

 Proofs and Deductions 

2.35. Fundamentals of Deduction

“‘You reasoned it out so beautifully’ I exclaimed in unfeigned admiration. ‘It is so long a chain,

and yet every link rings true.’”

– Doctor Watson, in Arthur Conan Doyle, The Adventures of Sherlock Holmes

Though they mark a significant departure from the earlier semantic methods,

deductions provide another means for formally demonstrating argument

validity – as well for achieving other results familiar from our earlier

semantic approach. And like the semantic procedures, deductions can trace

their roots back to informal logic.

In general, formal logic aims to develop a test of validity which agrees with

our intuitive grasp of simple, obvious arguments, but ‘scales up’ to manage

arbitrarily large arguments outstripping those intuitions. With deductions,

an inspiration for handling complex cases on the basis of simple ones comes

from the construction rules of the formal language.

Because they are recursive – capable of ‘recycling’ – those rules generate

an infinite number of formal sentences using only finite resources. The trick

is to repeatedly apply a limited number of procedures to a (growing) set of

accepted items. From an initial stock, those procedures generate new items

which are then recycled as fresh input – and so on.

In the construction rules, the items accepted at the outset are the sentence

letters – the most basic sort of formal sentence. The procedures applied to

those items are the three molecular rules – the Negation, Conjunction, and

Disjunction Rules. They are recursive rules because the output of any of

them can be ‘recycled’ as new input for any of them.

So in staking out the entire family of formal sentences, construction began

by accepting the sentence letters as formal sentences.

Set of accepted sentences: {P, Q, R, …}

2.35. Fundamentals of Deduction 5.19.17 2-273

The Negation Rule would then draw a member of this set – say, “P” – as

input, yielding “~P” as a new grammatical sentence.

Set of accepted sentences: {P, Q, R, ~P, …}

Since the recursive rules can take any formal sentence as input, the Negation

Rule is then free to draw “~P” from this set as a new input, yielding the

further sentence “~~P”.

Set of accepted sentences: {P, Q, R, ~P, ~ ~P, …}

And so on.

The same strategy can be applied to generate an infinite number of logically

acceptable arguments – all the valid arguments in that logical language.

With any such valid argument, we can begin with a set of accepted

sentences – the premises – and apply a finite stock of procedures to this set

to generate further accepted sentences.

The ‘procedures’ in this case will be uncontroversially valid argument

forms – where the premises of that argument form act as the ‘input’, and its

conclusion serves as ‘output’.

The following is an uncontroversial example of a valid argument pattern.

(  )

~

 

Since it begins with a disjunction, and extracts from it one of the parts, we

call this argument pattern Vel Elimination – or “Vel Elim” (“-Elim”) for

short.

2-274 Chapter Two: “And,” “Or,” “Not”

We recognize any instance of -Elim as a valid argument – such as the

following familiar English example.

1. Either the Chess Club won the prize, or the Surf Club won the

prize.

2. The Chess Club did not win the prize.

 The Surf Club won the prize.

But when used recursively, this same argument pattern allows us to

recognize the validity of more complicated arguments as well. The

following English argument, for instance, is a bit more complex.

1. We’ll have either ice cream or cake, or we’ll have pie.

2. We won’t have pie.

3. We won’t have cake.

 We’ll have ice cream.

Perhaps it’s still simple enough that your intuitions can judge its validity

immediately. But suppose there were someone whose intuitions were very

quickly boggled by complexity: he can recognize -Elim as a valid pattern,

but is stumped by this longer argument. Using only -Elim, in a recursive

fashion, we can show such a logically myopic friend that this larger

argument is indeed valid.

Validity being a matter of logical form, we first use a translation key to

translate the argument into formal language.

P: We’ll have ice cream

Q: We’ll have cake

R: We’ll have pie

1. ((P  Q)  R)

2. ~R

3. ~Q

 P

2.35. Fundamentals of Deduction 5.19.17 2-275

The premises are the only sentences accepted so far.

Set of accepted sentences: { ((P  Q)  R), ~R, ~Q }

But with the first two premises we have a disjunction “((P  Q)  R),” and

the negation of its right part, “~R”.

1. ((P  Q)  R)  Disjunction

2. ~R  Negation of Right Part

Recognizing this as an instance of -Elim, we see as well that the left part of

the disjunction, “(P  Q),” follows validly.

