
   

 

2.17. Semantic Concepts 

 

 
“…to know the meaning of a sentence is to know in which of the possible cases it would be true 

and in which not….” 

Rudolph Carnap, Meaning and Necessity p. 10 

 

“To be or not to be – that is not a question but a tautology.” 

Hans Reichenbach, The Rise of Scientific Philosophy p. 250 

 

 

1. Logical Equivalence and Logical Meaning.  We noted earlier that two 

sentences are logically equivalent when both sentences have the same truth table.  

So the formal sentences “P” and “~~P” are logically equivalent. 

 

P ~P ~~P 

1 0 1 

0 1 0 

 

That’s significant because the English counterparts to those sentences – say, “It 

rained yesterday” and “It didn’t fail to rain yesterday” – seem to make the same 

claim, to mean the same thing.  Logically equivalence provides a formal test of 

sameness of meaning for different logical forms. 

 

But here again it’s important to distinguish between logical form and subject 

matter.  While truth tables are useful for judging whether two English sentences 

have the same formal meaning, they can’t tell us whether different English subject 

matter sentences mean the same thing.  For to compare the meanings of English 

sentences, using truth tables, we must first translate those sentences into 

Formalese.  Yet the first step of that translation process will be deciding whether 

the subject matter sentences get the same sentence letter or not – based on 

judgments about whether those subject matter sentences mean the same thing.  By 

the time truth tables arrive on the scene, sameness of meaning for the subject 

matter sentences is already settled. 
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For example, if we wonder whether the English sentences “It rained yesterday” 

and “It did rain yesterday” mean the same thing, it’s no use asking truth tables.  If 

we translate both sentences as “P,” we thereby decide that they do mean the same 

thing – and truth tables will just mirror that decision.  (Certainly “P” gets the same 

truth table as “P”; so truth tables judge the two English sentences logically 

equivalent.)  Whereas if we assign the two sentences different sentence letters, 

we’re declaring that they don’t mean the same thing – and truth tables will reflect 

that decision.  (Certainly different sentences letters – say, “P” and “Q” – will, 

together, get different truth tables.) 

 

Hence we distinguish between different components of meaning: the formal 

aspect of meaning (which truth tables judge), and the subject matter aspect 

(which, for English sentences, lies outside the jurisdiction of truth tables.)  Truth 

tables are useful to us only for deciding on sameness of formal meaning – or, as we 

will also call it, logical meaning.  

 

That resolves what might seem like inconsistent translation practices.  On the one 

hand the ‘x-ray translation method’ insists that when translating form phrases we 

proceed mechanically, without considering what clusters of them mean – whether, 

for instance, pairs of negation phrases ‘cancel out’ in terms of meaning.  On the 

other hand translation does require us to stop and think about meaning: when 

assigning sentence letters, to subject matter sentences.  Appreciating the difference 

between logical and subject matter meaning, we see that in fact there’s no 

inconsistency here: the x-ray translation method – translating without appeal to 

meaning – applies only to form phrases of English, which carry logical meaning.  

And calculating the logical meaning of sentences is left to our formal semantics. 

 

The following sentences offer a more interesting illustration of logical meaning.  

 

(1) ~(P  Q) 

(2) (~P  ~Q) 
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Though built from the same sentence letters and connectives, the two sentences 

have different truth tables –– and thus differ in logical meaning. 

 

 P Q   (P  Q) ~(P  Q) ~P ~Q (~P  ~Q) 

1 1 1 0 0 0 0 

1 0 0 1 0 1 0 

0 1 0 1 1 0 0 

0 0 0 1 1 1 1 

 

English counterparts suggest that these truth tables are right. 

 

(1) ~(P  Q)        (E1) We’re not having both ice cream and cake 

(2) (~P  ~Q)     (E2) We’re not having ice cream and we’re not having cake 

 

If (E2) is true, we’re not having either dessert; while (E1), denying only that we’re 

having both, leaves open the possibility of having one.  So (E1) and (E2) make 

different claims, and mean different things. 

 

For a sentence equivalent to (E1) we instead need (E3): if we’re not having both, 

that means we’re going without one or the other. 

 

(1) ~(P  Q)        (E1) We’re not having both ice cream and cake 

(3) (~P  ~Q)     (E3) Either we’re not having ice cream, 

or we’re not having cake. 

 

Truth tables agree that these sentences do mean the same thing. 

 

          (1)          (3) 

 P Q   (P  Q) ~(P  Q) ~P ~Q (~P  ~Q) 

1 1 1 0 0 0 0 

1 0 0 1 0 1 1 

0 1 0 1 1 0 1 

0 0 0 1 1 1 1 
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(E4) is an English sentence meaning the same as (E2). 

 

(2) (~P  ~Q)     (E2) We’re not having ice cream and we’re not having cake 

(4)  ~(P  Q)       (E4)  We’re having neither ice cream nor cake. 

 

Again truth tables bear this out. 

 

        (4)          (2) 

 P Q  (P  Q) ~(P  Q) ~P ~Q (~P  ~Q) 

1 1 1 0 0 0 0 

1 0 1 0 0 1 0 

0 1 1 0 1 0 0 

0 0 0 1 1 1 1 

 

This pair of equivalences is traditionally called DeMorgan’s Law.1 
 

 

 

 

 

 

 

 

 

 

 

 

DeMorgan’s Law offers a striking example of how logical equivalence in truth 

tables reflects intuitive sameness of meaning in English. 

 

 

                                           
1 But note that saying “~(P  Q)” and “(~P  ~Q)” are logically equivalent (i.e., semantically equivalent) doesn’t 

mean these sentences are equivalent in terms of construction: the sentences  “~(P  Q)” and “(~P  ~Q)” have 

quite different construction trees.  Likewise “P” and “~~P” are logically (semantically) equivalent, but they 

obviously have different construction trees. 

