
I have to formulate the main notions of the theory of algorithms.

1. Turing Machines.

Definition. Turing Machine M (usually called for brevity TM) is uniquely defined by a triple

hS, tA,Q, q0, δi, where S is a finite alphabet; A µ S an external alphabet; t 2 SnA, an empty

symbol.

Q is a finite set of control states.

δ : Q £ S Q £ S £ f¡1, 0, 1g

(means that our function may be not everywhere defined). Intuitively the computation on TM

may be represented as following:

r
S0 S1 ¢ ¢ ¢ ¢ ¢ ¢ Sp

Finite State Control
with the set of control states Q

Read/write head

1. At the beginning the control state is q0.

2. If at a moment t the head reaches the symbol Sp and the control state is q and

δ(q, sp) = (q′, S, ∆p)

The head:

1. replace sp by s in the square p;

2. replace the control state q by q′

3. moves to the square p + ∆p.

If p + ∆p < 0 or δ(Spq) is not defined, thus the TM halts.

Let us give the formal definition of computations by TM M .

A state λ of M is a triple

λ = hσ; p; qi,

where σ is an infinite sequence of elements of S (σn - the nth letter of σ) (infinite word in the

alphabet S), p 2 N, q 2 Q. Let α 2 A∗ (a finite word in the alphabet A). The computation M(α)

is the sequence of the states (finite or infinite): λ(t) = (σ(t), p(t), q(t))

λ(0) = hα; 0, q0i
λ(t + 1) = hσ(t + 1), p(t) + ∆p, q′i,

where

σn(t + 1) =
{

σn(t) n 6= p(t)
S n = p(t)

and

σ
(
σp(t)(t), q(t)

)
= hq, s, ∆pi

If p + ∆p < 0 at δ
(
σp(t)(t), q(t)

)
is not defined then the computation M(α) halts. λ(t) is the final

state of M(α) and we write M(α) # (belts).

The final moment of computation M(α) will be denoted by t(α) (or TM(α))

It is easy to see that for any t the infinite word is σ(t) contains only finitely many symbols not

equal to t. If M(α) # then

s(α) = max fnj9t • t(α)σn(t) 6= tg .

s(α) is the size of memory, necessary for the computation M(α); sometimes we’ll write sM(α).

If σ 2 S∗ let us denote by PA(σ) the word that is obtained from σ by erasing all letters from

SnA. For example if s with subindeces denotes the letters of SnA and a with subindeces denotes

the letters of A then

PA(s1a1a2s2sba1sa2a2) = a1a2a1a2a2

We say that the Turing Machine M computes the function ϕM : A∗ A∗ if

2

1. α 2 dom ϕM , M(α) #

2. if α 2 dom ϕM then ϕM(α) = PA (σ(t(α));

We say that a function ϕ : A∗ ∗A if there exists a Touring Machine M such that ϕ = ϕM . If

we assume that our input alphabet is of the form A [f#g then we may define in a similar way

the function ϕM;n : (A∗)n A∗ hα1, . . . , αni 2 dom ϕM;n iff M(α1#α2# . . . #αn#) # M(α) # iff

9α1 . . . αn 2 A∗ α = α1#α2# . . . #αn#PM (σ(α)) = ϕM;n(α1, . . . , αn).

Church-Turing Thesis. Any computable in some intuitive sense function is TM-computable.

In other words, Ch. T, Thesis means that any algorithm can be simulated on Turing Machines.

In what follows, when we consider computable functions ϕ : Nn N we assume taht our input

alphabet A = f0, 1g [f#g and the natural numbers are represented in the binary form. Notation:

B = f0, 1g.

It is easy to see that the set of all Turing Machines can be effectively enumerated. It means

that there exists a bijection ν between the set of all TM and N such that given a description of TM

M by definition 1 we can effectively in finitely many steps compute ν(M), and given any natural

number n we can effectively in finitely many steps find the description of the TM M such that

n = ν(M).

