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GROUPS THAT ARE LOCALLY EMBEDDABLE
IN THE CLASS OF FINITE GROUPS

‘A.'M. VERSHIK AND E. L. GORDON

INTRODUCTION

In this paper we discuss various definitions and some properties of a certain class of
groups, namely, the class of groups that are locally embeddable in the class of finite groups
(the LEF-groups, for short). This class could have appeared as a specification of a certain
quite general definition in model theory [1], but apparently it has not yet been considered
either in group theory or in its applications. The first author came to it being involved in
approximation theory of dynamical systems and operator algebras (see [2, 3, 4]); for the
second author this class of groups arose from the study of approximation of operators on
Function spaces. A similar class of LEF-algebras (those locally embeddable in the class
of finite-dimensional algebras) is probably even more interesting.

The problem of approximating infinite groups by finite ones has been investigated
before in the framework of purely algebraic constructions (see, e.g., the classical papers
[14, 15]). The notions introduced in what follows are more general; the classical algebraic
notions of residual finiteness and inductive limit are proper special cases of our approxi-
mation. Roughly speaking, we use “near-homomorphisms” instead of homomorphisms.

The class of LEF-groups looks particularly important in ergodic theory, dynamical
systems, and operator theory, where some interesting facts about the nature of approxi-
mation can be formulated in terms of this class. For example, for countable groups the
notion of free approximation introduced in [2] and investigated in [8, 9, 10] is equivalent
in some sense to the property of local embeddability in the class of finite groups (see §3
of this paper). It is remarkable that the class of LEF-groups is'in general position rela-
tive to the class of amenable groups, and the class of finitely representable LEF-groups
coincides with the class of finitely representable residually finite (RF) groups [9, 10]. In
general, there exist solvable (hence, amenable) groups that are not LEF-groups; also,
there are finitely generated LEF-groups that are not residually finite.

In this paper we present only some initial results on the LEF-groups. In §1 the
basic definition of the class of LEF-groups is given, together with various statements
equivalent to it. A relationship between the definition of approximation by finite groups
introduced here and the convergence in the topological space of finitely generated groups
(see [11, 12]) is investigated. The class of algebras that are locally embeddable in the
class of finite-dimensional algebras is introduced, and a generalization of the definition
of approximation by finite groups to the case of topological groups is formulated.

In §2 we collect certain facts pertaining to the structure of the class of LEF-groups.
In particular, it is shown that all locally residually finite groups are LEF-groups, and
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all finitely representable LEF-groups are RF-groups. It turns out that the class of LEF-
groups is not closed under extensions, nor even under semidirect products. But under
the requirement that the action of an LEF-group A on an LEF-group B be approximable
in some natural sense (see Definition 2.3(1)), the corresponding semidirect product A B
is also an LEF-group. This fact allows us to construct an example of an LEF-group with
two generators that is not residually finite.

In §3 we study the approximability of the action of LEF-groups on arbitrary sets and
also the quasiinvariant actions of such groups in spaces with probability measure. It is
established that in both cases the class of LEF-groups is characterized by the existence of
a freely approximable action. We formulate some open questions and conjectures related
to the LEF-groups and algebras.

In our opinion, the general concept of convergence for the group operations (or in
algebras, for semigroup operations) is of particular interest. For instance, approximation
in the theory of Lie algebras can be treated precisely in this way, representing the infinite-
dimensional Lie algebras with continuous systems of roots as the limits of classical Cartan

algebras (see [13]).

§1. THE BASIC DEFINITION AND VARIOUS VERSIONS OF IT

1°. Definition. We say that a group G is locally embeddable in the class of finite
groups (G is an LEF-group) if for any finite set H C G there exists a finite set K with
H C K C G and a binary operation ®: K% -—— K such that (K, ®) is a group satisfying
the condition

Vhi,hy € H (h1 “ho€e H—hy-hyg=hy @hg)

Here and in what follows, the group operation in G is denoted by dot. Also, we use

the following abbreviations:
VI H = for every finite set H;
I (K,®) = there exists a finite set K and a binary operation ©: K? — K turning

K into a group.

Lemma. A group G is an LEF-group if and only if the following condition is fulfilled:
for any k € N,

VHcGIK ) [HF CEAVR, ..., kg €H (b ~hg=h1 @ Ohg)],

where H® = {hy - -+ -hy | h; € H}.

If £ = 2, the condition of the lemma means that the Cayley table of G restricted to
an arbitrary finite subset H of G, can be completed to the Cayley table of some finite
group. It should be mentioned that the fragments of Cayley tables, i.e., the partitions
of the set of pairs (k1,h2) € H x H (where H is a finite subset of a group G) into the
classes of pairs with the same product were considered in combinatorial group theory;

see, e.g., the book [7], where the “doubling” problem was investigated.
It is easily seen that for countable groups the definition of an LEF-group can be

reformulated as follows.

Proposition. 4 countable group G is an LEF-group if and only if there exists an in-
creasing sequence of finite sets Ky, C Kny1 such that |, K = G and on each K, there
s a binary operation On turning (K, ®n) into a group and satisfying

Ya,b € G 3N (a,b) Yn > N(a,b) (a ©®nb=a-b).

(1)In the system of references adopted here, Definition 2.3 refers to the definition in Subection 3 of §2.
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Sometimes, the latter condition is written in the form

a-b= lim a®ub.
n—0C0
We note that, in general, the group (K., ®,) in this proposition is neither a subgroup of
G nor a subgroup of (Kp+1, Ont1)-
The class of LEF-groups defined above may be called the class of inductive LEF-
groups. It is possible to formulate also a projective analog of this definition. It turns out
that the class of groups obtained in this way is the same as the previous one.

Theorem-definition. For countable groups G, the following conditions are eguivalent.
1. G is an LEF-group.
2. There exists a countable sequence of finite groups K, and a system of maps (not
necessarily homomorphisms) m,: G — K, such that
a) Vz,y € G (z #y — IN Vn > N m(z) # mn(y));
b) Vz,y € G AN Vn > N mp(z - y) = mn(x) - 7n(y).

Proof. 1. If G is an LEF-group, then we consider the sequence of finite groups K,
described in the preceding proposition and define m,: G — K, by putting m,(z) = 2
for x € K, and taking m,(z) arbitrarily otherwise. Obviously, condition 2 is fulfilled.

