Please write solutions neatly on a separate sheet of paper. Show all of your work and report answers with the correct significant figures and units.

- 1. Steinfeld 1.3b the answer is given in the text; you just need to show correctly how to arrive at this solution.
- 2. Steinfeld 1.8
- 3. Steinfeld 1.10b assume concentrations in molecules cm⁻³.
- 4. (Espenson 1.1 you do not have this book)
 The major reaction between the ions of uranium(IV) and plutonium(VI) in aqueous

solution is 2 Pu(VI) + U(IV)
$$\rightarrow$$
 2 Pu(V) + U(VI). The rate of the reaction is
$$-\frac{d[\text{Pu(VI)}]}{dt} = k_a[\text{Pu(VI)}][\text{U(IV)}]$$

at constant [H⁺]. Under the conditions used, $k_a = 2.2 \text{ L mol}^{-1} \text{ s}^{-1}$.

a. What would the value of k_b be if one chose to reformulate the rate law as

$$-\frac{d[U(IV)]}{dt} = k_b[Pu(VI)][U(IV)]$$

- b. Suppose the rate-determining step is $Pu(VI) + U(IV) \xrightarrow{k_1} Pu(V) + U(V)$. What is the second and final step in the mechanism?
- c. What is the numerical value of k_1 ?
- d. Devise another two-step sequence that would also be consistent with the kinetic data.