Assuming that our alphabet A contains 0,1 we may construct the function Ψ : (A∗)2 A∗ such

that (α, β) 2 dom ϕ iff β 2 dom ϕ”−1(fi) and in this case Ψ(α, β) = ϕ”−1(fi)(β). The function Ψ is

called universal for all TM-computable function ϕ : A∗ ! A∗.

The function Ψn : (A∗)n+1 ! A∗ universal for all TM computable functions ϕ : (A∗)n ! A∗ is

defined in the similar way. It is easy to see that the universal function Ψ is computable in intuitive

sense. Indeed, given α, β 2 A∗ we find effectively ν−1(α) = M and start the calculation M(β). It

halts iff (α, β) 2 dom Ψ and Ψ(α, β) = σ (tM(β)). All this is done effectively. According to Ch.-T

Thesis Ψ is TM-computable. A TM that computes Ψ is called a universal Turing Machine.

We say that a predicate P on A∗ is decidable if its characteristic function Kp : A∗ ! f0, 1g is

3

TM computable. Since Kp is everywhere defined P is decidable if there exists an algorithm that

gives for any α 2 A∗ after finitely many steps whether P (α) = T or P (α) = F . Indeed since Kp is

everywhere defined and TM-computable then a Turing Machine M that computes Kp halts for any

initial state α.

Let us consider an example of undecidable predicates

P (α) = T iff ν−1(α)(α) #

If P is decidable then Kp(α) is TM-computable. Consider the function:

ϕ(α) =

{
1 if Kp(α) = 0
0 not defined if Kp(α) = 1

According to C.-T. Thesis ϕ(α) is also computable. Let M0 be a TM that computes ϕ, i.e. ϕ = ϕM0

ϕ(α) = 1 iff ν−1(α)(α) ", α /2 dom (ϕ−1
” (α). ϕ(α) is not defined if ν−1(α)(α) #, α 2 dom ϕ”−1(α) .

Let α0 = ν(M0). Then ϕ(α0) = 1 iff M0(α0) ",2 dom ϕM0 , α0 2 dom ϕ—impossible. ϕ(α0)—is

defined iff M0(α0) # α0 2 dom ϕM0 , α0 2 dom ϕ contradiction. The undecidability of P implies

the undecidability of the following problem which is called the Halt Problem for TM:

Given TM M and an α 2 A∗ to find out whether M(α) # or M(α) ".

If there exists an algorithm that answers this question for any α infinitely many steps then

applying this algorithm to ν(M) we obtain the answer to the question whether P (α(M)) = T or

P (M) = F .

Thus the Halt Problem for TM is undecidable.

To prove that any problem P is undecidable it is enough to show that if there exists an algorithm

that solves P then there exists an algorithm that solves the Halt Problem. The undecidability of

all well-known problems such as the 10th Hilbert’s problem and the word in the group theory was

proved in this way.

In what follows we’ll consider only decidable problems. We’ll be interested in the complexity of

computation. If α 2 A∗ then jαj is the length of α.

TM(n) = max ftM(α)j jαj • ng
SM(n) = max fsM(α)j jαj • ng

4

We say that a function f : N ! N is of a polynomial growth if f(n) • Cd
n for all big enough n.

Notation: f(n) = poly(n).

Definition.

1. We say that a function ϕ : A∗ ! A∗ is computable in polynomial time if there exists a TM

M that computes ϕ and TM(n) = poly(n). We denote by P the class of all predicates on B∗,

which characteristic functions are computable in polynomial time.

2. We say that a function ϕ : A∗ ! A∗ is computable in polynomial memory if there exists a

TM M , computing ϕ, such that SM(n) = poly (n).

The class of all predicates in B∗ such that their characteristic function are computable in poly-

nomial memory is denoted by PSPACE.

Schemes.