2. Conversely, let G satisfy condition 2. For an arbitrary finite set H C G, we choose
n such that '

) o,y € H (2 £y — ma(@) # Ta(y)),

i) Vz,y € H mp(z - y) = mn(z) - 7 (y)-

Now we fix any map j: K, — G which is right inverse to 7, and satisfies H C j(Ky).
We put K = j(K,) and denote by © the multiplication on K induced by j from Kp.
Clearly, the condition occurring in the definition of an LEF-group is fulfilled. ]

Remarks. 1. Proposition 1.1 and the theorem-definition remain valid for arbitrary (not
necessarily countable) LEF-groups if we replace the sequences of finite groups by nets.
2. In the above theorem, if all m, are homomorphisms, then we recover the classi-
cal notion of a residually finite group [14]. Thus, all RF-groups are LEF-groups (see
Corollary 1 to Theorem 2.1 below).
3. Definition 1.1 readily shows that the class of LEF-groups (as well as the class of

RF-groups) is hereditary, i.e., any subgroup of an LEF-group is an LEF-group.

2°, Local embeddability of algebras into finite-dimensional algebras can be defined by
analogy with what was said in Subsection 1°. As before, another definition, similar to
the theorem-definition of Subsection 1°, is possible here.

Definition. An algebra A is said to be locally embeddable in the class of finite-dimen-
sional algebras (A is an LEF-algebra) if there exists a sequence of finite-dimensional
spaces A, C Apy1 with |J, An = A and bilinear operations op: A2 — A, (thus,
(An, o) is an algebra) such that '

Ya,b€ AINVn > Na-b=ao,b.

Theorem-definition. The following two conditions are equivalent.

1. A is an LEF-algebra.

2. There ezists a sequence of finite-dimensional algebras (An,0,) and a sequence of
linear operators (not necessarily homomorphisms of algebras) on: A — A, such
that
a) Va,b€ A (a#b— 3N VYn >N gn(a) # vn(b),

b) Va,b€ AINVYn > N pp(a-b) = pn(a)on wn(b).
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Proof. The proof is similar to that of the theorem-definition in Subsection 1°, with the
only difference that when constructing right inverse maps we must make them linear
operators. This can always be done by using the direct complements of the subspaces
A, under consideration and the kernels of the homomorphisms ¢p,. (]

Proposition. The group algebra of an LEF-group G is locally embeddable in the class
of finite-dimensional algebras.

Proof. For the finite-dimensional algebras A, we can take the group algebras of the finite
groups K, of Proposition 1.1. ]

The question as to whether the converse is true, i.e., whether the LEF property of a
group G follows from the LEF property of its group algebra, remains open.

3°. The assumptions of Proposition 1.1 (or of Definition 1.2) can be slightly weakened.
Clearly, instead of K, C G (4, C A) we may require the existence of injective maps
Jn: Kn — G (injective linear operators v, : A, — A) that satisfy obvious modifica-
tions of the assumptions of Proposition 1.1 (respectively, Definition 1.2). It turns out
that the condition of injectivity can also be lifted.

Proposition. i) A countable group G is an LEF-group if and only if there exists a
sequence of finite groups (K, ®n,) together with maps jn: K, — G such that
1. G= %gn(Kn) (as before, here we mean the inductive limit of sets, not of groups);

2. Va,b € GAN ¥Yn > NVa,0 € K,
(jn(a) =a /\Jn(/@) =b-— ]n(a On ﬂil) =a:- bil);

3. julen) = e, where e, (e) is the identity element of the group G (G).

i) An algebra A is locally embeddable in the class of finite-dimensional algebras if
and only if there exists a sequence of finite-dimensional algebras Ay, and linear operators
©n: An —> A (the v, are not necessarily homomorphisms of algebras) such that

L A=limen(4n) (the inductive limit of linear spaces);

2. Va,be AN Vn > NVa,B€ A,
(en(a) =aApn(B) =b— pn{ao, B) =aob),

where o, (o) denotes multiplication in the algebra A, (A).

Proof. We restrict ourselves to statement i). Statement ii) can be proved similarly.

Obviously, every LEF-group satisfies the conditions listed in the proposition. To prove
the converse, we fix an arbitrary finite set H. € G. Conditions (1) and (2) imply the
existence of n such that j,(K,) D H and

Va,b e HVa, 8 € Ky (n(a) = a Ajn(B) = b — jn(a ®n fF) = a - bF).

There is no loss of generality in assuming that e € H. The conditions of our proposition
imply that M = j '({e}) is a subgroup of K, and that H C j,(N), where N is the
normalizer of M in K,,. Let K = N /M, and let ® denote multiplication in K. It is easy
to check that for every £ € K we have #(j,(6)NH) < 1. We construct amap j: K — G
in the following way. Let B = {€ € K | #(jn(§) N H) = 1}. For any ¢ € B we put
J(€)=h €j(€)N H. Since for any a, 8 € N, jn(c) = jn(B) € H implies a ®, 7 € M,
the map j is injective on B. Since G can be assumed infinite (for the finite groups the
statement is trivial), 7 can be extended to an injective map from K to G. Thus, we have
constructed an injective map j: K — G such that H C j(K) and j(a® ) = j(a)-j(5)
if @, € 771(H). Now it is obvious that the conditions of Lemma 1.1 are satisfied. O
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4°. In [12], a certain natural topology in the space of groups with a fixed finite system
of generators was investigated in detail; before, this topology had been used in [11].

Along the lines of [12], we describe the topological space G of groups with a system of
generators (ai, ..., a,). Any group Go € G is determined by a normal subgroup N (Gq)
of the free group F(ai,...,a,). The base of neighborhoods of Gy consists of the sets
Vi(Go) € G, k €N, given by

Vi(Go) ={G € G| N(G)N B, =N(Gy) N By },
where By, is the set of all words in F(a1,...,an) of length at most k.

It is easy to check (see [12]) that the space G is metrizable and compact.

Proposition. A group G with generators {aa,...,an) i3 an LEF-group if and only if
there exists a sequence of finite groups conwerging to G in the topological space G.

Proof. Let G be an LEF-group and 7: F(a1,...,a,) — G the natural homomorphism
with Kerm = NM(G). Consider the finite set Hy = {7w(c) | « € By }. Starting with Hy,
we construct a finite group (L, ©) that satisfies the conditions of Lemma 1.1. Obviously,

we may assume that Ly is also generated by (a1,...,a,). If s <k, then by Lemma 1.1
we have afj a2 .. 'af: = afll @afj ©-- -@af: with §; = £1. Hence, both expressions are

or are not equal to the identity element simultaneously, i.e., N(G) N By = N (L) N By,
which means that L, — G as &k — co.

