal sentence or 

quasi-sentence.  So “P,” “GA,” and “Gx” are all formulas. 
 

 

                                                 
1 Adapting the “quasi-statement” of (Lambert and van Fraassen 1972: 79-80).   
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Formulas 

 

 

   Formal Sentences                   Quasi-Sentences 

            P, GA                                            Gx 

 

The revised construction rules can then be stated in terms of formulas.2 
 

 

 

 

Construction Rules (Final Version) 

 

     Terms 
T1. Name letters are terms 

T2. Variables are terms 

 
     Atomic Formulas: 

A1. Sentence letters are atomic formulas 

A2. A predicate letter followed by a term is an atomic formula. 

 

     Formulas: 

1. Atomic formulas are formulas. 

2. If  is a formula, then ~ is a formula. 

3. If  and  are formulas, then (  ) is a formula. 

4. If  and  are formulas, then (  ) is a formula. 

5. If  and  are formulas, then ( ) is a formula. 

6. If  and  are formulas, then ( ) is a formula. 

7a. If  is a variable and  is a formula, then ∃  is a formula. 

7b. If  is a variable and  is a formula, then ∀  is a formula. 

 

 

 

 

Note that since a quantifier attaches to the left of a formula, construction-

wise quantifiers act just like tildes. 

 

                                                 
2 The  symbol is pronounced “star”.  It is used here as a generic blank which any variable can fill – just 

as  is a blank which any formula can fill. 
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In Chapter Two we called the sentence that the tilde attaches to the “scope” 

of that tilde.3  Here likewise: the formula which a quantifier attaches to is the 

scope of that quantifier. 

 

So in the formula “∀x Gx”, the scope of “∀x” is the formula “Gx”. 
 

 

   ∀x Gx   (7b) 

 

 

               Gx   (T2, A2, 1) 

 

Operating on a scope formula will prove central quantifiers semantics.  

 

 

2. Quantifier Semantics: The Elements.  Already semantics for name and 

predicate letters was stated in terms of the model and its domain of objects.  

And armed with these, the truth-and-falsehood profiles of universal and 

existential sentences look straightforward: a universal sentence is true in a 

given model if (and only if) what it says is true of every object in the 

model’s domain of discourse; whereas an existential sentence will be true if 

(and only if) what it says holds true of at least one object in the domain. 

 

Our formal semantics will remain faithful to that intuitive description – but 

(naturally) in a way that re-states those points with enough precision to 

handle even complex cases. 

 

To sharpen the claim that a universal sentence is true when “what it says” is 

true of every object, note that the “what it says” here is just the scope 

formula following the quantifier.  Returning to the earlier example 

“Everything is a material object”: we take this sentence to be true just where 

“It is a material object” is true of each and every object in the domain.  

Likewise, taking “∀x Gx” as formal translation of “Everything is a material 
object,” “∀x Gx” is true in a model just where its scope formula “Gx” is true 

of every object in the domain of that model. 

 

But that seems to conflict with what we said earlier about a quasi-sentence 

such as “Gx”: that it’s not a candidate for truth or falsehood, since it’s not a 

                                                 
3 In 2.10. 
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complete-claim-maker.  How can this scope formula make true claims about 

every object in the domain if it isn’t capable of truth at all? 

 

Here a peculiarity of our semantics comes to the rescue, allowing full-

fledged sentences to stand in place of the scope formula. 

 

Recall that we require every object in the domain to have a name – that is, a 

name letter.  That requirement guarantees that everything true of an object in 

a model can be expressed in a sentence of the formal language.  And those 

true sentences will be intimately related to the scope formula of the 

quantified sentence. 

 

For example, in the following model we expect the sentence “∃x Gx” to be 

true, since there’s at least one object here that’s G.  (In fact, there are two 

such objects: 3 and 4.)  But we expect the sentence “∃x Jx” to be false in 

this model, since not even one object is J.   