Recall that any system F of Boolean function. F the functions of f : Bn ! B is complete if

any Boolean function may be represented as a composition of some functions of the system F . An

example of complete system is the system

f_, ^, :g

If σ 2 f0, 1g and x is a variable that range over them x¾ =
{

x, σ = 1
:x σ = 0

. Then

f(x1, . . . , xn) = _x¾1
1 ^ . . . ^ x¾n

n

f(σ1 . . . σn) = 1

One more example of a complete system is a system f1g, where xjy = :x ^ :y. Indeed xjx = :x,

x ^ y = :xj:y · (xjx) j (yjy), x _ y = :(:x ^ :y) = (xjy) j (xjy).

One of the algorithms of computation of a function f : Bn ! Bm is a scheme in a base F . A

scheme S uses input variables x1, . . . , xm and also some additional variables y1, . . . , yS. A scheme

S is determined by a sequence of assignments Y1, . . . , Ys, where each of the assignments Yi is of the

5

form yi := fj (ukr , . . . , uk4) where fj 2 F and each ukp is either one of the input variables or one of

the additional variables yt where t < i. The result of the computation is the triple of values of last

m additional variables yS−m+1, . . . Ys. Any scheme can be represented by an acyclic oriented graph.

The vertexes of input degree 0 are marked by input variables. The other vertexes are marked by

functions of F and the edges are marked by variables. The vertexes of output degree 0 are marked

by output variables.

Example 1. F = f1g xi/x2

yi : = x1jx2

y2 = y1jy1

PSfrag replacements

x1

x2

y1

y2

Example 2. Let us consider the single digit adder. When we add to numbers written in binary

digit form in each digit we add the corresponding bites of summand and one bite that we kept in

mind from the addition of previous digit. We also have to outputs: the sum and the bit that we

keep in mind for next digit.

So we have three inputs x1, x2, x3 and two outputs, let us denote them at first u, v (sum and

??). We’ll write X instead of x and x ¢ y instead of x ^ y.

u = x1x2x3 _ x1x2x3 _ x1x2x3 _ x1x2x3

v = x1x2x3 _ x1x2x3 _ x1x2x3 _ x1x2x3

A scheme in the base f:, _, ^g will be rather complicated. Let us introduce one more function

x ' y—addition module 2.
x1 x2 x3 u v
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

6

x y x + y
0 0 0
0 1 1
1 0 1
1 1 0

x ' y = xy _ xy
Now it is easy to see that
u = x1 ' x2 ' x3 (addition is associative)

v = (x1 ' x2)x3 _ x1x2(x3 _ x3 = (x1 ' x2)x3 _ x1 ¢ x2

y1 : = x1 ' x2

y2 : = y1 ¢ x3

y3 : = x1 ¢ x2

y4 = y1 ' x3

y5 = y2 _ y3

Better to draw this scheme in the following way:

It is easy to see that there may exist many schemes that compute a function f : Bn ! Bm. In

the previous example we can construct, for example, also the following scheme:

y1 := x1 ' x2; y2 := (x2 ' x3); y3 := x1 ¢ x2; y4 := y1 ¢ x3; y5 = x1 ' y2; y6 := y4 _ y3

The size of a scheme is the number of assignments in this scheme. The scheme complexity of a

function f : Bn ! Bm in a base F is the minimum size of a scheme in a base F that computes

f . The computational complexity of f in a base F will be denoted by CF (f). The choice of F is

not very important—it only multiplies the computation complexity by some constant, so in what

follows index F will be omitted.

Let ϕ : B∗ ! B be a predicate on B∗ (we identify a predicate and its characteristic function).

We have B∗ =
∞⋃

n=0
Bn, where B0 = fΛg, Λ—is the empty word—the word of the length 0 (not the

same as t!!). Let ϕn = ϕjBn.

Definition. We say that a predicate ϕ is in the class P/poly if C(fn) = poly (n).

7

Theorem. P µ P/poly .

