** Proofs and Deductions

5.13. Quantifiers: Rules of Deduction

We noted earlier that the language of names, predicates, and quantifiers
brings two innovations to the construction rules: a predicate letter followed
by a name letter or variable, and quantified sentences. Any extensions this
language brings to the deductive system of the previous chapter will be just
those needed to capture the further valid arguments and logical truths of this
extended language.

Since a predicate-letter-followed-by-sentence-letter or -variable forms an
atomic formula, with no smaller formulas as parts, their addition to the
formal language occasions no new rules of inferences (just as there are no
deductive rules devoted to sentence letters). That means any new deductive
rules needed will be solely for inferences involving quantifiers.

1. Quantifier Negation. The simplest rule for quantified sentences is an
argument form encountered earlier: Quantifier Negation, in four forms.!

Quantifier Negation (QN)

Inward QN: Outward QN:
~Vx @ ~3x @ dx ~@ Vx ~@
dx ~@ Vx ~@® ~Vx @ ~3x @

! This form of inference was first encountered in 5.5. In fact we only need Inward QN as a basic rule here;
Outward QN can be treated as a derived rule. See 5.13.1 Problem 1.

5.13. Quantifiers: Rules of Deduction 3.16.17 5-93

This formally implements intuitive arguments such as the following.

Not everything is made of limestone. Everything is non-physical

.. Something isn’t made of limestone. .. Nothing is physical.
Something isn’t made of limestone. Nothing is physical

.. Not everything is made of limestone. .. Everything is non-physical

Already this allows us deduction of the following argument.?

1. If everything is made of limestone, then Neko is.
2. (But) Neko’s not made of limestone.

. Something’s not made of limestone.

A: Neko G__:is made of limestone

1. (Vx Gx > GA)

2. ~GA

Get: Ix ~Gx
3. ~¥x GXx 1,2, MT
4. dx ~Gx 3, ON

2 As we will later show, the first premise here is a logical truth; so the conclusion follows validly from the
second premise alone. See the discussion of the Universal Elimination rule, below, and 5.13.1 Problem 2.

5-94 Chapter Five: Names, Predicates, Quantifiers

2. Universal Elimination. We retain here our semantic focus on full-
fledged sentences (rather than mere quasi-sentences), by retaining as well
the earlier concept of an instance of a quantified sentence. Recall that to
build an instance of a quantified sentence we remove the quantifier from the
sentence, and then replace the variable in that quantifier according to the
following three conditions.?

(A) Replace all free occurrences of the variable with name letters.
(B) Replace only free occurrences of that variable with name letters.
(C) Replace all free occurrences of that variable with the same name
letter.

For example, to build an instance of “vx ((JX v Hx) = 3Ix ~Gx)” we remove
the quantifier “vx”, and replace all and only the free occurrences of its
variable — “x” — by a name letter.

So of the following formulas, only (1) and (2) are instances of
“vx ((IX v HX) = 3Ix ~Gx)”.4

(1) (JA v HA) > 3x ~GXx) (A/X)
(2) (JB v HB) > 3x ~Gx) (B/x)
(3) ((JA v Hx) > 3Ix ~Gx) (A/X)
(4) (JAv HA) - 3Ix~GA) (A/X)
(5) (JA v HB) —> 3Ix ~GX) (A,B/x)

(3) violates the ‘all free occurrences’ requirement: the occurrence of “x” in
“Hx” is left free. (4) violates the ‘only free occurrences’ requirement:
when “VXx” is removed from “Vx ((Jx v Hx) = 3x ~Gx)” the occurrence of
“x” 1n “aX ~Gx” remains bound by “3IX”. And (5) violates the ‘same name
letter’ requirement: when “vx” is removed, the two free occurrences of “x,”
in “Jx” and “Hx,” aren’t replaced by the same name letter.

3 As set out and explained in 5.8.

4 As in earlier readings, the notation on the right side — for example, “(A/x)” — records which name letter
replaces the quantified variable. In the case of (A/X) — pronounced “A for x” — name letter “A” replaces
variable “x”.

5.13. Quantifiers: Rules of Deduction 3.16.17 5-95

With this understanding of “instance”, the inference rule for universal
sentences is straightforward.

Universal Elimination (“A-Elim”)(V=)°

Vx@®
L]

where @ is an instance of the scope formula @

This rule implements formal counterparts of intuitively valid inferences such
as the following.

1. Everything is made of matter.

. The Cathedral of Learning is made of matter.

For instance, armed with VY- we can demonstrate the validity of the
following intuitively valid English argument.