 

𝔻: {2, 3, 4} 

 

A: 2   G: {3, 4}  I: {4} 

B: 3   H: {2, 3, 4}  J: { } 

C: 4    

 

 

Likewise the sentence “∀x Hx” should be true in this model, since every 

object in the domain is H.  But we judge “∀x Gx” false here, since not every 

object in this model is G.  (2 isn’t G.) 

 

Since every object in the model has a name, each of those observations 

about truth and falsehood can be restated in terms of sentences.   

 

For example: since every object that’s G has a name (3 is named “B”, and 4 

is named “C”), the sentences “GB” and “GC” are true.  But “GB” and “GC” 

are each just the scope formula of “∃x Gx” – namely, “Gx” – with a name 

letter in place of the variable “x”.  

 

We’ll say that “GB” and “GC” are each an instance of the scope formula 

“Gx”.  While more detail is needed before we can apply instances to 
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complex formulas, the following account works for atomic formulas such as 

“Gx” or “Jy”, or their negations (“~Gx” or “~Jx”).4   

 

Instance of a Scope Formula (First Draft): 
 

The sentence that results from replacing the variable in the scope 

formula by a name letter5 

 

So for our model using three name letters – “A,” “B,” and “C” – there are 

three instances of the scope formula “Gx”. 
 

 

 

Scope Formula: 

 

Gx 

Instances of This Formula 

(For This Model): 

 

GA 

GB 

GC 

 

And since “Gx” is the scope formula of the quantified sentences “∃x Gx” 

and “∀x Gx,” we’ll say that an instance of “Gx” is (by association) an 

instance of those quantified sentences as well. 
 

 

Instance of a Quantified Formula (First Draft) 
 

The result of removing the quantifier from that formula, and 

replacing the variable in its scope formula by a name letter. 
 

 

So since “Gx” is the scope formula of “∃x Gx” and of “∀x Gx,” the above 

three instances of “Gx” also count as instances of “∃x Gx” and “∀x Gx”.   

 

Finally, when we speak of “an instance of a quantified formula in a model,” 

we mean: an instance using a name letter which appears in that model.  So 

                                                 
4 The full account of instances is given in 5.8. 
5 Note that we speak here of “the variable” – thus taking for granted that there will be only one variable in 

the scope formula.  That assumption holds for simple formulas such as “Gx” or “~Jx,” but not for more 

complex formulas like “(Gx  ∃x Jx)”.  That’s why this definition of “instance” is only a first draft. 

 

(Likewise the definition of “instance of a quantified sentence” below refers to “the quantifier” of the 

sentence – thereby assuming there’s only one quantifier in the sentence.  Again, the definition will be 

modified later to scale up to larger sentences.) 
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the quantified sentences “∃x Gx” and “∀x Gx” have three instances in the 

above model (since that model features three name letters). 

 

With the notion of “instance” in hand, it’s easy to get correct results for the 

truth and falsehood of quantified sentences.   

 

For existential sentences: the sentence “∃x Gx” is true in a model if there’s 

at least one object (from that model’s domain) in the extension of “G” – i.e., 

if at least one object in the model is G.  And we expect “∃x Gx” to be false 

otherwise – that is, if there are no objects in the extension of “G” (if no 

objects in the model are G).   

 

But whenever at least one object is in the extension of “G” there’s at least 

one true instance of “∃x Gx” – say, “GB,” or “GC”.  So we can restate those 

last claims in terms of “instances”.  

 

“∃x Gx” is true in a model if “∃x Gx” has at least one true instance 

in that model. 

 

“∃x Gx” is false in a model if “∃x Gx” has no true instances in that 

model. 

 

So in our earlier model (repeated below), “∃x Gx” is true, since the 

sentence has at least one true instance in this model.  (In fact it has two: 

“GB” and “GC”.)  But “∃x Jx” is false in this model, since “∃x Jx” has not 

even one true instance.  (All the instances of “∃x Jx” in this model – “JA,” 

“JB,” and “JC” – are false.) 