Proof. If a computation on an MT M is completed in a polynomial time then the size of memory

that it uses is also bounded by a polynomial (P µ PSPACE). And thus the computation starting

from the input word x of the length n can be represented by the computational table of the size

T £ S, where T = poly (n), S = poly (n).

The row number of j determines the state of M after j steps of computation. The symbols

Γj;k =2 S £ (fφg [Q), Γj;k = hσk(j), µi, where µ
{

q(j) if p(j) = k
φ otherwise

.

If for some input the computations halts at a moment T ′ < T then we assume that all rows of

number j > T ′ are the same as the row of number T ′. Now a scheme that computes the values of

our predicate on the words of the length ` can be constructed in the following way. The state of

each square of our table can be encoded by a number of Boolean variables that does not depend on

n. More exactly it is enough x1, . . . xL, where L is the least number such that jSj ¢ (jQj + 1) < 2L.

It is easy to see by the definition of computation that the state Γ of any square in the row is j +1 is

uniquely determined by the state of the square with the same number in the previous row and its left

and right neighbors. Thus each of variables that encode the state Γ is a function of variables that

encode the state Γ′‘, Γ
′, Γ′Γ. The functions can be computed by the schemes of finite (independent

of n) size. The union of these schemes determines the scheme that computes ϕ for any word x of

the length n. ¤

It is easy to see that P/poly is larger than P . Indeed consider any predicate f on N. It

determines the predicate ϕ(f) on B∗ such that ϕ(f)(x) = f (jxj). So ϕ(f)jBn is either identically

8

0 or identically 1. The scheme complexity of such function is bounded by a constant. So such

predicates are in the class Ppoly (a). But among them there are even undecidable predicates. The

following theorem is almost obvious:

Theorem. A predicate f is in P iff

1. f 2 P/poly

2. there exists a TM M such that constructs for any n a scheme computing fn during a polynomial

of n time.

9

The Class NP

Definition. The predicate L is in the class NP if L(x) = 9y (jyj < q (jxj) ^ R(x, y)), where q(n)

is a polynomial of n, and the predicate R(x, y) is in the class P .

Intuitively, L(x) = T iff there exists such a group y that allows us to verify that L(x) = T in

polynomial time.

For example. We say that a sequence v1, . . . vm of the vertices of a graph is a cycle if (vi, vi+1)

is an edge as well as (vmv1). A cycle is simple if none of the vertices is repeated. A simple cycle

that meets all the vertices is called Hamiltonian. Consider the following problem: Given a graph

determine if it has the Hamiltonian cycle.

If x is a binary coding of a graph and y is a binary code of Hamiltonian cycle it can be taken

such that jyj < jxj then R(x, y) = T iff y is the Hamiltonian cycle in x is polynomial.

2) Consider a problem SAT that was introduced on the first lecture. Given a formula F (p1, . . . pn)

to determine if there exists an n-triple hσ1 . . . σni such that F ((σ1 . . . σn) = 1.

Once again if x is the binary code of F (p1 . . . pn) and y is an n-triple σ1 . . . σn then we may

calculate F (σ1, . . . , σn) in a polynomial time of the length of jxj (jyj • jxj). Thus this problem is

also NP.

It is easy to see that P 2 NP. Indeed if L(x) is a polynomial predicate we may take for R(x, y)

y = y ^ L(x). The problem to prove (or disapprove) that P 6= NP is open for few dozens of years

already!

Definition. We say that a predicate L1 is reduced to a predicate L2 (L1αL2) is there exist. A

polynomially computable function f , such 8x1L1(x) , L2(f(x)).

Lemma.

1. L2 2 P) L1(P)

2. L2 2 NP) L1 2 NP.

10

Proof. Obvious.

Definition. We say that a predicate L is NP-complete if any NP-predicate can be reduced to L.

