
   

 

2.30. Expressive Adequacy: Further Languages 

 

 

Earlier considerations of expressive adequacy1 focused on the formal language of 

Chapter Two – the language of {~, , }, plus sentence letters.2  In what follows 

we look at various ‘sub-languages’: formal languages got by casting out one or 

more of the connectives of the Chapter Two language.   

 

Beginning with the Chapter Two set of connectives {~, , }, removal of one or 

more connectives yields the following six (non-empty) subsets. 

 

{~, } 

{~, } 

{, } 

{~} 

{} 

{} 

 

Each of these (along with sentence letters) constitutes a formal language.  And here 

the question of expressive adequacy arises again: we ask, for each of these six 

languages, whether every possible truth table is matched by some sentence in that 

language.  If so, the language is expressively adequate – capable of pairing each 

truth table with some sentence of that language, just as the Chapter Two language 

does.  If not, there is some truth table which that formal language has no matching 

sentence for. 

 

It turns out that some of these formal languages are expressively adequate, but that 

others are provably inadequate.   In what follows we establish which result holds 

for each of these six formal languages. 

 

Our prior experience establishing the expressive adequacy of {~, , } already 

gives us a good idea which sort of approach will work in this case – and which 

won’t.  Specifically: for establishing that a language is expressively adequate, it’s 

no good trying to list all possible truth tables, one by one, and finding for each a 

matching sentence.   Since there are an infinite number of truth tables, such a 

                                           
1 In 2.28. 
2 The language {~, , } also features parentheses; but as mere punctuation these go without mention in the 

discussion that follows. 
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piecemeal matching process will never end.  Likewise, in attempting to show that a 

language is expressively inadequate, it’s pointless to single out some truth table 

and try to show that each sentence in the language fails to match it.  For again, 

since there are an infinite number of sentences in each of the formal languages 

we’re considering, comparison of sentences to that truth table will go on forever. 

 

To prove the expressive adequacy of {~, , } we built a general procedure for 

constructing a {~, , } sentence, for any given truth table.  And proving the 

expressive adequacy of further formal languages will likewise rely on a (modified 

form of) this general procedure. 

 

As we’ll see, establishing the expressive inadequacy of a formal language calls 

instead for finding a distinctive semantic feature of all truth tables generated by 

that language, and showing that some truth table lacks this feature. 

 

 

1. The Languages {~, } and {~, }.  The language {~, } is identical to the 

formal language of Chapter Two except for lacking vels.  Now for any sentence 

letter, or larger sentence featuring just sentence letters, tildes and/or wedges,  

{~, } can of course build that sentence just as well as {~, , }.  For all those 

sentences, {~, } will construct the sentence the same way that {~, , } did; so 

the truth table for that sentence will be step-for-step identical as well. 

 

If {~, } loses any expressive power – if there is indeed some truth table for which 

{~, } can offer no matching sentence – it could only be owing to its lack of a vel. 
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The semantic contribution made by the vel is summed up in the semantic 

Disjunction Rule: combining two smaller sentences with a vel yields a sentence 

true as long as at least one of these parts is true (and so false only when both 

parts are false). 

 

Disjunction Rule: 

  

    (  ) 

1 1 1 

1 0 1 

0 1 1 

0 0 0 

 

If the {~, } language can provide some counterpart with this semantic behavior, 

then loss of the vel will be seen not to have impaired the semantic powers of   

{~, }.  So, starting with the two parts of the disjunction ( and ), we need a 

way of applying tildes and/or wedges that yields a sentence with the same semantic 

behavior as the disjunction of those parts. 

  

Thanks to DeMorgan’s Law we know that such a structure exists.  For (  ) is 

logically equivalent to ~(~  ~).   

 

  ~ ~   (~  ~)  ~(~  ~) 

1 1 0 0 0 1 

1 0 0 1 0 1 

0 1 1 0 0 1 

0 0 1 1 1 0 

 

 ~(~  ~) is true as long as one of  and  are true (and so false only when 

both  and  are false).   
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That holds no matter which sentences go in the  and  spots.  In the simplest 

case, where sentence letters such as “P” and “Q” are combined into “(P  Q),” the 

truth table for “(P  Q)” is the same as that for “~(~P  ~Q)”.  And the same holds 

with any larger molecular inputs for  and : any vel added further up the 

construction tree (combining larger left and right parts) will likewise be matched 

with the cluster of connectives “~(~__  ~__ )” applied to those same parts, and 

guaranteed to have the same truth table as that disjunction. 

