Please write solutions neatly on a separate sheet of paper. Show all of your work and report answers with the correct significant figures and units.

1. Steinfeld 1.3 b - the answer is given in the text; you just need to show correctly how to arrive at this solution.
2. Steinfeld 1.8
3. Steinfeld 1.10 b - assume concentrations in molecules cm^{-3}.
4. (Espenson 1.1 - you do not have this book)

The major reaction between the ions of uranium(IV) and plutonium(VI) in aqueous solution is $2 \mathrm{Pu}(\mathrm{VI})+\mathrm{U}(\mathrm{IV}) \rightarrow 2 \mathrm{Pu}(\mathrm{V})+\mathrm{U}(\mathrm{VI})$. The rate of the reaction is

$$
-\frac{d[\mathrm{Pu}(\mathrm{VI})]}{d t}=k_{a}[\mathrm{Pu}(\mathrm{VI})][\mathrm{U}(\mathrm{IV})]
$$

at constant $\left[\mathrm{H}^{+}\right]$. Under the conditions used, $k_{a}=2.2 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$.
a. What would the value of k_{b} be if one chose to reformulate the rate law as

$$
-\frac{d[\mathrm{U}(\mathrm{IV})]}{d t}=k_{b}[\mathrm{Pu}(\mathrm{VI})][\mathrm{U}(\mathrm{IV})]
$$

b. Suppose the rate-determining step is $\mathrm{Pu}(\mathrm{VI})+\mathrm{U}(\mathrm{IV}) \xrightarrow{k_{1}} \mathrm{Pu}(\mathrm{V})+\mathrm{U}(\mathrm{V})$. What is the second and final step in the mechanism?
c. What is the numerical value of k_{1} ?
d. Devise another two-step sequence that would also be consistent with the kinetic data.