Theorem. (Cook, Levin). SAT is NP complete. Let L(x) = 9y (jyj < q (jxj) ^ R(x, y)). R(x, y)

is polynomial. Consider the number of boolean variables that is enough to code the input x#y it

is jxj + 1 + q (jxj) + 1. And consider a logical scheme for R under the fixed x.

y1 = y1(ui1 , . . . uin) . . . ys = Ys(ui1 . . . us)

for variables that code x we substite their concrete values.

yx(u) = (y1 $ Y∧) ^ . . . (y $ Ys)

a $ b , a b v a b

ϕx(y, u) = 1 for some y,u iff L(x) = 1.

Lemma. If L1 is NP complete and L1αL2 and L2 2 NP then L2 is NP complete.

Corollary. If SAT is in P then P = NP.

11

Probability Algorithms—Algorithms for Primary Testing

It is easy to see that the predicate x is a composite number is in NP. More exactly we consider

the predicate x is the binary representation of a composite number but we’ll usually speak about

the numbers themselves and consider the time of computation as the function of log x (the length

of x is proportional to log x).

Now “x is composite” , 9y (yjx ^ y 6= ^ ^ y 6= x). Obviously log y • log x and yjx is a polyno-

mial predicate—we may use the usual algorithm for finding the quotient and remainder that work

for polynomial time.

More difficult is the following.

Theorem 1. The predicate “x is prime” is in NP. The proof of this theorem will be based on the

following.

Theorem 2. Let n > 1. Assume that there exists a primative root of n i.e an integer as such that

1. an−1 · 1(mod n)

2. a
n−1

p 6· 1(mod n) for each prime factor of p ¡ 1.

Then ^ is prime.

Proof. Since an−1 · 1(n)ord najn ¡ 1. We’ll show that ord na = n ¡ 1. Suppose ord n(a) 6= n ¡ 1

then 9k > 1(n ¡ 1) = kord n(a). If p is a prime factor of k then

a
n−1

p · a
kord n(a)

p
·

[
aord n(a)

] k
p · 1(n)

Contradiction. By Euler’s theorem.

a’(n) · 1(n)

So (n ¡ 1) = ord najϕ(n) thus n ¡ 1 • ϕ(n) • n ¡ 1 by definition of ϕ(n)), and ϕ(n) = n ¡ 1.

ϕ(n) =
(
pfi1

1 ¡ pfi−1
1

)
. . . (pfi2

s ¡ pfis−1
s) where n = pfi1

1 . . . pfi1
s .

12

Obviously this is equal to n ¡ 1 only if s = 1, α = 1. Now we can prove theorem 1. We have to

prove that if n is prime then this fact can be proved in polynomial time. It is not the same as to

find out whether n is priem or not in polynomial time.

If p is prime let a be a primative root mod n, and p1, . . . ps, α1 . . . αs are such that (p ¡ 1) =

pfi1
1 . . . pfis

s (⁄). Now we have to verify that an−1 · 1(mod n), the equality (⁄) and each of inequalities

an−1
pj

6· 1(mod n). Let n = log p. Then S = 0(n). The computation of f 2 requires no more than

0(log q) multiplications. (Indeed if q = 2t1 + 2t2 + . . . + 2tm where t1 > z2 > . . . > tm >????. It is

enough to use t1 to obtain all f 2tm
, . . . , f t and no more than t1 multiplications to obtain q(m < tm).

Now to verify (⁄) we need no more than 0(n2) multiplications (each αi < n thus for each pfii
i we

need 0(n)-multiplications). Each multiplication requires no more than n2 operations. Thus we held

up to now 0(n4) operations. For an−1 and a
n−1

p we need even less operations. The problem is that

we have to verify the primarity of all p; and thus to repeat all that was before for each of them (and

then four prime decomposition of pj ¡ 1, etc.. How many times have we to repeat all stuff? Notice

that jx ¡ yj ‚ jxj + jyj ¡ 1. The product of all primes at the kth step of our recursion is less than

p. Then

jp1j + jp2j + . . . + jpsj ¡ s • jp1p2 . . . p0j < jpj

thus

jp1j + jp2j + . . . jp2j • 2jpj.