Conversely, suppose that a sequence of finite groups Gy, satisfies Gy, — G as k — oc.
For an arbitrary finite set # = {hy,...,h} C G, we represent each h; € H in any
way as a word h;(ai,...,an) € Flai,...,a,). Consider the set of all words of the form
hiat, ..., an)- h;l(al, ..., 0p) With i # j and of the form h;(a1,...,an) - Bj(a1,...,an)-
h,:l(al,...,an) with hg, by, hy € H satisfying h; - by = hi. Let s be the maximum
of the lengths of all such words. Then there exists a finite group Gi € V;(G). Hence,
N(Gr)NBs = N(G)NBs. Denoting by v: F(ai,...,an) — Gk = F(a1,...,an)/N(Gg)
the natural projection, we define a map ¢: H — G, by putting ¢(h) = v(h(ai,...,an)).
The map ¢ is injective, because h; # h; implies h;(a1,...,an) hj“l(al, e an) € N(G),
whence h;(a1,...,a,) hj"l(al, oy Qn) € N(Gy). Similarly, if h; - hy = hyg, then p(h;) -
w(hj) = p(hy). Now, using the facts that ¢ is injective and G is infinite, it is easy to
construct a group (K, ®) that satisfies the conditions of Definition 1.1. O

For the approximations studied in this paper it is more natural to introduce the space
S of group operations (or Cayley tables). We restrict ourselves to at most countable
groups, assuming that their elements are numbered by nonnegative integers in such a
way that the group identity element always has index 0. Moreover, we agree that if
a group is countable, then its numbering is bijective, and if its cardinality is n, then
its elements are numbered by 0,1,...,n — 1, and all elements with indices exceeding n
are equal to the identity element. Then S consists of all maps f: N> — N that, in
accordance with the above, define a group structure on N with zero as the identity. If
H C N, we put

Valf) ={f €S| f|H = fIH*}.

Obviously, the family {Vy(f) | f € S, H C N,#(H) < oo } is a base of some topology
on &, which, as in [10], will be called the Cayley topology.(?) It is easily seen that the
LEF-groups (and only the LEF-groups) are the limits of sequences of finite groups in the
topological space S.

(*)In [9], the Cayley topology was defined similarly in the space of groups with a fixed finite system
of generators.
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We note that the above proposition does not imply the existence of any continuous
embedding of the space G in the space S. The reason is that the relation of group
isomorphism does not have any good topological properties in either of the topologies
(see [11]).

5°. Now we present a definition of approximation of topological groups by finite ones.
This definition is equivalent to that introduced in [6]. Below it is assumed that the
topological group G in question is locally compact and metrizable, and that the topology
of G is determined by a left-invariant metric p.

Definition. A locally compact group G is said to be approzimable (by finite groups)
if for any € > 0 and any compact set H G there exists a finite group (K,®) and an
injective map j: K — G with the following properties.

1. j(K)N H is an e-net in H.

2. For any ki, ks € j~1(H) we have

p ik © EEY), (k) 'j(kz)il) <e.

3. j(EK) = €qg.

It is easily seen that for the discrete groups this definition is equivalent to that of
LEF-group. For the compact groups, the formulation of this definition simplifies slightly,
namely, a compact group G is approximable if and only if for any ¢ > 0 there exists a
finite group (K, ®) and an injective map j: K — G such that

1. j(K) is an e-net in G;

2. Vki,ky € K p(j(ky ©kEY), (k1) - j(ka)*) < &

3. j (6 K) = €q-

In the case of a separable group G, this definition can be reformulated in a form similar
to Proposition 1.1.

Proposition. A separable locally compact group G is approzimable if and only if there
exists a sequence of finite groups (Kn,®,) and a sequence of maps jn: Kn, — G with
the following properties:

1. V€ GVe > 03N Vn > N Jh € K, (p(4n(h)),&) < €);

2. for any € > 0 and any compact set H C G,

AN Vn > N Vki, ks € 57 H(H) p (5o @ kF1), Gn (k1) - dn (k) ) < &

3. julex,) =eq.

Remark. If a group G is nonmetrizable, in the above definition we must replace an
arbitrary € > 0 by an arbitrary neighborhood of the identity element of G.

The question as to what topological groups are approximable by finite groups is still
open. In [5], in nonstandard analysis terms it was established that this is true for all
locally compact Abelian groups. It is easy to check that the (topological) inductive
and projective limits of finite groups are approximable. In [6] it was proved that any
approximable locally compact Abelian group is unimodular. But this condition is not
sufficient; indeed, later it will be shown that there exist discrete groups that are not
LEF-groups. Corollary 5 to Theorem 2.1 below shows that there exist locally compact
groups not approximable as topological groups that are approximable as discrete groups,
i.e., are LEF-groups. The following theorem provides a sufficient condition ensuring that
discrete approximability implies topological approximability.
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Theorem. If for any neighborhood U of the identity element of a locally compact group
G there exists a discrete subgroup T' C G that is an LEF-group satisfying U - T = G,
then G is topologically approzimable by finite groups.

Proof. We need to check that the requirements of Definition 1.5 are satised. Let [/ —
{€ € G| pe) <e}, let T satisfy the conditions of the theorem, and let X be any
compact subset of G. There exists a finite set F' C T such that U - F D K. Moreover,
since T' is discrete, TN K = S is finite. By Lemma 1.1, there is a finite group (K,Q)
such that (SUF)? C K and hy -h§Cl =h1® hzil for any hy,he € SUF. Taking as j the
identical embedding, we see that the requirements of Definition 1.5 are satisfied. Indeed,
the first of them follows from the definition of U and the left invariance of the metric
p, and the second from the fact that j7!(H) = § in this case, and for both products
involved we have exact equality (in S). O

6°. For topological algebras, the definitions of injective and projective approximability
by finite-dimensional algebras are substantially different. In what follows it will be shown
that the group algebras of approximable topological groups are projectively approximable
by group algebras of finite groups.

For completeness, we start with the definition of inductively approximable algebras,
which generalizes the well-known notion of AF-algebras (see [3, 4]).

Definition 1. A topological algebra A is said to be inductively approzimable (by finite-
dimensional algebras) if there exists an increasing sequence of finite-dimensional sub-
spaces A, of A, each equipped with a continuous bilinear operation o, : 42 — A,,, such
that (An,o,) is an algebra satisfying the following conditions:

1. Upen An is dense in A4;

2. for any a,b € |,y An we have a - b = limp_,00 @ 0y, b

Now we give the definition of projective approximability for the case of Banach alge-
bras.
Definition 2. We say that a Banach algebra A is projectively approzimable by finite-
dimensional algebras (An,o,), if there exist a dense subalgebra B C A and linear oper-
ators @, : B — A, such that

1. Va € B |ja|| = limp— o0 [|on(a)]|n;

2. Va,b € B limp—cc [|@n(a-0) — @n(a) on 0n(b)|ln = 0.
Remark. If A is a *-algebra, then it is approximable by finite-dimensional *-algebras in
the sense of each of the above definitions provided that we have the same convergence
for involutions as for the product.