 

So the language {~, } does indeed have a structure matching the semantic 

contribution of the vel.  That means that {~, } has the same expressive power as 

{~, , }.  But {~, , } is expressively adequate.  So {~, } is expressively 

adequate. 

 

Indeed, we can provide a modified procedure for matching any truth table to a 

sentence in the language {~, }.3 

 

 If the truth table is false in every valuation, use “(P  ~P)” as the matching 

sentence. 

 

 If the truth table is true in exactly one valuation, build a valuation sentence 

true in that valuation.  (Since valuation sentences are built out of sentence 

letters, tildes, and wedges, they are sentences of the {~, } language.) 

 

 If the truth table is true in more than one valuation, (i) build a valuation 

sentence for each false valuation (valuation with a ‘0’); (ii) negate each of 

those valuation sentences; and (iii) conjoin together all of those negated 

sentences. 

 

                                           
3 Though we don’t need to set out the steps of such a general method in order to prove {~, } expressively adequate.  

That point is settled once we show that {~, } is semantically equivalent to {~, , }; for we already know that  

{~, , } is expressively adequate. 
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As an illustration, we construct a {~, } sentence to match this truth table.  

 

? 

1 

0 

0 

1 

 

As usual we attach truth tables for the appropriate number of sentence letters (here 

two letters, because there are four valuations). 

 

P Q ? 

1 1 1 

1 0 0 

0 1 0 

0 0 1 

 

We then construct a valuation sentence for each false valuation (a valuation with a 

0) in the ‘mystery truth table,’ following the same procedure as before: if a letter is 

true in that valuation, add that letter; if the letter is false in that valuation, add the 

negation of that letter. 

 

P Q ~P ~Q (P  ~Q) (~P  Q) ? 

1 1 0 0 0 0 1 

1 0 0 1 1 0 0 

0 1 1 0 0 1 0 

0 0 1 1 0 1 1 

 

Then we negate each valuation sentence. 

 

P Q ~P ~Q (P  ~Q) (~P  Q) ~(P  ~Q) ~ (~P  Q) ? 

1 1 0 0 0 0 1 1 1 

1 0 0 1 1 0 0 1 0 

0 1 1 0 0 1 1 0 0 

0 0 1 1 0 0 1 1 1 
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These negations are then conjoined together– yielding a sentence matching the 

mystery truth table. 

 

P Q ~P ~Q (P  ~Q) (~P  Q) ~(P  ~Q) ~(~P  Q) 

1 1 0 0 0 0 1 1 

1 0 0 1 1 0 0 1 

0 1 1 0 0 1 1 0 

0 0 1 1 0 0 1 1 

 

 

 

 

 

 

This method will in general yield the correct result: some sentence in the {~, } 

language, for each ‘mystery truth table’.4 

 

The same general strategy used to establish the adequacy of {~, } will apply as 

well to {~, }; for DeMorgan’s Law also guarantees a semantic surrogate for 

conjunctions, using only tildes and vels as connectives.  So the language {~, } is 

also expressively adequate. 

 

 

2. The Language {~}.  The remaining languages are all expressively inadequate.  

That means that for each language, there is some truth table for which that 

language offers no matching sentence.   

 

Of these, {~} is most obviously inadequate.  And seeing why that is obvious 

highlights the general strategy used to establish the semantic inadequacy of a 

language. 

 

                                           
4 Since the negation of a valuation sentence is equivalent to a counter-valuation sentence, this method is a {~, } 

variant on Conjunctive Normal Form (discussed in 2.29). 

(~(P  ~Q)  ~(~P  Q))  ? 

1 1 

0 0 

0 0 

1 1 
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Only a few examples of sentence in this language, with corresponding truth tables, 

suffice to illustrate a general pattern for all {~} truth tables. 

