
   

 

2.39. Indirect Deduction Strategy 
 

 

We promised that Indirect Deduction (ID) could establish the validity of arguments 

that the deductive rules alone cannot – offering the following as a simple example. 

 

1.  ~P 

    

 ~(P  Q) 

 

With ID in hand it’s easy to establish the validity of this argument. 
 

 

1.    ~P  

           Get ~(P  Q) (ID) 
 

2.    ~~(P  Q)  AID 
 

3.    (P  Q)   2, ~– 
 

4.    P    3, – 
 

5.    ~P   1, R 
 

6.   ~(P  Q)              2, 4, 5, ID 
 

 

And it’s simple enough to make good on an earlier claim: that any argument 

deducible without using ID can also be deduced via indirect deduction.  For we can 

always wrap an ID box around a completed deduction.   

 

The following boring little deduction, for instance, reaches the conclusion, “Q,” 

without appeal to Indirect Deduction. 

 

1. (P  Q)  Premise 

2. ~P   Premise 

    Get: Q 

3. Q    1, 2, – 
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But all these steps can be preserved in an Indirect Deduction – simply adding an ID 

box, and its accompany AID.1 
 

1.    (P  Q) 
  

2.    ~P  

           Get Q (ID) 

3.    ~Q   AID 
 

4.    Q    1, 2, – 
 

 

5.    Q               3, 4, ID 
 

 

So we lose no deductive power by pursuing every deduction through ID.  And 

since (as in our earlier example) some arguments can be deduced only through ID, 

our strategy will be to use ID for each deduction – unless there is some obvious, 

simple way of reaching the conclusion through the rules alone. 

 

 

Indirect Deduction Strategy: automatically use ID (unless there is an 

obvious way of reaching the conclusion without ID). 

 

 

Now it is already a feature of our deductive system that if an argument in the 

formal language is valid, ID and the seven rules can demonstrate this – deducing, 

within the ID box, some sentence and its negation.  But from those two sentences 

we can deduce any further sentences we please.  For as noted elsewhere, an 

inconsistent set of sentences entails any (and every) sentence.2  

 

That means that whenever one sentence and its negation can be deduced, every 

sentence and its negation can be.  (Indeed, this explosive entailment is part of what 

makes inconsistency so unacceptable.) 

 

                                           
1 The justification of Line 5 cites only two line numbers (3 and 4) rather than the usual three, because here “~Q” 

does double duty: as the AID, and also as one of the two mutually inconsistent sentences. 
2 In 2.16. 
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In that last deduction, for instance, we needn’t have rested content with “Q” and 

“~Q”. 
 

 

1.    (P  Q) 
  

2.    ~P 

           Get Q (ID) 

3.    ~Q   AID 
 

4.    Q    1, 2, – 
 

5.    (Q  X)   4, + 
 

6.    X    3, 5, – 
 

7.    (Q  ~X)  4, + 
 

8.    ~X   3, 7, – 
 

9.   Q               3, 6, 8, ID 
 

 

So in an ID we always have a choice of which pair of sentences to use.  But it’s 

just unnecessary work to choose a pair, such as {X, ~X}, built from a sentence 

letter appearing nowhere in the premises.  In general, it saves time and labor to 

choose sentences which use a sentence letter appearing in the premises. 

 

 

Indirect Deduction Strategy: try to choose a pair of sentences that 

feature a sentence letter already appearing in previous lines. 

 

 

We can extend that point further: not only should our pair of sentences feature a 

sentence letter appearing earlier in the deduction, but when possible we should use 

a sentence we already have one member of this pair.  For then we only need to 

come up with the other half of that pair – effectively cutting the ID work in half. 

 

 

Indirect Deduction Strategy: try to use a sentence you already have as 

half of the inconsistent pair of sentences, and then get the other half. 
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The following argument is a simple example (though one deducible only through 

ID).3 

 

 

1. We’re having ice cream 

2. We’re not having both ice cream and cake. 

   

 We’re not having cake. 

 

1. P 

2. ~(P  Q) 

   

 ~Q 

 

 

Once we’ve assumed the negation of the conclusion, we have one application of ~–  

before running dry on Elim rules.  In this situation our strategy is to use the Intro 

rules to set up a sentence – either the missing ingredient for an Elim rule, or the 

very sentence on the “Get” line. 
 