A: Jack G__:isasurfer
H_ :isan athlete

1. All surfers are athletes. 1. VX (Gx = HXx)
2. Jack is a surfer. 2. GA

.. Jack is an athlete. HA

5 This is sometimes called “Universal Instantiation”. We call it “A Elim” for short (rather than “U Elim” for
“universal”) because the upside-down “A” is being removed. This is in keeping with the naming system of
earlier chapters, which featured the rules “Wedge Elim” (rather than “Conjunction Elim”) and “Vel Elim”
(rather than “Disjunction Elim”).

5-96 Chapter Five: Names, Predicates, Quantifiers

1. VX (GXx = HXx)

2. GA

et HA
3. (GA > HA) 1, V- (A/X)
4. HA 2,3, MP

3. Existential Elimination. Matters are trickier with existential sentences.
For on the one hand it seems intuitive that here too a quantified sentence
licenses an instance: if there exists something G, then there must be some
particular object which is truly said to be G. Yet as we saw earlier with truth
trees, matters can’t be as simple as just instantiating an existential to a single
name letter. The following argument is obviously invalid, but will be easy
to deduce if existential instantiation is left unconstrained.

& Invalid! &

Dr. Slim is a man. Someone stole the crown jewels. (Therefore,) Dr.
Slim is a man who stole the crown jewels.

B: Dr. Slim I _:isaman
J__:stole the crown jewels

1.1B
2. AxJIx
Get. (IB A JB)
3. JB 2, Existential Elimination (B/x)
4. (IB AJB) 1,3, At

Since the name letter “B” appears already on Line (1), it’s ‘already taken’ by
someone; so instantiating the existential sentence to that name letter is far
from innocent. (Likewise in English: while it’s fine to call the jewel thief
“Mr. X,” or some other name which no one is using, the name “Dr. Slim” was
already taken; so it was a mistake to use that name for the culprit.)

5.13. Quantifiers: Rules of Deduction 3.16.17 5-97

Therefore in deductions (as in truth trees) we impose a ‘new name’
requirement on existential instantiation: the name being instantiated to must
be new to the deduction — i.e., must not have appeared on previous lines
of the deduction.

But care is needed when speaking of “previous lines”. For instantiating the
existential sentence to a name letter can be invalid even if no earlier

numbered line in the deduction featured that name letter. The following
argument, for instance, is clearly invalid.

& Invalid! &

Something is made of marshmallow. (Therefore,) the Cathedral of
Learning is made of marshmallow.

C: The Cathedral of Learning K__: is made of marshmallow

1. AxKx

cet. KC
2. KC 1, Existential Elimination (C/x)

But the only numbered line before the existential elimination is Line (1),
which does not contain the name letter “C”; so “C” is new to the numbered
lines when the instantiation occurs on Line (2). Since the argument is
clearly invalid, simply requiring the name to be new among the
numbered lines is not a strong enough constraint on existential
elimination.

Note that “C” does appear before Line (2) — on the “Get” line. We don’t
count the “Get” line as a line in the deduction, in the sense that we could
apply any rule of inference to it; it’s just a memo Off to the side, reminding
us what the deduction is aiming for. Still, if we include the “Get” line as

5-98 Chapter Five: Names, Predicates, Quantifiers

part of the ‘new-ness’ constraint on instance variables, we correctly block
the deductive system from counting the above argument as valid.®

So we impose this strengthened ‘newness’ condition on names in existential
elimination.

Existential Elimination (E-Elim) (3-)’
=
e

where (i) @, is an instance of the scope formula @,
and

(if) the name letter used in that instance (to replace the

guantified variable) is “new to the deduction” — that is, does
not appear on any previous lines, including “Get” lines.

6 So the mere mention of the name letter (in the “Get” memo) rules out its use in 3— afterwards. Though
truth trees don’t feature “Get” lines, they impose the same constraint on existential instances: since the first
steps of a truth tree are listing the premises (on the left) and conclusion (on the right), any name letters
appearing in that conclusion will be barred from appearing in later existential instances, thanks to the
newness constraint on the True Existential rule. See

In this respect the “Get” line serves as a filter on existential instances just as the “Show” line does in (Kalish
and Montague 1964: 100). While the “Show” line in Kalish and [Montague’s system is a numbered line to
which (once the word “Show” is crossed off) rules of inference can be applied, it acts as a filter on
existential instances whether or not it’s cancelled. As noted in the second edition (Kalish, Montague, and
Mar 1980: 154-155), even a weaker ‘newness’ constraint blocks the inference both in cases where a prior
‘Show’ line is already cancelled and in cases where it’s not. See likewise the discussion of Problem 69 on
(ibid: 159) and Problem 70 on (ibid: 160).