 

 

𝔻: {2, 3, 4} 

 

Instances of 

“Gx”: 

Instances of 

“Jx”: 

A: 2 

B: 3 

C: 4 

G: {3, 4}       I: {4} 

H: {2, 3. 4}     J: { } 

GA: 0 

GB: 1 

GC: 1 

JA: 0 

JB: 0 

JC: 0 

 

 

For universal sentences: the sentence “∀x Gx” should be true in a model if 

every object in the domain is in the extension of “G” – that is, if every 

object is G.  And “∀x Gx” should false otherwise – that is, if even one 
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object in the domain isn’t in the extension of “G” (if even one object isn’t 

G).  Those points are restated in terms of “instances” as follows. 
 

 

“∀x Gx” is true in a model if every instance of “∀x Gx” in that 

model is true. 

 

“∀x Gx” is false in a model if “∀x Gx” has even one false instance 

in that model. 
 

 

So “∀x Hx” is true in our earlier model (repeated below), since each 

instance of “∀x Hx” in this model – “HA,” “HB,” and “HC” – is true.  But 

“∀x Gx” is false in this model, since “∀x Hx” has at least one false instance 

(namely: “GA”). 

 

 

𝔻: {2, 3, 4} 

 

Instances of 

“Hx”: 
Instances of 

“Gx”: 

A: 2 

B: 3 

C: 4 

G: {3, 4}       I: {4} 

H: {2, 3. 4}     J: { } 

HA: 1 

HB: 1 

HC: 1 

GA: 0 

GB: 1 

GC: 1 

 

 

3. Quantifier Negation.  So far the scope formulas treated semantically 

have all been atoms – e.g., “Gx” or “Hx” – semantics for complex quantified 

sentences waiting upon the further technical details of instances.  But 

already we can account for the truth and falsehood of scope formulas which 

are negations of atoms – for example, “~Gx” or “~Hx”.6  

 

The semantic rule for negations dictates that if a certain instance of, say, 

“Gx” is true in a model, then the negation of that instance is false in that 

model. 

 

                                                 
6 Because the negation of such an atom still only uses one variable to be replaced in an instance; so such 

negations don’t need to wait on the details of more complicated instances, given in 5.8.  
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So the quantified sentence “∃x ~Gx” is true in our previous model (repeated 

below).  For since “GA” is false in that model, “~GA” is true; and “~GA” is 

an instance of “∃x ~Gx”.  

 

 

𝔻: {2, 3, 4} 

 

Instances of 

“Gx”: 

Instances of 

“~Gx”: 

A: 2 

B: 3 

C: 4 

G: {3, 4}       I: {4} 

H: {2, 3. 4}     J: { } 

GA: 0 

GB: 1 

GC: 1 

GA: 1 

GB: 0 

GC: 0 

 

 

Note that “~∀x Gx” is also true in this model.  For “GA” is false here, 

meaning “∀x Gx” has a false instance – thus making “∀x Gx” false, and 

“~∀x Gx” true. 

 

Now it’s no coincidence that both “∃x ~Gx” and “~∀x Gx” are true together.  

In fact, any model making one of these sentences true makes the other true 

as well.  For if “∃x ~Gx” is true in a model, that’s because there is at least 

one true instance of “~Gx” (for example, “~GA”); and a model making that 

negation true makes the sentence after the tilde (for example, “GA”) false.  

That means “∀x Gx” has at least one false instance, so “∀x Gx” is false – 

making “~∀x Gx” true.   

 

The same chain of reasoning, started from the other end, ensures that 

whenever “~∀x Gx” is true, “∃x ~Gx” will be as well.  That makes sense 

intuitively: not everything is G if and only if something is non-G.7 

 

Similar semantic reasoning shows that “~∃xGx” and “∀x ~Gx” are likewise 

semantically equivalent.  (Intuitively: if not even one thing is G, then 

everything is non-G.) 

                                                 
7 [Taking for granted that there’s anything at all.  Considering a situation where there aren’t any objects, 

we might agree that “Not everything is G” (“~∀x Gx”) – indeed, that nothing is – but still deny that there’s 

something non-G (“∃x ~Gx”).  Faced with such an empty domain, the intuitive equivalence between “~∀x 

Gx” and “∃x ~Gx” would seem to break down.  The earlier semantic stipulation that the domain can’t be 

empty thus satisfies our intuitions here.   