Proposition. If a separable locally compact group G is approzimable by finite groups K,
then the group algebra Li(G) is projectively approzimable by the group algebras A(K,).
Proof. In [6], the following facts were established. If a locally compact separable group
G is approximable by finite groups, then G is unimodular. Fix any Haar measure u
on G. If U is a relatively compact neighborhood of the identity element and A, =
w(U)/#(372(U)), then for any p-almost everywhere continuous bounded function f de-
creasing sufficiently fast at infinity (in particular, for the functions with compact support)

we have
/G fdu=lm A Y f(alg)).

9K,
We introduce a norm on A(K,,) by putting
lafln = An - 3 lalg)l, a€ A(K).

geEK,
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If, for example, we take Co(G) as B and introduce the operators wn: Co(G) — A(Koy)
that map any function f € Co(G) to the table of the values of f at the points of the set
J(Ky), Le.,

Vk € Kn Vf € Co(G) n(f) = f(in(K));

then the requirements of Definition 2 will be satisfied. O

§2. THE STRUCTURE OF THE CLASS OF LEF-GROUPS

1°. First of all, we prove a theorem that identifies the class of LEF-groups in traditional
algebraic terms. This theorem shows that this class is close to the class of locally residu~
ally finite (LRF) groups. Recall that a group G is residually finite if and only if for any
finite set H C G there exists a homomorphism of G onto some finite group such that the
restriction of this homomorphism to H is injective. A group is said to be LRF if every
finitely generated subgroup of it is RF. We denote by G(H) the subgroup of G generated
by H. :

Theorem. A group G is an LEF-group if and only if for any finite set H = {h1,..., he}
C G there exists a group F, a finite group L, and surjective homomorphisms ¢: F' —
G(H) and @: F — L such that for some fi,...,f; € F satisfying Y(fi) = hs, © =
1,...,t, the homomorphism ¢ is injective on {f1,..., ft}.

Proof. First, let G be an LEF-group.- Let F' denote the group with the generators
hi,..., ks and the determining relations h; - h; = Ay whenever this is fulfilled in G (there
are only finitely many such relations because H is a finite set). We denote by D the
set of all such relations. Since all relations belonging to D are valid in G(H), there
exists a surjective homomorphism v: F — G(H). Now, let (K, ®) be a finite group
constructed starting with H in accordance with Definition 1.1. We may assume that K
is generated by H. Definition 1.1 implies that all relations belonging to D are valid in
K, i.e., there exist a surjective homomorphism ¢: F' — K. The elements A1, ..., h: are
pairwise distinct in each of the groups G(H), F, and K. Moreover, for i < ¢ we have
w(h;) = w(h;) = hy; this proves the “only if” part of our theorem (it suffices to put
K =L and fi'—:hi,i:l,...,t).

Let us prove the “if” part. Without loss of generality we may assume that the group
G(H) is infinite. Let I = {s1,..., 8%, St+1,---,n}, where s; = @(f;) for all i <. We
show that fi1,..., fn can be chosen in F in such a way that o(f;) = s; forall i € [t+1, n]
and any elements A1, ..., he, W(fer1),- - -, U (fn) are pairwise distinct in G(H).

Suppose that
(1) Vf € Hse1) F <t U(f) = b
We put N = Ker 1, M = Ker . Then (1) means that ¢! (s¢41) = aM C hiNU---URN,
whence
(2) M Ca *hiNU---Ua~ hN.

Since M is of fnite index (the group L is finite), so is N, which contradicts the fact
that G(H) is infinite. Thus, statement (1) fails, and there is an element fip1 € F
such that o(fi41) = s:41 and the element ¥(fiy1) = Ay is equal to none of the Ay
with ¢ < t. This argument can be continued by induction. Now, on the set X =
{h1,. o Rty ®(fre1)s .-, ¥(fn)}, whose cardinality is equal to that of L, we introduce
the group structure © induced from L. The construction of K shows that H C K and
(3) Va,bE K (a-be K —a-b=a®b),
so that the requirements of Definition 1.1 are fulfilled. |
A finite group (K, ®) satisfying condition (3) is called an approzimating group for G.
The above theorem readily implies the following statement.



GROUPS LOCALLY EMBEDDABLE IN THE CLASS OF FINITE GROUPS 57

Corollary 1. Every LRF-group is an LEF-group. In particular, all free groups are
LEF.

Corollary 2. The following classes of groups are contained in the class of LEF-groups:
Abelian groups;

locally finite groups;

nilpotent groups;

Matric groups;

metabelian (solvable of degree 2) groups.

CU W N

This corollary follows from the fact that all classes listed above are contained in the
class of LRF-groups (information concerning the matrix groups can be found in [14]; for
metabelian groups, see [18]).

Corollary 3. A group G is an LEF-group if and only if the following condition is fulfilled
(¢f. Definition 1.1):

VHcGI(K,0)[HCKCGAVh,hy €K (hy hy € K — hy-ho =1 @ hy)].

Proof. This follows from the construction of the group (K, ®) in the proof of the theorem
(see condition (3)). O

For countable groups, the above corollary offers a possibility to formulate a refinement
of Proposition 1.1.

Corollary 4. A countable group G is an LEF-group if and only if there exists a sequence
of finite groups {Ln, ®) with the following properties:

1. L, C Lpy1 (inclusion of sets, but not of groups!);

2. UpenLn = G;

3. Va,be L, (a-bELy, —a-b=a®b).
Corollary 5. There exist locally compact LEF-groups that are not approzimable as topo-
logical groups (i.e., not approzimable in the sense of Definition 1.5).

Proof. Let G be the semidirect product of the additive group R and the multiplicative
group Ry. Then G is an LEF-group by part 4 of Corollary 2. It is well known that Gis
not unimodular, so that it is not approximable as a topological group. |

Corollary 6. If G is a simply connected nilpotent Lie group whose Lie algebra g has a
basis with rational structure constants, then G is approzimable as a topological group (in
the sense of Definition 1.5).

Proof. It is well known (see, e.g., [19]), that under the assumptions of this corollary the
group G possesses lattices, and each lattice can be constructed in the following way. Let
go be the Lie algebra over Q generated by a basis in g with rational structure constants,
and let L be a lattice of maximal rank in g contained in go. Then the subgroup H C G

generated by exp L is a lattice in G.
Obviously, for any neighborhood of zero V' C g there exists a lattice L satisfying these

conditions and such that V + L = g. Since for any simply connected nilpotent Lie group
G the map exp: g — G is an analytic isomorphism of manifolds, we easily deduce that
for any neighborhood U C G of the identity the desired lattice I C g can be chosen in
such a way that U -exp L = G. Then also U-H = G, where H is the subgroup generated
by exp L. Moreover, the group H is nilpotent as a subgroup of a nilpotent group, whence,
by Corollary 2, it is an LEF-group. Now the corollary follows from Theorem 1.5. O

As an example we consider topological approximation of the nilpotent group UT(n, R).
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We recall that if K is a commutative associative ring with identity, then the group
of all (n x n)-matrices over K with zeros under the principal diagonal and units on the
principal diagonal is denoted by UT(n, K). We write the elements of this group in the
form z = (T45)1<icj<n. Iy = (¥3;) € UT(n, K), then it is convenient to write the
formula for the elements of the product z = (2;;) = zy in the form

i-1
Zij = Zij + Yij T Z TiitkeYithj-
k=1
So, let G = UT'(n,R). Since this group is separable, we can construct a sequence of finite
groups Gy satisfying the conditions of Proposition 1.5. Let Gy = UT(n,Zp), where
M =2N™+1, and Zj, is the ring of residues mod M; here it is convenient to represent
the latter ring as the ring of least absolute value residues, i.e., Zy = {—N™,...,N"}.