Indeed if

jp1j + jp2j + . . . + jpsj ‚ 2jpj

then

jp1j + jp2j + . . . + jpsj ¡ s ‚ jpj + jpj ¡ s ‚ jpj

since jpj ¡ s ‚ 0.

The maximum number for prime testing of the kth step of recursion is at least twice less than

maximum number for the prime testing on the (k ¡ 1)-th step. Indeed, it is a nontrivial factor of

13

a number obtained on (k ¡ 1)th step. Thus the maximum number of the steps of recursion is nor

more than n, and thus the sum of all lengths of numbers for prime testing is 0(n2). So we need no

more than 0(n8) operations. (Indeed it is enough 0(n2) operations.

The Probability Turing Machines (PTM) are defined in the same way as usual Turing Machine

only for some (q, s) δ(q, s) is a pair of triples hq1
i , s

1
i , ∆pii (i = M,T) and we decide which of them

to take by coin toss. If coin toss lands heads we take hq1
p, s

1
n∆pni, is tails—then hq1

t , s
1
t , ∆p1

t i. So at

each step of computation we choose the next step with the probability 1
2
. It is easy to compute the

probability of any output for a fixed input α.

Definition. A predicate L is in the class BPP if there exist a PTM M and a polynom p(n) such that

M with probability 1 tM(x) • p(???) and L(x) = 1) M gives the answer “yes” with probability

‚ 2
3
, L(x) = 0) M gives the answer “no” with probability ‚ 2

3
. We can take any number greater

than 1
2
. The class PBR will not change. For each such number we can get the right number with

probability as close to 2 as desired. We have to take several machines and to start them from the

same input simultaneously and take as the result—the opinion of the majority. If for any copy of

BPT the probability of wrong answer c < 1
2

then the probability of wrong answer after such vote

of n machines will be

∑
S⊆{1,...n}
|S|≤n

2

(1 ¡ c)|S|cn−|S| = ((1 ¡ c)c)
n
2

∑
S⊆{1,...n}
|S|≤n

2

(
c

1 ¡ c

)n
2
−|S|

<
(√

(1 ¡ c)c
)n

2n = λn,

where

λ = 2
√

c(1 ¡ c) < 1

(since c
1−c

< 1 ¡ ∑
S⊆{1...n}
|S|≤n

2

(
c

1−c

)n
2
−|S| • 2n.)

Theorem. A predicate L is in the class BPP iff there exists such polynom q(n) and predicate

14

R(x, y) 2 P such that:

L(x) = 1)
∣∣∣
{

rj|r|≤q(|x|)∧R(x;y)=1

}∣∣∣∣∣∣
{

rj|r|≤q(|fi|)
}∣∣∣

‚ 2
3

L(x) = 0)
∣∣∣
{

rj|r|≤q(|x|)∧R(x;y)=1

}∣∣∣∣∣∣
{

rj|r|≤q(|fi|)
}∣∣∣

‚ 1
3

Proof.

1. Let L 2 BPP with PMT M and polynoms p(n). Let q(n) = p(n) (the number of coin tosses

is no more than all steps of computations).

R(x, r) = n if M gives at the input x the answer “yes” for the sequence of triples given in Γ

(Γ is the sequence of h and t at those moments when we use the coin toss.

2. Those randomly the word Γ of the length q (jxj) and plug into our predicate for variable Γ.

Let us now consider probability polynomial algorithm for primary testing.

Step 1. Check if n is even, if so and n = 2 then n ??? if not n is composit.

Step 2. Check if n is ak for k = 2, 3, . . . [log2 n]

Let us now consider probability polynomial algorithm for primary testing.

Step 1. Check if n is even; if so then if n = 2 then n is prime, otherwise composite so n is odd.