 

(But that our intuitions might balk at equating “Not everything is G” and “Something is non-G” in an empty 

model is not to say that formal semantics would.  So before celebrating too unreservedly here, see X.xx for 

unintuitive judgments the formal semantics is willing to accept.) ] 
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Together these equivalences make up the law of Quantifier Negation. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Moreover, since “∀x ~Gx” and “~∃x Gx” are logically equivalent, their 

negations are equivalent as well.  That is: “~∀x ~Gx” and “~~∃x Gx” are 

logically equivalent.  And with the double negation “~~∃xGx” in turn 

equivalent to “∃xGx,” we conclude: “~∀x ~Gx” is logically equivalent to 

“∃x Gx”.  In effect: we can define the existential quantifier in terms of 

universal and tildes.8 

 

Likewise, by way of quantifier negation and double negation “~∃x ~Gx” is 

logically equivalent to “∀x Gx”.9   

 

That means any sentence we translate with one quantifier could be translated 

with the other instead.  We can construct a miniature (one-predicate) Square 

of Opposition illustrating these equivalences.10 

 

      

 

                                                 
8 So our formal language could translate all the same English sentences with just the universal quantifier – 

translating “some” as “~∀x~”. 
9 So our formal language could translate all the same English sentences with just the existential quantifier – 

translating “all” as “~∃x~”. 
10 Adapting the more traditional two-predicate Square of Opposition discussed earlier in 4.X. 

  

                     Quantifier Negation  
 

 

“∃x ~” is equivalent to “~∀x ” 
 

“∀x ~” is equivalent to “~∃x ” 
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Mini-Square of Opposition 

 

 

(A)  Everything is G 

                      ∀x Gx 

~∃x ~Gx 
 

 

                     (E)  Nothing is G 

∀x ~Gx 

~∃x Gx 

 

 

 

  

(I)  Something is G 

∃x Gx 

~∀x ~Gx 
 

 

 

 

 

(O)  Something is not G 

~∀x Gx 

∃x ~Gx 

 
 

Note that each sentence is equivalent to the negation of the sentence 

diagonal from it.  So “Nothing is G,” translated as “~∃x Gx,” is in effect the 

negation of “Something is G,” translated as “∃x Gx”. 

 

The sentences on the right also highlight some helpful points about 

translation.  First, the difference of tilde scope in “~∃x Gx” and “∃x ~Gx” is 

a difference that makes a difference.  In translating, we cannot be casual 

about which formal item comes first – the tilde or the quantifier – since 

switching the two drastically changes the claim being made.  (“Nothing is G” 

is a claim quite different from “Something is non-G”.  And “~∀x Gx” and 

“∀x ~Gx” likewise make very different claims.) 

 

But second, we can generally follow the order of negation and quantifiers in 

English in order to get the scope write in formal translation. 

 

“Not all” is translated as “~∀x”  

“All are non-” is translated as “∀x~” 

 

“Some are non-” is translated as “∃x~” 

“Not (even) some” is translated as “~∃x”  
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Summary: Quantifier Semantics (First Draft) 

 

 

 Instance of a Quantified Sentence (First Draft): 

 

For a quantified sentence, an instance of that sentence is the 

result of removing the quantifier, and replacing the variable in 

its scope formula by a name letter. 
 

 

 Existential Semantics (Simple Version): 

 

“∃x Gx” is true in a model if “∃x Gx” has at least one true 

instance in that model. 

 

“∃x Gx” is false in a model if “∃x Gx” has not even one true 

instance in that model. 
 

 

 Universal Semantics (Simple Version): 

 

“∀x Gx” is true in a model if every instance of “∀x Gx” in that 

model is true. 

 

“∀x Gx” is false in a model if “∀x Gx” has even one false 

instance in that model. 
 

 

 Quantifier Negation:  

 

“∃x ~” is equivalent to “~∀x ” 

“∀x ~” is equivalent to “~∃x ” 

 

 

 

 