 

P Q ~P ~Q ~~P ~~Q ~~~P ~~~Q ~~~~P 

1 

1 

0 

0 

1 

0 

1 

0 

0 

0 

1 

1 

0 

1 

0 

1 

1 

1 

0 

0 

1 

0 

1 

0 

0 

0 

1 

1 

0 

1 

0 

1 

1 

1 

0 

0 

 

Each truth table here has the same number of 1s and 0s.  And that is bound to hold 

in general.  For (i) each sentence letter has the same number of 1s and 0s. And (ii) 

since the semantic rule for negations replaces each 1 with 0 and each 0 with 1, an 

even number of 1s and 0s into that rule yields an even number of each as output.  

And every sentence in this language is either a sentence letter or a negation.  So 

every sentence in the {~} language has a truth table with the same number of 1s 

and 0s. 

 

But the truth table for, e.g., “(P  Q)” lacks that feature: it takes a single 1 and 

three 0s.  And the same holds for the “(P  Q)” truth table (three 1s and a single 0). 

 

P Q (P  Q) (P  Q) 

1 

1 

0 

0 

1 

0 

1 

0 

1 

0 

0 

0 

1 

1 

1 

0 

 

 

These are truth tables which no {~} sentence will take.  So the {~} language is 

semantically inadequate. 

 

Since {~} is a subset of the Chapter Two language {~, , }, we see that not 

every ‘sub-language’ of {~, , } is expressively adequate. 
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3. The Languages {}, {}, and {, }. A similar strategy shows the remaining 

three formal languages to be semantically inadequate.   

 

Beginning with {}, the simplest truth tables for this language illustrate its 

semantic shortcoming. 

 

P Q (P  P) (Q  Q) (P  Q) ((P  Q)  P) 

1 1 1 1 1 1 

1 0 1 0 0 0 

0 1 0 1 0 0 

0 0 0 0 0 0 

 

No matter how many sentence letters (or conjunctions of them) we conjoin 

together, the resulting truth table will be true in the first valuation (where both 

parts are true). Being true in the first valuation is a feature found in the simplest 

cases, and a feature preserved by any conjunction of parts having that feature; so it 

is a feature of all {} truth tables. 

 

But some truth tables are not true in the first valuation – most obviously, the 

negation truth tables. 

 

P Q ~P ~Q 

1 1 0 0 

1 0 0 1 

0 1 1 0 

0 0 1 1 

 

The truth table for “~P” is false in the first valuation.  Since no combination of 

sentence letters and wedges yields a sentence false in the first valuation, this is a 

truth table which no {} sentence can match.  That shows that {} is expressively 

inadequate. 
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The same point holds for {}.  For here again every truth table is true in the first 

valuation. 

 

P Q (P  P) (Q  Q) (P  Q) ((P  Q)  P) 

1 1 1 1 1 1 

1 0 1 0 1 1 

0 1 0 1 1 1 

0 0 0 0 0 0 

 

So {} will not build the truth table for, say, “~P”.  That means {} is 

expressively inadequate. 

 

And obviously the same holds for {, }, since any combination of sentence 

letters, wedges, and vels will still be true in the first valuation.  So {, } is 

expressively inadequate. 

 

Hence we end with the formal languages arranged like so. 

 

 

   {, ~, }    

{, ~}  {~, } 

 

  
  

{, } 
  

 

 

{} 

    

{~} 

 

{} 
 

 

The three languages at the top – {, ~, }, {, ~}, and {~, } – are all 

expressively adequate, and so equivalent languages in terms of expressive power.   

 

The languages {}, {~}, and {} are all weaker than those languages, and so 

expressively inadequate – though these last three language are not equivalent in 
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expressive power since, for example the language {~} can cover a truth table that 

neither {} nor {} can (for instance, the truth table taken by the sentence “~P”).   

 

 

   {, ~, }    

{, ~}  {~, } 

 

  
  

{, } 
  

 

 

{} 

    

{~} 

 

{} 
 

 

And while {, } isn’t expressively adequate – since it too offers no sentence 

matching the truth table for “~P” – it’s still expressively more powerful than either 

of its sub-languages {} and {}.  For {} can’t built a sentence matching the 

truth table for “(P  Q)”; and {} can’t build a sentence taking the truth table for  

“(P  Q)”. 