Step 2. Check if n is ak for k = 2, 3 . . . [log2 n] (we discussed already that this can be done in

polynomial time).

Step 3. Represent n ¡ 1 in the form 2k, `, where k > 0 and `-odd.

Step 4. Choose random a 2 f1, 2, . . . , ng
Step 5. Compute a‘, a2‘, . . . , an−1(mod a)

Test 1. If an−1 6· 1(mod n) then the answer is “n-composite”;

Test 2. If 9j
(
a2jj 6· §1

) (
a2i+1‘ · 1(mod n)

)
then n-composite, otherwise n-prime.

Theorem

1. If n is prime then we obtain the answer n is prime with probability 1 (always)

15

2. If n is composite then the answer n is compo. site will be obtained with probabilty ‚ 1
2
.

Remark. Thus the probability of mistake is • 1
2

and if we apply this algorithm twice then the

probability of mistake will be • 1
4
.

If n is prime then an−1 · 1(n)—small Fermat theorem. If a2i+1‘ · 1(mod a)) (a2j‘ ¡ 1)(a2j‘ +

1) · 0(n) and since a2j‘ 6· §1 n is composite. This proves the first part of our theorem. Let us

prove the second part.

Let n = u ¢ v · 1(2)ged (u, v) = 1. If we cannot represent n in such a way then we’ll find that

n is composite on the step 2. If gcd(a, n) > 1 then test 1 shows us that n is composite. So we

have to show that no less than 1
2

of all numbers prime with n give by our algorithm the answer n

is composite.

The group of reversible elements of a ring R is usually denoted by R∗

Denote (Z/uZ)∗ = U , (Z/vZ)∗ = V . Then the group (Z/nZ) »= U £ V —Chinese Remainder

Theorem!

Let us consider the subgroups

UR =
{
xkjx 2 U

}
, V k =

{
xkjx 2 V

}

We have |U |
|Uk| and |V |

|V k| are integers. The map x ! xk is a homomorphism and so the cardinality of

all sets Uy =
{
xjxk = y

}
is the same—does not depend on y 2 Uk. Obviously U2‘ µ U ‘ and thus

we have the following inclusions:

U ‘ ¶ U2‘ ¾ . . . ¾ Un−1 ¶ f1g
V ‘ ¶ V 2‘ ¾ . . . ¾ V n−1 ¶ f1g

1. Let Un−1 6= f1g (or V n−1 6= f1g) to pass the test 1 we have to obtain after taking (n ¡ 1)th

power the point of remainders (1, 1). Since any number in Un−1 6= f1g has the same cardinality

of the inverse image we obtain (1, 1) with probability no more than 1
2

(1
2

in the case when Un−1

contains exactly 2 elements). And thus we obtain the answer “n-composite” after already the

first test with probability ‚ 1
2
.

16

2. Let Un−1 = V n−1 = f1g since ` is odd ¡1 2 U ‘\V ‘, i.e., there t = 2s, 0 • s < k (n = 2k`) such

that U ‘·2t = V ‘·2t = f1g, but either U ‘·t 6= f1g or V ‘·t 6= f1g. Let us show that in this case also

with the probability ‚ 1
2

the second test of our algorithm will give the answer “n-composite”.

We have a2t·‘ · 1(n) and we have to understand what probability at‘ 6· §1(mod n)

(a) U t·‘ = f1g (or V t‘ ¡ f1g the same). So this case a‘t 6· ¡1(mod n) because for (¡1) we

have to obtain the pair of remainders (¡1, ¡1). Now as in the case one with probability

not less than 1
2

we’ll obtain the pair of remainders (1, α), α 6= 1 and thus a+ 6· 1(mod n).

(b) U t·‘ 6= f1g V t·‘ 6= f1g, so jU t‘ = c ‚ 2 jV t‘j = d ‚ 2. Then the probability to obtain

f1, 1g or f¡1, ¡1g is no more than 2
cd

• 1
2

17

