

2.27. Valuation Disjunctions, Expressive Adequacy,

and Disjunctive Normal Form

1. Expressive Adequacy. Because each construction rule is matched by a

semantic rule, we know that each formal sentence has a truth table. Less obvious

perhaps, is whether the reverse is true as well: whether each truth table – an array

of 2N 1s and/or 0s – is guaranteed to have a matching formal sentence.

If the answer is no, there will be some truth table matched by no sentence in the

formal language. In that case the construction rules, in providing all the sentences

available in the formal language, wouldn’t keep up with the set of all possible truth

tables. In the jargon of formal logic, that would make our formal language

expressively inadequate.

But that unhappy outcome is, happily, not the case. In fact our formal language is

expressively adequate: for any possible truth table, the formal language is

guaranteed to have a matching sentence.

Proving this involves a general procedure which starts with a truth table and ends

with a matching formal sentence. (And by “matching” we mean: a sentence

which, according to the semantic rules, really does take that truth table.)

2. Valuation Sentences Revisited: Valuation Disjunctions. In search of our

general procedure we return to sentences discussed in the previous section.

Note first that for an array of 1’s and 0’s to qualify as a truth table, it must contain

2N 1s and/or 0s. (A truth table can’t have three 1s and/or 0s, or five of them; it

must have two, or four, or eight, etc.) Our task is only to find a formal sentence for

each genuine truth table – that is, for each array of 2N 1s and/or 0s. When we

speak below of a “mystery truth table” we mean such an array of 1s and/or 0s.

2-198 Chapter Two: “And,” “Or,” “Not”

The general sentence-matching technique begins by lining up such a ‘mystery truth

table’ with truth tables for sentences letters – N many sentence letters, for the 2N

valuations in the mystery truth table. So if the truth table has 4 (22) valuations, we

precede it by truth tables for 2 sentence letters (say, “P” and “Q”); whereas if we

face 8 (23) valuations, we attach truth tables for 3 sentence letters (say, “P,” “Q,”

and “R”).

So consider this mystery truth table.

?

1

0

0

1

Having 4 valuations, we attach before it truth tables for two sentence letters.

P Q ?

1 1 1

1 0 0

0 1 0

0 0 1

Next we focus on the ‘true valuations’ (those with a 1). For each such ‘true

valuation’ we construct a sentence true in only that valuation.

Thanks to our earlier explorations we know just what sort of sentence fills the bill:

a valuation sentence is a sentence true in exactly one valuation. (Recall that for a

given set of sentence letters, a valuation sentence is a conjunction where each

sentence letter in the set appears exactly once – either as-is, or negated.)

2.27. Valuation Disjunctions, Expressive Adequacy, DNF 5.10.17 2-199

So {P, Q} yields the following four valuation sentences.

(P  Q)

(~P  Q)

(P  ~Q)

(~P  ~Q)

As truth tables illustrate, each of these sentences is true in just one valuation.

P Q ~P ~Q (P  Q) (P  ~Q) (~P  Q) (~P  ~Q)

1 1 0 0 1 0 0 0

1 0 0 1 0 1 0 0

0 1 1 0 0 0 1 0

0 0 1 1 0 0 0 1

And since no two of these sentences are true in the same valuation, each valuation

sentence is paired with its own unique valuation. That means that any ‘true

valuation’ – a valuation with a 1 – has a corresponding valuation sentence.

The general procedure for pairing a ‘true valuation’ with a valuation sentence

requires us to look at values of the sentence letters in that valuation, and construct

our valuation sentence accordingly.

 If the sentence letter is true in that valuation, the valuation sentence should

include that sentence letter.

 If the sentence letter is false in that valuation, the valuation sentence should

include the negation of that sentence letter.

2-200 Chapter Two: “And,” “Or,” “Not”

So, for example, in a valuation where “P” and “Q” are both true, the corresponding

valuation sentence features both these sentence letters: “(P  Q)”.

P Q (P  Q)

1 1 1

0 1 0

1 0 0

0 0 0

Whereas in a valuation where “P” is true and “Q” is false, the corresponding

valuation sentence will feature “P” and “~Q”.