We define an injective map jy: Gy —> G as follows. If k = (ki) € G, le,
kij € Zpr, then jn(k) = z = (zi5), where
Obviously, the third condition of Proposition 1.5 is fulfilled. In order to check the first
two conditions, we start with the observation that we may use any (not necessarily left-
invariant) metric that determines the topology of the group UT'(n,R). In particular, we
shall use the metric p(z,y) = max |z — i = lz — y].

We verify the first condition of Proposition 1.5. Let £ = (&;) € UT(n,R), and let
e > 0. Putting Ny = [max{&;;,e71}], for any N > Ny we find an element k = k;; € Gy

such that s bt 1
ij i
i =& < T
The choice of N readily shows that |k;;| < N™ (i.e., we really have k € Gn), and that

To verify the second condition of Proposition 1.5, we note that it suffices to consider

the compact sets of the form A, = {k € G| |kij| < a}, a € Ry. Let N > a, and let
k = (ki;) € Gn. It is easily seen that |k;;| < N™ if jy(k) € A,. Since the products
in Z and in Zj; of any two numbers satisfying the latter inequality coincide, the above
formula for the product of unipotent matrices allows us to show that

Vk,s € Gy (jn(k),in(s) € Do — in(k-s) = jn(k) - jn(s)). O

2°. The following theorem (essentially contained in [8]) provides examples of groups not
embeddable in the class of finite groups.

Theorem. Any finitely representable LEF-group is residually finite.

Proof. Let {h1,...,hs} be a set of generators of a group G and D a finite set of its
determining relations. Given a nonempty finite set H C G, we represent each element of
H as a word in the alphabet A = {Af* ..., hf'}. Let s denote the maximum length of
a word in the set DUH. Let L = AU {e}. Lemma 1.1 implies the existence of a finite
group (K, ®) such that L®* C K C G and

(4) Yai,...,as € L(a; - -a;,=0a1 O - Oay).

We may assume that K is generated by the elements hq,...,h:. From (4) it follows
that H C K and that all determining relations of G are valid in L, i.e., there exists a
surjective homomorphism ¢: G — L. By (4), this homomorphism maps all elements of
the set H into themselves, so that they remain pairwise distinct; this proves that G is
residually finite. a
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Corollary 1. The finitely representable groups with undecidable word tdentity problem
are not LEF-groups.

Proof. 'The finitely representable RF-groups have decidable word identity problem by a
well-known theorem of A. I. Mal'tsev (see [15]). O

Corollary 2. There exist solvable (hence, amenable) groups that are not LEF-groups.

Proof. An example of finitely representable solvable group (of degree 3) with undecidable
word identity problem was constructed by Kharlampovich in [16]. |

Remark. On the other hand, Corollary 1 to Theorem 2.1 shows that there are nona-
menable LEF-groups (for example, free groups). Thus, the class of amenable groups is
in general position relative to the class of LEF-groups. Therefore, it seems of interest to
distinguish amenable groups in the class of LEF-groups. In particular, it is interesting
to investigate the relationship between amenability and the asymptotic behavior of the
function

_ #{(aﬂb> € ng l a"bELn}
where the L, are the finite groups occurring in Corollary 4 to Theorem 2.1. It is easy

to show that if G is an Abelian group, then the sequence of L,,’s can be chosen so that
Y(n) —c>0asn— co. '

Corollary 3. No finitely representable infinite simple group is an LEF-group (see [17]
for the existence of such groups).

Proof. Tt is clear that no infinite simple group is residually finite. l
Corollary 4. No finitely representable non-Hopfian group is an LEF-group.

The simplest example of such a group can be found in [16]. This is the group G =
(b, t;t71b%t = b%).
3°. In order to investigate the question as to whether the property of local embed-
dability in the class of finite groups is stable under extensions, it is natural to define
approximability of the action of an LEF-group II on an LEF-group G.

Definition. Let G' and II be LEF-groups. An action ¢: I1 — Aut(G) is said to be
approzimable if G\, 11 is an LEF-group, and equivariantly approzimable (e.a.) if for any
two finite sets # C G and S C II there are finite groups (K, ®k) and (L, ®1) containing
H and K, respectively, and satisfying the conditions of Definition 1.1, and an action of
L on K by automorphisms ¢: L — Aut(K) such that

Vr € SVg € H (p(r)(g) € H — o(m)(g) = ¢(m)(g)).

Propesition. If G and II are LEF-groups, and : II — Aut(G) is an e.a. action,
then the semidirect product G X, I is an LEF-group.

Proof. Let F' = {{g1,m1),...,{gn,Tn)} © G Xy II. We put H; = {91,---,9n}, S =
{m1,...,ma}. There is no loss of generality in assuming that H, = H' e € H.
Denoting H = HZ, for H and S we construct the groups K and L described in the above
definition. Let P = K Ny L. Then F C P C G e I, and the pair (F, P) satisfies
Definition 1.1. (I

The following example of an approximable action was considered earlier in 2, 8.
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Let Symm(Z) be the group of finite permutations of Z. Obviously, Symm(Z) is an
LEF-group, because it is locally finite. The action of Z on itself by shifts generates the
action of Z on Symm(Z) by automorphisms: for any m € Symm(Z) and any m,n € Z,

(5) ™ (n) = w(n +m) —m.

We show that this action is e.a. Indeed, let H € Z, § C Symm(Z) be any two finite
sets. We choose m € N such that

1. HC {—no, —ng+1,...,m0 — 1,n0};

2. Yr € SVm € Z (lm| > ng — n(m) =m).

Let K =Z/(2ng + 1)Z = {-ny,...,no} and let L = Sym(K) be the group of permu-
tations of the finite set K. Then H C K, S C L by construction, and it is clear that K
and L are approximating groups for Z and Symm(Z), respectively (L is even a subgroup
of Symm(Z)). As above, the action of K on itself by shifts mod (2ng + 1) induces the
action of K on I by automorphisms: for any = € L and any m,n € K,

™ (n) = n(n ®m) ©m,
where & and © denote addition and subtraction mod (2ng + 1). It is easy to verify that
vm,n € K (0™ (n) € K — 7™ (n) = al™(n)).