 

1.    P 
  

2.    ~(P  Q) 

           Get ~Q (ID) 

3.    ~~Q   AID 
 

4.    Q    3, ~– 
 

 

 

Setting up an Elim rule is no good: since we have here no conjunction, disjunction, 

or double-negation to break down, there is no occasion to use an Elim rule. 

 

And before attempting to build the sentence on the “Get” line, we must keep in 

mind that in an ID we reach that sentence indirectly – by first assembling an 

inconsistent pair of sentences within the ID box.  Indeed, we can’t close that box, 

and thereby reach the sentence on the “Get” line, until we have some such pair of 

sentences. 

 

                                           
3 This form of argument was recognized a valid by the ancient Stoic logicans, who treated it as one of their basic 

inference patterns – in effect, a basic rule of deduction.  See (Mates XX: XX). 
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Setting out in search of a sentence and its negation, our latest bit of strategy comes 

to bear: instead of building up both sentences, we try to use a sentence we already 

have as half of the desired pair.  We then only need to build the other half. 
 

1.    P 
  

2.    ~(P  Q) 

           Get ~Q (ID) 

3.    ~~Q   AID 
 

4.    Q    3, ~– 
 

 

Both “Q” and “~~Q” call for “~Q” as the other half of the inconsistent pair; but no 

Intro rule builds a single negation.  That likewise rules out “P,” which takes “~P” 

as the other half of the inconsistent pair. 

 

But “~(P  Q)” is more promising, since the other half of the pair is then the 

conjunction “(P  Q)” – and there is an Intro rule for building a conjunction. 

 

Applying + to Lines 1 and 4 (then bringing down Line 2, through Repetition) 

completes the ID. 
 

 

1.    P 
  

2.    ~(P  Q) 

           Get ~Q (ID) 

3.    ~~Q   AID 
 

4.    Q    3, ~– 
 

5.    (P  Q)   1, 4, + 
 

6.    ~(P  Q)  2, R 
 

 

7.   ~Q              3, 5, 6, ID 
 

 

Note that in constructing the missing half of the inconsistent pair of sentences, 

we’ve just found a new application for a familiar bit of strategy: using the Intro 

rules to break a deductive logjam.  For within an ID, finding an inconsistent pair of 

sentences clearly advances the deduction.  
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And ID itself provides a surprising further way of reaching a sentence which 

breaks such a logjam.  The following little (valid) argument illustrates how. 

 

 

1. Either we’re having both ice cream and cake,  

     or we’re having ice cream without having cake. 

   

 We’re having ice cream. 

 
 

1. ((P  Q)  (P  ~Q)) 

   

           P 

 

 

Once past the AID, the deduction hits a wall, as there are no opportunities to apply 

any Elim rule.  
 

 

1.     ((P  Q)  (P  ~Q)) 

            Get: P (ID) 
 

2.     ~P              (AID) 
 

 

 

Our default strategy in such a case is again to ‘set up’ a sentence which gets the 

deduction moving again.  But here using a sentence we already have, as half of an 

inconsistent pair, doesn’t look like an option.  For both Lines 1 and 2, we lack the 

ingredients to construct the opposing sentence – “~((P  Q)  (P  ~Q))” and 

“~~P,” respectively. 

 

Setting up an Elim rule looks more promising, however, since Line 1 is a 

disjunction.  To apply – we then need either “~(P  Q)” or “~(P  ~Q)”.  But 

since neither is the sort of sentence an Intro rule could build, the chances of 

advancing the deduction again seem dim. 

 

But all hope is not lost.  Consider: if we had Lines 1 and 2 as premises, and wanted 

to deduce “~(P  Q)” or “~(P  ~Q)” from them, we’d know exactly what to do:  

write a “Get” line for the desired sentence, and start an ID. 

 

Why not do the same here?  True, we have so far only written a “Get” line 

immediately after the premises of a deduction.  But there is no official restriction 

on where one can be introduced.  So we declare this further un-jamming strategy: 

if no other moves are open in a deduction, write a “Get” line for the desired 

sentence.   
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Indirect Deduction Strategy: if the deduction needs a particular 

sentence to advance, and no application of the rules can obtain that 

sentence, write a “Get” line for the sentence. 

 

 

(Of course we use ID on that “Get” line.  For otherwise we would have only the 

rules and the existing lines available to us; and that much, as we’ve already seen, 

leaves us at a deductive standstill.) 

 

We also keep in mind a point stressed in the last example: that while our ultimate 

goal in an ID is of course the sentence on the “Get” line, we reach it only by first 

deducing, within the ID box, some sentence and its negation.  So though in our 

current ID we are indeed trying to get the conclusion “P,” we will do so only by 

first getting such a pair of sentences.  