  

                     DeMorgan’s Law 
 

“~(P  Q)” is equivalent to “(~P  ~Q)” 
 

“~(P  Q)” is equivalent to “(~P  ~Q)” 
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2. Tautology and Contradiction.  In our survey of translation we already 

encountered peculiar sentences such as sentence (E5). 

 

(E5) Trixie passed Chemistry unless she didn’t. 

 

As a report on Trixie’s Chemistry performance, (E5) is thoroughly uninformative.   

And precisely because it stakes no claim one way or the other, it cannot fail to be 

true. 

 

Truth tables agree with our English intuitions: there is no valuation where this 

disjunction is false (since there’s no valuation where both its parts are false). 

 

P: Trixie passed Chemistry 

 

(5)  (P  ~P) 

 

P ~P (P  ~P) 

1 0 1 

0 1 1 

 

A formal sentence true in every valuation is called a tautology, or logical truth. 

 

By contrast, an English sentence such as (E6) seems patently absurd. 

 

(E6) Trixie passed Chemistry without passing Chemistry 

 

It seems there’s no possible way (E6) could be true.  And truth tables bear this out. 

 

(6)  (P  ~P) 

 

P ~P (P  ~P) 

1 0 0 

0 1 0 
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A sentence false in every valuation is a contradiction, or logical falsehood.  

Contradictions are the mirror image of tautologies: whereas tautologies seem to 

assert nothing, a contradiction says too much – more than could possibly be true. 

 

When a valuation makes a sentence true we say the valuation satisfies that 

sentence; and a sentence true in at least one valuation is satisfiable.  So a tautology 

is satisfiable; but so are sentences such as “P,” “(P  Q),” and “(P  Q)”.  Indeed, 

the only sort of sentence which isn’t satisfiable is a contradiction.  This makes 

clear that “satisfiability” is just a more technical name for consistency. 

 

 

3.  Consistency and Inconsistency.  Consistency can be extended from single 

sentences to a whole family of sentences, by way of satisfiability: if, for a given set 

of sentences, there’s at least one valuation making all those sentences true, the set 

is simultaneously satisfiable.  The set of sentences {P, (P  Q), (P  Q)} is 

simultaneously satisfiable, since there’s a valuation satisfying all three sentences. 
                   

 P Q  (P  Q)  (P  Q) 

1 1 1 1 

1 0 1 0 

0 1 1 0 

0 0 0 0 
 

A simultaneously satisfiable set of sentences is consistent.  And a set which is not 

simultaneously satisfiable is unsatisfiable, or inconsistent.  The set {P, ~P} is 

inconsistent, since no one valuation simultaneously satisfies both sentences. 

 

P ~P 

1 0 

0 1 

 

That is so even though “P” and “~P” are themselves each consistent (satisfiable). 
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4. Properties of Consistency and Inconsistency.  We could state that point in 

terms of sets.  The last example shows that even though a set of sentences is 

consistent, adding further sentences isn’t guaranteed to yield a (bigger) consistent 

set.  The one-sentence set {P} is perfectly consistent; but adding the sentence “~P” 

yields the inconsistent set {P, ~P}.  Indeed, given any consistent set of sentences, 

we can easily build a bigger inconsistent set by adding the negation of some 

sentence in the original.  We thus say that consistency doesn’t flow uphill (i.e., 

moving from smaller set to bigger set by way of added sentences). 

 

But starting with a consistent set of sentences, any smaller set we get from it by 

throwing out sentences will also be consistent.  So we said {P, (P  Q), (P  Q)} is 

a consistent set.  And any smaller set of sentences we get by throwing out 

sentences – sets such as {P, (P  Q)} or {(P  Q), (P  Q)} or {P} – is also 

consistent.  We say that consistency flows downhill. 

 

Predictably, matters are reversed for inconsistency.  Starting with the inconsistent 

set {P, ~P} and throwing out on one or more sentences is not guaranteed to yield a 

smaller inconsistent set:  both {P} and {~P} are consistent sets.  Hence 

inconsistency doesn’t flow downhill.  But beginning with the inconsistent set  

{P, ~P} and adding more sentences is guaranteed to yield a (larger) inconsistent set 

– e.g., {P, ~P, Q} or {P, ~P, (P  ~P)}.  So inconsistency flows uphill. 
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Summary: Semantic Concepts 

 

 Two sentences are logically equivalent when (and only when) 

they have the same truth tables (i.e., are true in the same 

valuations, and false in the same valuations). 

 A sentence is a tautology (or logical truth) if it is true in every 

valuation. 

 A sentence is a contradiction (or logical falsehood) if it is false 

in every valuation. 

 A sentence is consistent (or satisfiable) if at least one valuation 

makes it true (satisfies it). 

 

 A set of sentences is consistent (or simultaneously satisfiable) 

just in case at least one valuation makes every sentence in the set 

true (simultaneously satisfies all those sentences). 

 A set of sentences is inconsistent (or unsatisfiable) if no 

valuation makes every sentence in the set true (simultaneously 

satisfies those sentences). 

 

 Consistency flows downhill, but not uphill.  That is: if from 

consistent set S a larger set S+ is built by adding sentences, S+ 

is not guaranteed to be consistent.  But if from consistent set S a 

smaller set S- is built by throwing out some sentence(s), S- is 

guaranteed to be consistent.  

 

 Inconsistency flows uphill, but not downhill.  That is: beginning 

with inconsistent set S, adding further sentences to it yields a 

larger set S+ guaranteed to be inconsistent.  But if from 

inconsistent set S a smaller set S- is built by throwing some 

sentence(s) out of S, S- is not guaranteed to be inconsistent. 

 
 

  

 


