* Formal Semantics: Further Issues

3.8. Expressive Adequacy Revisited:
Conditional and Biconditional Languages:

We earlier explored issues of expressive power and expressive adequacy for the
Chapter Two formal language {~, A, v}, and various of its ‘sub-languages’. But
with the advent of the arrow and biconditional sign (“bicon”) in the Chapter Three
language, the issue of expressive adequacy rises again.

The full Chapter Three language {~, A, v, —, <>} is bound to be expressively
adequate — capable of supplying a sentence to match any given truth table. For we
established already that the Chapter Two language {~, A, v} is expressively
adequate. But every {~, A, v} sentence qualifies as a {~, A, v, —, <>} sentence.
So any possible truth table will be matched by some {~, A, v, —, <>} sentence —
making the {~, A, v, =, <} language expressively adequate.*

More interesting is the question whether there are any expressively adequate sub-
languages of {~, A, v, =, <>} which feature arrow or bicon.

In fact there are. And the simplest of these is the {~, >} language.

To prove {~, —>} expressively adequate we use the same strategy applied earlier to
the {~, A} language. Recall that, having established that {~, A, v} is expressively
adequate, we showed that {~, A} sentences can generate any truth table which

{~, A, v} sentences can —making {~, A} adequate as well. Since {~, A} is the
same as {~, A, v} but for lack of vel, the trick was to find a {~, A} form

semantically equivalent to a disjunction. Finding such a form — “~(~@ A~A)” in
place of “(®@ v A)” — settled that {~, A} could build any truth table which

LIn general: adding further connectives to a formal language can only increase its expressive power — the set of truth
tables covered by the sentences of that language.
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{~, A, v} could. And a similar strategy established the adequacy of the {~, v}
language.

Likewise, if we show that {~, —} is expressively equivalent to an expressively
adequate language, we settle that {~, —} is itself expressively adequate.

We achieve that end by constructing a {~, —} sentence form semantically
equivalent to the conjunction. “~(® — ~A),” will always take the same truth

table as “(@ A A)”.

® A -A |(0_-4A) (0-4) (OAA)
1 0 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0
0 0 1 1 0 0

{~, —>} sentences can therefore cover all of the truth tables which {~, A} sentences
can. Butsince {~, A} is expressively adequate, its sentences cover all possible
truth tables. So {~, —} sentences do as well —establishing that {~, —} is
expressively adequate.

And for the reasons rehearsed above, any larger language containing arrow and
tilde will be expressively adequate as well — for example, {~, —, ©}.

Indeed, any adequate sub-language of {~, A, v, —, <>} must contain a tilde, and
either a wedge, vel, or arrow.
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So these are the adequate sub-languages of {~, A, v, &, ©}.

{~ AV, >} {~ A V} {~, A}
{~ AV, ©} {~, A, >} {~, v}
{~ A >, o} {~ v, >} {~, -}
{~,v,—>, o} {~ A ©}

{~ v, o}

{~ -}

We show that all remaining sub-languages of {~, A, v, —, <>} are expressively
inadequate.

Of the single-connective languages, {~}, {A}, and {\/} were proven inadequate in
the previous chapter. And the argument which applied to {A} and {v} works as
well for {—} and {<>}. Recall that any formal sentence built from a wedge or vel
(along with sentence letters and parentheses) will be true in the first valuation.
But that holds as well for sentences built from an arrow or bicon.

@ A (0,4 (05 4)
1 1 1 1
1 0 0 0
0 1 1 0
0 0 1 1

So no {—} or {«>} sentence will match the truth table for a negation, which is
false in the first valuation. Indeed, none of the following formal languages has a
sentence matching a negation truth table; so all are expressively inadequate.

{n v, >} {~ v} {r}

{A Vv, ©} {A, >} {v}

{A, —, o} {v, -} {-}

{v, >, &} {n, ©} {<}
{v. &}

{—. <}
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The only remaining sub-language is {~, <>}. But we observe a remarkable feature
of tildes and bicons in combination: if a biconditional or negation of one has more
than one tilde, it is logically equivalent to either a biconditional with no tildes, or a
biconditional with a single tilde.

For instance, “~(P <> Q),” “(~P <> Q),” and “(P <> ~Q)” all take the same truth
table. So the result of adding further tildes to any of these sentences will yield a

sentence that has the same truth table as either “(P <> Q)” or “(P <> ~Q)”.

PIQIP|Q] PeQ |~-(PQ)| (-PQ) | P-~Q)
1 0|0 1 0 0 0
1100 |1 0 1 1 1
0o[1]1]0 0 1 1 1
oo 1|1 1 0 0 0

For {~, <>} sentences built from “P”” and/or “Q,” the only further tables picked out
are the contradiction truth table (taken by, e.g., “(P <> ~P)”), and the tautology
truth table (taken by, , e.g., “(P <> P)”). So all “P” and “Q” sentences in the

{~, <>} language take one of these four truth tables, or the truth table for “P” or
“Q” or their negations — eight truth tables in all.

P| Q| P| PecQ | (Peo~-Q) | PP | (Pe~P)
1 0 1 0 1 0
1 0 0 0 1 1 0
0 1 1 0 1 1 0
0 0 1 1 0 1 0

Note that in this language, every sentence is true in an even number of
valuations. That feature holds for all sentence letters, and negations and
biconditionals of sentence letters; and will continue to hold for any larger
biconditional or negation in this language. So that feature holds for all {~, <>}
sentences.
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But a number of familiar truth tables don’t have an even number of true valuations
—e.g., the truth tables for “(P A Q),” “(P v Q),” and “(P — Q)”. Offering no
sentences which takes such a truth table, the {~, <>} language is expressively
inadequate. (Indeed, {~, <>} is the only 2-connective sub-language of

{~, A, Vv, =, ©} which contains the tilde, but is still expressively inadequate.)
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Summary

Expressive Power:
The Chapter Three Language and Its Sub-Languages:

{~ AV, >, ©}=
{“‘, A, V, —)} = {“', A, =, (—)} = {~, vV, >, (—)} = {~, A, V, (—)} =
{~AVvi={~A->}={~A}={~Vv,o}={~Vv,}={-,> o}=

{= Ab={=v}={~ >}

/ ~

{~. o} AV, o ={A Vv, }={v,>, }=

{A -, o)={r o}={>, o}=
{/\ —>}r={v, o}
{/\ v} {—, Vv}=
{—>}
\

{v}