P Q ~Q (P  ~Q)

1 1 0 0

1 0 1 1

0 1 0 0

0 0 1 0

Now, our mystery truth table was true in the first and fourth valuations. Hence

we build a valuation sentence to match each of these valuations: “(P  Q)” for the

first, and “(~P  ~Q)” for the fourth.

P Q ~P ~Q ? (P  Q) (~P  ~Q)

1 1 0 0 1 1 0

1 0 0 1 0 0 0

0 1 1 0 0 0 0

0 0 1 1 1 0 1

The sentence matching the mystery truth table will be true in both the first and

fourth valuations. Neither of our valuation sentences here fits that pattern, since

each is true in only one valuation. But these two valuation sentences can figure as

parts of a larger sentence which is true whenever one of its parts is true.

2.27. Valuation Disjunctions, Expressive Adequacy, DNF 5.10.17 2-201

That, of course, describes the truth conditions for a disjunction. Sure enough: a

disjunction of the two valuation sentences matches the mystery truth table.

P Q ~P ~Q ? (P  Q) (~P  ~Q) ((P  Q)  (~P  ~Q))

1 1 0 0 1 1 0 1

1 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0

0 0 1 1 1 0 1 1

Such a disjunction of valuation sentences will be called a valuation disjunction.

And we’ve already shown enough to recognize the following.

Any truth table ‘true’ in a single valuation has a matching valuation

sentence. And any truth table ‘true’ in more than one valuation has a

matching valuation disjunction.

A larger, eight-valuation truth table provides another illustration. The three ‘true’

valuations are matched with valuation sentences like so.

P Q R ? Valuation Sentences

1 1 1 1 ((P  Q)  R)

1 1 0 0

1 0 1 1 ((P  ~Q)  R)

1 0 0 0

0 1 1 0

0 1 0 1 ((~P  Q)  ~R)

0 0 1 0

0 0 0 0

And these three valuation sentences are combined into a disjunction.

((((P  Q)  R)  ((P  ~Q)  R))  ((~P  Q)  ~R))

2-202 Chapter Two: “And,” “Or,” “Not”

Now while we’ve generally been fastidious about parentheses in the formal

language, their proliferation here is an eye-boggling impediment. So for valuation

sentences and disjunctions we allow this convenience: when multiple parts are

disjoined together, we’ll delete all inner parentheses. “((P  Q)  R)” will then

become “(P  Q  R)”. And the above disjunction will likewise be (mildly)

simplified.

(((P  Q)  R)  ((P  ~Q)  R)  ((~P  Q)  ~R))

We can afford this notational laxity because disjunctions are associative1: the

grouping of parts in a disjunction makes no difference to truth or falsity. For

instance, whenever “((P  Q)  R)” is true “(P  (Q  R))” is true (and vice versa).

The same holds for conjunctions: whenever “((P  Q)  R)” is true

“(P  (Q  R))” is true (and vice versa). So we allow the same loosening of

notation for many-part valuation sentences – permitting a further simplifying of

valuation disjunctions.

((P  Q  R)  (P  ~Q  R)  (~P  Q  ~R))

Leaving off outermost parentheses (but only when they are indeed the outermost of

all symbols!) provides a final bit of simplification – and the final form of our

valuation disjunction.

(P  Q  R)  (P  ~Q  R)  (~P  Q  ~R)

(Note that returning this sentence to official construction format is easy: because

grouping doesn’t affect truth, we can use parentheses to group the parts however

we please. For example, we can always group parts in pairs, from the left, to return

to the original sentence, above.)

1 As noted in 2.7 § 2.

2.27. Valuation Disjunctions, Expressive Adequacy, DNF 5.10.17 2-203

Truth tables confirm that this sentence does indeed take our mystery truth table.

 (P  Q  R)  (P  ~Q  R)  (~P  Q  ~R)



P Q R ~P ~Q ~R (P  Q  R) (P  ~Q  R) (~P  Q  ~R)

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1
0

0

1

0

1

0

0

1
0

0

3. Valuation Sentences, Valuation Disjunctions, and Disjunctive Normal

Form. Alas, the method of valuation sentences and valuation disjunctions falls

just short of the general procedure we’re seeking. If a mystery truth table is true in

just one valuation, a valuation sentence is sure to match it; and if it’s true in more

than one, a valuation disjunction will. But that overlooks the case where a mystery

truth table is true in no valuations. Neither valuation sentences nor valuation

disjunctions are any help here, since they can never be false in every valuation. (In

semantic jargon: every valuation sentence and valuation disjunction is bound to be

satisfiable.)