This proves that the action (5) of the group Z on Symm(Z) is equivariantly approx-
imable.

Thus, the semidirect product G = Symm(Z) X\ Z is an LEF-group. Since Symm(Z)
contains the infinite simple subgroup of even permutations, the group G is not residu-
ally finite. On the other hand, it is easy to check that this group is generated by the
two elements (1,id) and (0, (1,2)), where id is the identical permutation and (1,2) is a
transposition. Thus, we have proved the following statement.

Theorem (see [9]). There exist finitely generated LEF-groups that are not residually
finite.

Corollary. The class of LRF-groups is a proper subclass of the class of LEF-groups.

Another example of such a group is the direct ‘wreath product Z wr Aff(Q). In [18]
it was shown that this group with three generators is not residually finite. On the other
hand, Theorem 2.4 (see below) implies that this is an LEF-group. Thus, we have an
example of a solvable group of degree 3 that is an LEF-group but is not residually finite.

4°. The existence of solvable non-LEF-groups (see Corollary 2 to Theorem 2.2) shows
that the class of LEF-groups is not closed under extension; moreover, there exists an
extension of an LEF-group by an Abelian group that is not an LEF-group. It seems of
interest to find out what conditions ensure that the LEF property be preserved under
extension.

Theorem. i) The Cartesian product of an arbitrary family of LEF-groups is an LEF-
group.

ii) If A and B are LEF-groups, then their direct wreath product Awr B is an LEF-
group.

iii) If A is an LEF-group and B s a locally finite group, then the Cartesian wreath
product A Wr B is an LEF-group.
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Lemma. Assume that for any finite subset H of a group G there exists a homomorphism
injective on H of the subgroup G(H) generated by H into some LEF-group. Then G is
an LEF-group.

Proof of the theorem. Obviously, the class of LEF-groups is closed under finite Cartesian
products. Moreover, it is clear that for any finite subset H of an infinite Cartesian
product [],c 4 Ga of groups there exists a finite subset Ag C A such that the projection
of [Taen Ga onto [],c 4, Go is injective on H. Now, statement i) follows immediately
from the lemma.

In what follows, €’ and e are the identity elements of the groups 4 and B, respectively.

We remind the reader that the Cartesian wreath product A Wr B is the semidirect
product AZ X B relative to the action ¢ of the group B on AP by shifts: for any f € AP,
(s f)(x) = f(bzx) for all b,z € B.

It is easily seen that the subgroup Fin(4, B) C AP defined by

Fin(4,B) ={f € A | #{be B[ f(b) #¢'} < oo}

(the direct sum) is invariant under the action ¢. The semidirect product Fin(4, B) N, B
is the direct wreath product A wr B ¢ A Wr B. We show that the action ¢ of the
group B on Fin(A, B) is equivariantly approximable; then statement ii) will follow from
Proposition 2.3.

Let S C B, H C Fin(4, B) be finite sets. For f € Fin(4, B), we denote by supp f the
set {b€ B| f(b) # ¢} and put T = Uy (supp f U (supp f) 7). Let

Sp=8SuStuTu{e}, S =S5

Starting with S, we construct a finite group L satisfying Definition 1.1 for B. We put
M = ey im F and, starting with M, construct a finite group F satisfying Definition 1.1
for A. Let K = FE. We may assume that K C Fin(4, B) (as a set), extending the
elements of K to the points of B \ L by the identity element &' of the group A. Then
H C K by construction. Let ¢: L — Aut(F¥) be the action of L on FL by shifts, i.e.,
forbe L and f € K, ¥pf(z) = f(b©®z) for all z € L, where @ denotes multiplication
in L. If x ¢ L, then ¢ f(z) = € because f € K, and the elements of K are extended to
the points of B\ L by the identity element.

Let b € S, f € H be arbitrary; we show that (ppf)(z) = (¥ f)(z) for any = € B. If
so, then the conditions of Definition 2.3 will be fulfilled (and even stronger conditions,
because we do not require that @ f € H). The following two cases are possible.

1)b-z€T. Thenz=b"1-b-2€S2C 5, ie,z€8. Butbe S, ie, be S, and
since b-x € S; and L satisfies Definition 1.1 precisely for 51, we have b-z =0 Q z, ie.,
(s f)(@) = (Y f)(z).

2)b-z ¢ T. Then fo(z) = f(b-z) = € because supp f C T. Again, two cases are
possible: a) z € L and b) z ¢ L. In case a), as noted above, we have (13 f)(z) = €.
We show that this is true also in case b). For this it suffices to check that b® « ¢ T.
Butif 5@z € T, then b~' - (b® z) € S? C Sy, whence b-z € 5§ = S;. Now, we
obtain b1 (boz) ="' © (bO ) =2, ie, z € S§ C 51, whence b-z € §§ = 51, Le,
b-x = b®z. This contradicts the assumption b-z ¢ T. The approximability of ¢ on
Fin(A, B) is proved.

In order to prove statement iii), we note that if a group C is finite, then, obviously,
AWrC = AwrC, and statement ii) shows that if 4 is an LEF-group, then so is A WrC.

Now, let B be locally finite, and let A be an LEF-group. For a finite set /' C A Wr B,
F = {(b1, 1), {bn, fn) }» let (F) be the subgroup generated by F'. We choose a finite
set S C B such that

Vi, j <n fi # fi — LlS # filS,
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and introduce the finite subgroup C generated by S U {b1,...,b}. It is clear that if
(b, f) € F, then b € C. Obviously, the map ¢: (F) — A Wr C acting by the rule
w(b, f) = (b, f|C) is a homomorphism injective on F. Now statement iii) follows from
the lemma, because, by the above remark, A Wr C' is an LEF-group. O

Corollary 1. An extension of an LEF-group by a locally finite group is an LEF-group.

Proof. Any extension of A by B can be embedded into the Cartesian wreath product
AWr B. 0

Corollary 2. The class of LEF-groups is not closed under semidirect product.

Proof. As already mentioned, the class of LEF-groups is not closed under extension.
Hence it is not closed under Cartesian wreath product either (see the proof of Corollary 1).
But the Cartesian wreath product A Wr B is a semidirect product AZ X\ B, and, by
statement 1) of the theorem, if A is an LEF-group, then so is AZ. O

Remark. It is well known that all central extensions of a group G by a group II that
correspond to any fixed action ¢: II — Aut(G) are determined (up to isomorphism) by
the elements of the first cohomology group H*(II, Z(Q3)), where Z(G) is the center of G.
Since this group is an LEF-group, it is natural to expect that if G and II are LEF-groups,
and ¢ is an equivariantly approximable action, then the above-mentioned extensions are
LEF-groups. So far, this is open.