By including the “Get” line in the criterion for ‘newness’ of a line, without allowing rules of inference to
apply to any “Get” line (crossed off or not), the present system retains Kalish and Montague’s simplified
rule of Existential Instantiation (here, Existential Elimination) while also retaining the top-to-bottom
reading order of a Fitch-style deductive system (see e.g. Fitch 1952: xx or Thomason 1970: yy). Further
details on the two types of deductive systems can be found in (Pelletier 1999), which provides an extensive
discussion of their historical development.

" This is sometimes called “Existential Instantiation” (EI).

5.13. Quantifiers: Rules of Deduction 3.16.17

The following deduction illustrates 3— and V- in combination.

G_:isacat H_:isa fish-eater
1. All cats are fish-eaters. 1. ¥x (Gx = HXx)
2. Cats exist. 2. Ax Gx
. Fish-eaters exist. <. AX HX
1. VX (GXx = HXx)
2. 3X GX
Get: Ax Hx (ID)
3.| ~3Ax Hx AID
4.1 GA 2,3- (A/X)
5.] (GA - HA) 1, V- (A/X)
6.] HA 4,5, MP
7.] ¥X~Hx 3, ON
8.| ~HA 7, V= (A/X)
9. dxHXx 3,6,8,ID

5-99

4. Deductive Strategy. It was no coincidence that we used 3- before V- in

that last deduction. For suppose instead we apply V- to line 1 first.

1. VX (GXx = HXx)
2. Ax Gx

Get: Ax Hx (ID)
3. ~3x Hx AID

4.] (GA = HA) 1, V= (A/X)

5-100 Chapter Five: Names, Predicates, Quantifiers
If we then seek to set up MP on line 4, by getting its antecedent from line 2

by 3-, we’re stuck: since 3- requires that we instantiate to a new name
letter, we can’t 3-to “GA” on Line (5) (only, e.g., to “GB” or “GC”).

1. VX (GX = HXx)

2. Ax Gx

Get. dx Hx (ID)
3.| ~3ax Hx AID
4. (GA > HA) 1, V- (A/X)

That points up an important bit of deductive strategy: since 3— is limited to a
new name letter while V- isn’t, it’s shrewd to use 3- before using V-.

Deduction Strategy: Use 3— before using V-.

As their names make clear, 3— and V- are Elim rules. So these two rules
are added to the Elim rules of Chapters Three and Four.

But, as noted already in the truth tree rules for quantifiers, a universally
guantified sentence can entail an unlimited number of instances. To avoid

such a limitless cascade of sentences, our strategy will be to use V- within
an indirect deduction to deduce only as many instances of a universal as
needed to conflict with instances of existential sentences and other sentences
containing name letters. Here, as in truth trees, universals follow up on
(instances of) existential sentences and other sentences with name letters.

5.13. Quantifiers: Rules of Deduction 3.16.17 5-101

As regards Quantified Negation, our earlier division of the rule into Inward
and Outward versions was for a good cause. We count Inward QN as an
Elim rule, to be used whenever possible.

Inward Quantifier Negation

~Vx @ ~3Ix @

dx ~@ Vx ~@®

Outward QN is a setup rule, used — like the Intro rules — only to construct a
needed part of an inference or deduction.

Outward Quantifier Negation

dx ~@ VX ~@

~Vx @ ~Jdx @

Deduction Strategy: Treat Inward QN as an Elim rule, using it
whenever possible. Treat Outward QN as a Setup Rule (like an
Intro rule), using it only to get sentences needed to complete a
deduction or perform an Elim rule.

5-102 Chapter Five: Names, Predicates, Quantifiers

Quantifier Deduction Rules

Quantifier Negation (QN)

Inward QN: Outward QN:
~Vx @ ~3x @ Ix ~@ Vx ~@
dx ~@ VX ~@® ~Vx @ ~3x @

Universal Elimination (“A-Elim”)(V-)

Vx®

where @, is an instance of the scope formula @

Existential Elimination (“E-Elim”) (3-)

Ix®
o,

where (i) @, is an instance of the scope formula @,

and (ii) the name letter used in that instance (to replace
the quantified variable) is new to the deduction — that is,
does not appear on previous lines, including “Get” lines.

5.13. Quantifiers: Rules of Deduction 3.16.17 5-103

Quantifier Deduction Strategy

e Treat V—and 3- like Elim rules: use whenever possible.

e Use 3- before V-.
e Treat Inward QN as an Elim rule: use whenever possible.

e Treat Outward QN as a Setup rule (like an Intro rule):
only to get a missing sentence to complete a deduction or
perform an Elim rule.