((P  Q)  R)  Disjunction

~R  Negation of Right Part

(P  Q)  Left Part

So “(P  Q)” is added to our set of accepted sentences

Set of accepted sentences: { ((P  Q)  R), ~R, ~Q, (P  Q) }

The last two sentences in this set are the disjunction “(P  Q)” and negation

of its right part, “~Q”. This is just another instance of -Elim: since these

two sentences are accepted as true, -Elim directs us to accept as well the

left half of that disjunction – “P”.

Set of accepted sentences: { ((P  Q)  R), ~R, ~Q, (P  Q) }

(P  Q)  Disjunction

~Q  Negation of Right Part

P  Left Part

Hence “P” is added to the set of accepted sentences as well.

Set of accepted sentences: { ((P  Q)  R), ~R, ~Q, (P  Q), P }

2-276 Chapter Two: “And,” “Or,” “Not”

We’ve demonstrated that if the first three sentences are accepted as true, “P”

should be as well. So anyone accepting -Elim as valid should recognize

this argument form as valid too.

1. ((P  Q)  R)

2. ~R

3. ~Q

 P

Starting from a set of accepted premises, we collected a series of new

sentences using only accepted argument patterns (in this case just one) to

demonstrate the validity of a logical form. We call such a procedure a

deduction: we deduced the conclusion “P” from the original three

premises.1

And just as sentence construction needed only a few recursive rules to build

an infinite number of formal sentences, we can likewise demonstrate the

validity of any valid argument in the logical language, using a finite stock of

valid argument patterns – -Elim, and other uncontroversial logical forms –

in a recursive fashion.2

1 Following, e.g., (Quine 1959: 154) and (Kleene 1967: 35). Some authors instead call them “derivations”

– e.g., (Suppes 1957:23-26), (Kalish and Montague 1964: 14), (Mates 1965: 107), (Lambert and van

Fraassen 1972: 29), and (Gamut 1982/1991: 116).
2 Construction rules are sometimes called “formation rules,” and rules for deduction are called

“transformation rules”.

2.35. Fundamentals of Deduction 5.19.17 2-277

 Construction Deduction

Original Set of

Accepted Sentences:

Sentence Letters

Premises of the

Argument

Rules:

Molecular

Construction Rules

(Rules 2, 3, and 4)

-elim (and Other

Uncontroversial

Logical Forms)

Final Output:

Formal Sentence being

Constructed

Conclusion of the

Argument

We said at the outset that deductions find their origins in informal logic.

Now we see how: deductions are really just a formal extension of chain

arguments.

Just as a chain argument reaches a sub-conclusion only to use it as a premise

supporting a further conclusion, so deductions accept the conclusion of an

argument form only to then use it as further input for an argument form.

((P  Q)  R) ~R

 (P  Q) ~Q

  P

And just as a chain argument was only as valid as its weakest link – so that

with a chain of valid arguments, the entire chain inherits that validity – so

deductions show that an argument form is valid by tracing a chain of valid

links from premises to conclusion.

2-278 Chapter Two: “And,” “Or,” “Not”

We close with a bit of bookkeeping.

It will prove convenient to trade in the ‘set of accepted sentences’ for a

simple vertical list, with an account of why each sentence in the list is

accepted. The above deduction then begins with just the premises listed.

1. ((P  Q)  R)

2. ~R Premises

3. ~Q

(And just as in standard form from informal logic, we impose the

requirement that all the premises of the argument be numbered and listed

first, before any further lines in the deduction. With that requirement in

mind we can then skip writing “Premises” as a justification on the right –

taking for granted that premises come first.3)

To keep in mind the conclusion we’re seeking to deduce – here “P” – we add

a memo to get that sentence. (This isn’t a line of the deduction, like the

premises are – just a reminder on the side. So we don’t number this “Get”

line.)

1. ((P  Q)  R)

2. ~R

3. ~Q

 Get: P

Each inference from there is listed with its justification on the right: the

argument pattern used, and the lines that were its input (premises).

1. ((P  Q)  R)

2. ~R

3. ~Q

 Get: P

4. (P  Q) 1, 2, -Elim

5. P 3, 4, -Elim

3 While the requirement is here just a convenience sparing us the need to write “Premises”, in a later

chapter it will prove useful for preventing invalid application of deductive rules; see 5.13 §3.

2.35. Fundamentals of Deduction 5.19.17 2-279

Once we’ve deduced the conclusion, we cross out the “Get” line – like

checking it off our list of things to do. The deduction is then complete.

1. ((P  Q)  R)

2. ~R

3. ~Q

 Get: P

4. (P  Q) 1, 2, -Elim

5. P 3, 4, -Elim