§3. FREELY APPROXIMABLE GROUP ACTIONS

In this section we give a new characterization of LEF-groups, which deals with actions.
First (in Subsections 1° and 2°) we consider the actions of groups on arbitrary sets;
then (in Subsections 3°-5°) we treat the actions of groups on spaces with quasiinvariant
measure. Only effective group actions are considered in what follows.(®)

1°. We start with showing that, in some weak sense, any action of an infinite group is
approximable by actions of finite groups on finite sets.

Propbsition. Suppose that a group G acts on a set A. Then for any finite sets K C G
and H C A there is a finite set L with H C L C A and an injective map ¢: K — Sym(L)
such that

(6) VEe KVzeL(§-z6 L — p(z)=¢&-x).
Proof. Since the action of G on A is effective and K is finite, we can find a finite set

B C A such that
VneK ({#n—IzeB( z#n ).

Putting L=HUBUK - B, for any z € L, £ € G we define
he(z) =min{i| ¢z e L, e Vr ¢ L, i e N}

In general, it may happen that he(z) = +00, i.e., { 'z € L for any ¢ € N. It is easily
seen that £z € L in this case. For any £ € G, we define a map @&: L — L by the rule

p&(z) = { g~he@y ife.z ¢ L.

(¥)We recall that an action p: G — Sym(A) is said to be effective if Kery = 0.
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It is not hard to show that if ¢ € K, then the map ¢f is injective. Thus, we have
defined a map ¢: K — Sym(L) satisfying (6). The injectivity of ¢ follows from the
definition of the finite set L. O

We say that a group G is weakly approzimable by finite groups if the action of G on
itself by left shifts satisfies the conditions of the above proposition. Thus, we have the
following statement.

Theorem. Every infinite group G is weakly approzimable by finite groups.

2°. If we require additionally that, under the assumptions of the preceding proposition,
the subgroup generated by the set p(K) C Sym(L) (we denote this subgroup by (p(K)))
acts freely(*) on L, then we arrive at the notion of a freely approzimable (FA) action.
Below it will be shown that the class of groups possessing freely approximable action is
the class of LEF-groups.

Definition. An effective action of a group G on a set A is called an FA-action if for any
finite sets K C G and H C A there is a finite set I, with € L € A and an injective
map ¢: K — Sym(L) such that condition (6) is fulfilled, and (p(K)) acts freely on L.

Lemma 1. Any FA-action of a group G is free. |

Theorem. A group G has an FA-action if and only if G is an LEF-group. In this case,
any free action of G is freely approzimable.

Proof. If G is an LEF-group, then the action of G on itself by left shifts is freely approx-
imable. Indeed, let K, H C G, and let H; = KUHU{e}. By Corollary 3 to Theorem 2.1,
there exists a finite group (L, ®) such that H; C L C G and condition (3) is fulfilled.
We define a map ¢: K — Sym(L) by putting ¢(k)(I) =k © L for any [ € L. Tt is clear
that ¢ is injective, (6) follows from (3), and ((K)) acts freely on L, because the action
of a group on itself by left shifts is free. The “if” part of our theorem is proved.

Now, suppose that an LEF-group G acts freely on a set A. Then A splits into the
orbits, and on each of them the action of G is free and transitive, i.e., equivalent to the
action of G on itself by left shifts. This yields the last statement of the theorem.

To prove the “only if” part, we relax somewhat the condition of free approximability,
namely, in the above definition we replace condition (6) by the following weaker one:

(7) VEeKVz e H(E-weH— gf(z)=¢ ).

In this case ¢ is said to be weakly freely approzimable (WFA). Obviously, every FA-action
is a WFA-action (actually, in what follows we shall see that the converse is also true).
The following lemma is similar to Lemma 1.

Lemma 2. Every effective WFA-action of a group G is free. 0
Now, the “only if” part of Theorem 3.2 is a consequence of the following two lemmas.

Lemma 3. A restriction of a WFA-action of a group G to any of its orbits is also a
WFA-action.

Proof. Since the group G is infinite (otherwise, the theorem is trivial) and the action
is free, all orbits are also infinite. Fixing an orbit A’, we consider the restriction of
our action to A'. Let K C G, H C A, #K,#H < co. We choose . C A and
p: K — Sym(L) satisfying (7). Since A’ is infinite we can find B C A’ such that
BNL =0, #B = #(L\ A). Let L' = BU(LNA'). Then H C L' C A’ and

(*)Le., Y€ € (0(K)) Vo € L (€ # e — ¢(z) # 2).
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#L = #L'. We fix any bijection 9: L — L’ identical on LN A’. If £ € K, then
we define ¢’¢: L' — L’ by the relation ¢’¢ = 9 o € o 4™ (the symbol o denotes
the composition of maps). It is clear that the groups (p(K)) and {(¢'(K)) (and their
actions on L and L/, respectively) are isomorphic, Le., {¢/(K)) acts freely on L. It only
remains to check that ¢ satisfies condition (7) (precisely this part of the proof fails for
condition (6)). If ¢ € K, z € H, and ¢ -z € H, then, since (7) is true for ¢, we have
wE=¢-z€ HC A, e, z,0(z) € LN A’. Since 9 is identical on L N A’, we obtain
w&(z) = ¢'€(x), i.e., ¢’£(x) =& - z, which proves (7) for ¢’ and L. O

Lemma 4. If G has a transitive WFA-action, then G is an LEF-group.

Proof. Any free transitive action is isomorphic to the action of a group on itself by
left shifts; therefore, it suffices to prove that if the latter action is WFA, then G is an
LEF-group.

Let H C G be a finite set. Without loss of -generality we may assume that e € H.
Since the action by left shifts is WFA, there exists a finite set L' O K and an injective
map ¢': K — Sym(L’) satisfying (7) such that {(K)) acts freely on L’. Let L be
the orbit of the element e € L. By (7), since e € H = K, for any £ € K we have
E-e=¢( €K, le, pfle) =E-e=¢ € L, whence K C L. We put p§ = ¢'£|L for
all £ € K. Then ¢f € Sym(L), and the group (@w(K)) acts freely and transitively on
L. Moreover, the map @: K — Sym(L) is injective, because if £ # 7, then pé(e) =
@'E(e) =¢&-e=¢, and ¢n(e) =n. Since the action of (p(K)) on L is free and transitive,
the map ¥: (p(K)) — L such that ¢¥(g) = g(e) for all g € (p(K)) is a bijection, i.e.,
the operation ®: L? — L defined by the relation

(8) Lol=9@ () oy ()

turns L into a group.