At least two different solutions are available to close this gap – neither a large

departure from the method set out above.

The first strategy is simply to specify a sentence to be used in this troublesome

case. A truth table with 2N 0s is a truth table for a contradiction; and since all

contradictions are logically equivalent, they’re semantically interchangeable. So

we can add a rule to our method that in such a case the sentence matching the

mystery truth table is, say, “(P  ~P)”. Since “(P  ~P)” is a sentence of the

Chapter Two language, we succeed in finding a matching Chapter Two sentence

for the mystery truth table.

2-204 Chapter Two: “And,” “Or,” “Not”

The general method for matching a Chapter Two sentence to each truth table will

then run as follows.

 If the truth table has no true valuations (is false for every valuation), use

“(P  ~P)” as the matching sentence.

 If the truth table has exactly one true valuation, build a valuation sentence

matching that valuation.

 If the truth table has more than one true valuation, build a valuation

disjunction true in just those valuations.

Since every truth table is bound to fall into one of these three categories, every

truth table is guaranteed a matching Chapter Two sentence.

The second, more traditional strategy involves relaxing our original restrictions on

valuations sentences – and so, by association, on valuation disjunctions. When

building a family of valuation sentence from a set of sentence letters we required

that each sentence letter in the set appear exactly once. If that restriction is lifted,

we return to the larger family of basic conjunctions.2 These include all the

valuation sentences of old, but also sentences such as the following.

(P  ~P)

((P  Q)  ~P)

((P  Q)  ~R)  ~P)

Since each of these conjunctions contains both “P” and “~P,” each yields a truth

table false in every valuation; and that’s exactly the sort of case left out by

valuation sentences.

We can build disjunctions of these basic conjunctions, just as we did earlier out of

valuation sentences. But now some such disjunctions may have one or more parts

which are contradictions. (In the limit case, where every part of the disjunction is

2 From 2.26 §1.

2.27. Valuation Disjunctions, Expressive Adequacy, DNF 5.10.17 2-205

a contradiction, the entire disjunction will itself be a contradiction. For instance,

“((P  ~P)  (Q  ~Q))” is a contradiction.)

Basics, basic conjunctions, and disjunctions of them, form the family of sentences

said to be in Disjunctive Normal Form (or “DNF” for short). The following

construction rules offer precise conditions for being a DNF sentence.3

Basics:

1. Sentence letters are basics.

2. Negations of sentence letters are basics.

Basic Conjunctions:

1. Basics are basic conjunctions.

2. If  and  are basic conjunctions,

 then (  ) is a basic conjunction.

Sentences in Disjunctive Normal Form (DNF):

1. Basic Conjunctions are DNF sentences

2. If  and  are DNF sentences,

 then (  ) is a DNF sentence.

DNF sentences include contradictions such as “(P  ~P),” valuation sentences, and

valuations disjunctions – plus further sentences falling into none of those

categories.

Yet despite the greater sentence-building power DNF offers over the earlier

method of valuation disjunctions, this excess is largely irrelevant to our purposes.

Since the sentences used in the first method – valuation sentences, valuation

disjunctions, and contradictions such as “(P  ~P)” – all qualify as DNF sentences,

the procedure for finding such a DNF sentence remains unchanged.

3 The construction rules for DNF sentences can be summed up quite simply in terms of scope: in DNF a vel has

wider scope than any wedge, and any vel or wedge has wider scope than any tilde.

2-206 Chapter Two: “And,” “Or,” “Not”

 If the truth table is true in exactly one valuation, build a valuation sentence

true in that valuation.

 If the truth table is true in more than one valuation, build a valuation

disjunction true in those valuations.

 If the truth table is false in every valuation, use “(P  ~P)” as the matching

sentence.

In essence, the DNF approach over-generates wildly – allowing far more sentences

than the first approach did – and then chops this jungle down to just those

sentences of interest to us, through the three-part procedure above.

Since either method provides a general procedure for matching each truth table

with a formal sentence, we’re guaranteed that no truth table lies out of the reach of

the Chapter Two language – the language of {~, , }, plus sentence letters. Thus

the formal language of Chapter Two is expressively adequate.