 

For that reason, it would be a waste of time to write a new “Get” line for “P”.  

 

 

 A Fruitless Maneuver  
 

1.     ((P  Q)  (P  ~Q)) 

            Get: P (ID) 
 

2.     ~P              (AID) 
 

     Get: P (ID) 
 

3.      ~P   AID 

 

 

The second ID leaves us searching for an inconsistent pair of sentences all over 

again, armed with no new sentences (since the new AID on Line 3 is just what 

we already had on Line 2).  

 

To avoid such an infinite loop, the sentence on the second “Get” line will instead 

be a sentence not already had – in this case, the missing ingredient to trigger – 
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on Line 1.4  (And once again, we won’t get out of this second ID box until we 

secure both a sentence and its negation.) 
 

 

1.     ((P  Q)  (P  ~Q)) 

            Get: P (ID) 
 

2.     ~P              (AID) 
 

     Get: ~(P  Q) (ID) 
 

3.      ~~(P  Q)   AID 

 

 

But automatically applying two Elim rules, ~– and –, yields a sentence and its 

negation: “~P” on Line 2, and “P” on Line 5.  Repeating Line 2 leaves an 

inconsistent pair of sentences within the ID box. 
 

 

1.     ((P  Q)  (P  ~Q)) 

            Get: P (ID) 
 

2.     ~P              (AID) 
 

     Get: ~(P  Q) (ID) 
 

3.      ~~(P  Q)   AID 

4.      (P  Q)   3, ~– 

5.      P    8, – 

6.      ~P    2, R 

 

7.     ~(P  Q)              3, 5, 6, ID 

 

That allows us to close the second box, and finish that second ID.

                                           
4 Here we chose the negation of the left side of Line 1; but the negation of the right half would work just as well, and 

be as easy to deduce. 
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With the inner ID box closed, our deductive logjam is at last freed up.   

“~(P  Q)” on Line 7 is the missing ingredient for inflicting – on Line 1, yielding 

“(P  ~Q)” on 8. 

 

Automatic application of – to Line 8 yields “P”.  And with both “~P” (Line 2) 

and “P” (Line 9) in this larger box, our ID is complete. 
 

 

1.     ((P  Q)  (P  ~Q)) 

            Get: P (ID) 
 

2.     ~P              (AID) 
 

     Get: ~(P  Q) (ID) 
 

3.      ~~(P  Q)   AID 

4.      (P  Q)   3, ~– 

5.      P    8, – 

6.      ~P    2, R 

 

7.     ~(P  Q)              3, 5, 6, ID 

8.     (P  ~Q)   1, 7, – 

9.     P     8, – 
 

 10.   P              2, 9, ID 

 

 

Such ‘embedded ID’ – repeating the ID-building procedure within a larger ID – 

thus ranks alongside the Intro rules as a tool for ‘setting up’ the sentence needed to 

complete a deduction or apply an Elim rule. 

 

What we’re doing here, of course, is using Indirect Deduction recursively.  Just as 

recursive construction rules embedded, e.g., a smaller negation within a larger one, 

so here we build a smaller ID as part of a larger ID.  And just as we could cycle on 

the construction rules any finite number of times – yielding larger and larger 

formal sentences – so in what follows we will allow embedding of any (finite) 

numbers of IDs within IDs, yielding IDs of arbitrarily larger proportions. 

With embedded IDs added to our bag of tricks, we have in hand all the deductive 

tools needed to demonstrate the validity of any valid argument in our formal 

language.  All that we add in what follows are new applications of these deductive 

tools, and strategies for streamlining their use. 
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Summary: Indirect Deduction Strategy 
 

 

 Automatically use ID for each deduction (unless there is an 

obvious way of reaching the conclusion without ID). 

 

 As the needed inconsistent pair of sentences – some sentence, and 

its negation – try to choose sentences featuring a sentence letter 

that already appears on some previous line. 

 

 As the needed inconsistent pair of sentences, try to use a sentence 

you already have as one of the two sentences, and then deduce the 

other half. 

 

 If a sentence is needed to advance the deduction and cannot be 

reached through the deductive rules applied to existing lines, write 

a “Get” line for that sentence and use ID for the new “Get” line.  

(Here ID acts on a par with the Intro rules to ‘set up’ a needed 

sentence.) 

 

 

 

 

 

 

 

 