We check that the set H and the group (L, ®) meet the requirements of Definition 1.1.
Let hy,he € H = K and hy - ho € H. Then, by (7), @hi(h2) = hi - he. I by = g(e), i.e.,
W(hi) = g, and hy = h(e), ie., ¥(ha) = h, then hy © hg = g(h(e)) = g(hs) by (8). Since
hi1 € H, we have hy e = hy € H = K C L, ie., whi(e) = hy - e = hy (by (7)). Hence,
whi(e) = g(e); since phy, g are elements of the group (p(K)) (which acts on L freely
and transitively) and e € L, we obtain why = g. Thus, by © ho = @(h1)(ha)) = hy - he

O

by (7).

3°. In what follows we consider invariant and quasiinvariant actions of a countable group
G on a measurable space (X, 1) with finite measure.

Definition. An action of a group G on a space (X, ) is said to be uniformly approz-
imable (UA) if for any g¢1,...,9s € G and any ¢ > 0 there exist invariant or quasiinvariant
transformations k1, ..., ks of the space (X, u) such that they generate a finite group and

plreX|ge=kz,i=1,...,s} >1—¢

If, moreover, the action of the group K generated by {k1,...,ks} is free on (X, u), then
the action of G is said to be uniformly freely approzimable (UFA).(°)

(5)We recall that an invariant or a quasiinvariant action of a group G on a space (X, 1) is called free
if
VgeGg#Fe—puzeXgr=2}=0).
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If we additionally require that (X, u) be a Lebesgue space and ki, ..., ks belong to
the Dye completion [G] of G, then the definition of a UA-action is equivalent to the
definition of a tame action well known in ergodic theory (see, e.g., [3, 4]). It is known that
any group having an invariant tame action is amenable, and, conversely, (the Connes—
Feldman—Weiss theorem) any invariant or quasiinvariant action of an amenable group G
on a Lebesgue space is tame. Also, it is known that any countable group has some tame
(ie., UA) action. The notion of a UFA-action was introduced in [2], where a certain class
of groups having such an action was described. In (8], it was proved that any finitely
representable group admitting a UFA-action is residually finite. In essence, (8] contains
a stronger statement: any group having a UFA-action is an LEF-group. Actually, the
following statement is true.

Theorem. A countable group G has a UFA-action on some measurable space if and
only if G is an LEF-group.

Proof. Asalready mentioned, the proof of the “only if” part is contained in [8]. To prove
the “if” part, on the countable group G we define a probability distribution such that
the probability of each element be positive. It is clear that in this case the action of
G on itself by left shifts is quasiinvariant with respect to a measure equivalent to Haar
measure.

Let g1,...,9s € G, and let € > 0. We enlarge {g1,...,9s} up to a finite set H 2 e
such that w(H) > 1 —e. By Lemma 1.1, there exists a finite group (L, ®) such that
H2CLCG and hi - kg =hy ® ha for all hi,he € H.

We split G\ L into a countable union | 5o ; Ly of pairwise disjoint sets L, of cardinality
equal to that of L, and, for each v, fix a bijection ¢, : Ly — L. Also, Lg = L, and let
@o: Lo — L be the identity map. For ¢ < s, we define k;: G — G by the relation
ki(g) = 79 © wu(9)), where g € L,,, v < 0. Obviously, the group K generated by
the transformations ki, ¢ = 1,...,8, 18 isomorphic to the subgroup of (L, ®) generated
by the elements g;. Its action on G is free, because the action of (L, ®) on itself by left
shifts is free. Since g; € H € L for i < s, we have gi-h =g O h = ki(h), for all h € H,
ie, u(B)=1—e¢. O

Remarks. 1. In this proof we have constructed an action of an LEF-group G on a space
with discrete measure. Using this action, it is easy to construct a UFA-action of this
group on sotne Space with continuous measure.

9. It is easily seen that any UFA-action of a group G is free. By analogy with
the last statement of Theorem 3.2, it is natural to ask whether any action of an LEF-
group G with quasiinvariant finite measure is a UFA-action. Keeping in the mind the
Connes—Feldman-Weiss theorem mentioned above, it is reasonable to conjecture that
every free quasiinvariant action of an amenable LEF-group on any Lebesgue space with
finite measure is a UFA action.

3. For finitely generated groups, & proof of the above theorem is contained also in the
papers (9, 10]. :

4°. Let A(X, p) be the group of all transformations of a space X. The metric d(f,9) =
p{z | flz)= g(x) } defines a uniform topology on A(X, 1)- The uniform approximability
of an action of a group G on (X, ), treated in the preceding subsection, is approximability
with respect to this topology.

On (X, 1) it is possible to consider a weak topology defined by the base of neighbor-

hoods
T:{V(Al,'-'aAnaE) i A’L QX, ,LL(A@) >0, E>O, ’TZEN},

where V(A1 ..., An,€) = {(TeuX, 1l w(TAAA) <e, 1= 1,...,m}
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Definition. A nonsingular action(®) of a group G on a space (X,u) is said to be
weakly approzimable (weakly freely approximable) if for any neighborhood V € 7 and
any gi,...,gn € G there exist nonsingular transformations ki,...,ky of the space X
such that the group generated by these transformations is finite (respectively, acts in X
freely), and g; - k7' € V for all i < n.

It is easily seen that any UA- (UFA-)action is also weakly (freely) approximable.

By analogy with the foregoing it is natural to ask the following questions.

1) Does an arbitrary group G possess any weakly approximable invariant action? (As
already mentioned, every countable group possesses a nonsingular UA-action.)

2) Is every free action of an LEF-group weakly freely approximable? Theorem 3.3
implies that every countable LEF-group has some weakly freely approximable action.

3) Is it true that a group G having a nonsingular weakly freely approximable action
is an LEF-group?

5°. These questions can be generalized in the spirit of the definitions from [2].

Definition. A topological group 2L is said to be abundant if for any neighborhood V
of the identity element of 2 and any finite subset {91,-..,9n} of this group there exist
ki,...,kn, € 2 such that

1. the subgroup of 2 generated by ki, ..., k, is finite;

2. gi-kteV,i=1,...,n.

The first of the questions formulated above is equivalent to the question as to whether
any group of transformations with invariant (quasiinvariant) measure is abundant in the

weak topology.

It should be noted that the group of all unitary operators on a Hilbert space is ob-
viously abundant in the weak topology, but is not in the uniform topology (indeed, if
a group generated, e.g., by two unitary operators is uniformly approximable by finite
groups, then this group is amenable; see [4] and the references therein).

A similar definition can be formulated for algebras: a topological algebra A is said
to be abundant if for any neighborhood V of zero and any finite subset {aj,...,a,} of
A there exists a finite-dimensional subalgebra of A and a finite subset {a},...,a},} of
this subalgebra such that a; —a} € V for all i < n. This property is also related to
amenability and nuclearity of algebras.
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