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It is lmown that at high doses ionipng radiation can cause cancer or leuLemia The 

bctional relationship baween cancer (leukemia) induction and rsceived dose of ionking 

radiation is still unknown, particuiarly in a low dose region. 

In this thesis atornic bomb survivors data are used to test two models, a linear 

threshold model for solid cancers and leukemia data and a linerquadratic model for 

Ieukemia data only. 

Atomic bomb siwivon &ta used in this thesis include data for stomach, luag, dl 

solid cancers (al1 cancers excluding leukemia), and leukemia Cancer and leukemia 

mortality rates and excess mortality rates are investigated as hc t ion  of received dose 

using the standard Chi-square and a non-standard Monte Carlo simulation methd 

Usiog empiricai data points one thousand simulated data sets were generatd Each 

sirnulated data set was fitted with a straight line, and intercept to dose axis, threshold, wss 

calculated. This procedure gives one thousand threshold values. SCatisrical analysis of 

threshold values is used as a test of linear no-tbreshold and threshold models. h addition 

to a linear fit, a Iinearquadratic fit was perfomed for leukemia data. In order to test a 

hotmesis hypothesis Zero equivalent points (ZEP) have been calculated 

Upper threshold Limits obtakd by Monte Carlo simulation are 0.037 Sv and 

0.06 1 Sv for al1 soiid cancers, and 0- 154 and 0.193 Sv for leukemia data sets. Investigation 

of mortality rates shows that the threshold and quaâratic models do not fit data 

significantiy better thaa the linear model. 
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Introduction 

Ionizing radiation is one of the most wmmon phenornena in nature. Ionizing 

radiation is produced in transformation of radionuclides rrsiding in environment as well as 

in biologicd systems. In addition to radiation proàuced by raài~~nuclida various puticles 

and photons fiom cosmic rays arc ais0 pment Specficaily, neutrons, charged particles, 

gamma and x, rays have ken coming wntinuouoly h m  the outer space. The whole 

evolution of Living organisms had occurred in an environment filled by adiatioa At 

present, a variety of hum~n-made sources of radiation are present, besides natural 

radiation 

Depending on the amount of energy imparted to biological tissue it is cornmon to 

divide received doses of ioniring radiation into low, intermediate. and higù dose range. 

Low doses are usually defined as the region klow 0.2 Sv prill82, UNSCEAR 94, Schi 

951, intermediate as between 0.2 Sv and 2.5 Sv, and high dose range is above 2.5 Sv 

prill 821. 

Ionizing radiation acts on genetic material of ail living organisxns. In doing so 

radiation might have had an important role in the evohtion of species. A knowledge of 

effects of low doses of ionizing radiation is very important, because live organisms are 

exposed mainly to low doses delivered at low rates. The effects of these low doses on live 

organisms are still insufficiently understood. 

Most of our knowledge of radiation e f f m  on human health are derived fkom data 

from explosions of atomïc bombs over Hiroshima and Nagasaki, accidents in nuclear 

industry, follow up of uranium miners and follow up of children and addts who have 



received high doses for therapeutic purposes [Shap 901. 

Additional laiowkdge about the low dose influence on human h d t h  bas been 

obtained through studies of influence of radon concentration in air on death excess due to 

lung cancers, investigation of moRality in regions with high levels of natural exposure and 

sîudies of professionally exposed persons in the nuclcar industryustry 

Two main biological effects of ionizing radiation are genetic mutations and 

induction of cancers. A linear ndueshold hypotbesis is genedy assumed for induction 

of al1 solid cancers in the low dose region This means, that even the smdest exposures 

received by sorneone causes ri& of cancer developiag. 

The linear no-threshold mode1 has implication for regdation of ionuing radiation 

protection Over the p s t  few decades protective measures have k e n  getting stricter and 

stricter. As a resulf levels of releaseâ radiation in the eRviroment have been repeatedly 

lowered wcrp 931. The use of strict protective measures required building expensive 

protective barriers sunounding sources of radiation, applying sophisticated procedures in 

using, processing, transpodng, storing and disposing of radioactive substances, dl costing 

significant amounts of money- 

Validity of the iinear no-thmhold mode1 in the low dose region has been 

contradicted by some nlativeiy recent environmentai and biological studies. Some 

experimental evidence showed that relatively low doses of ionizing radiation can produce 

adaptive respome that stllnulates npair mechaaisms of cells [Okam 92, UNSCEAR 941. 

Studies of populations that l i n  in regions with high levels of natural radiation did not h d  

an increase in carcinoma mortality, when compareci with regions with low levels 



WSCEAEt 941. Aiso, stuâïes of incidence and mortality due to radon-inducd Img 

cancers did not find any significant dinemce ktween areas with hi@ and low 

concentration of radon V S C E A R  94, Losal 951. Some authors have found a negative 

correlation between lung cancer mortality and concentration of radon in dwellings [Cohe 

971. These recent fiudings indicate that low lwels of ionizing radiation may, in fact, k 

beneficial. This beneficial effect is cded hormesis bucke 91, Lucke 92, M o  931. 

Clearly, the hormesis model is uicompatible with the linear aolthreshold model in the low 

level region of ioniung radiation 

The investigation of cancer induction includes epidemiological, and biological 

shidies. An epidemiological study investigates connection between some variable of 

interest and cancer incidence obsewed in a group of people. Variable of interest can be a 

chernical or physical agent, heredity, social status of observed people, or some other 

parameten. The study of atornic bomb survivors is an example of epidemiological study. 

Epidemiological methodology of assessing carcinoma N k  is reviwed in [ Bres 80, Bres 87, 

Este 941. A biological study investigates direct biological effects of ionizing radiation on 

cell (or tissue) [Kondo 93, Heid 971. 

This thesis studies a possible existence of a threshold in the Linear model for cancer 

and ledcemia induction, and possible existence of homesis efféct for leukemia It is doue 

by applying a standard least-squares fit (Chi-square analysis) and perfonning a Monte 

Carlo simulation on the data of the atomic bomb survivors. Statistically si&ficant resuits 

of ionizing radiation effects in the low dose region are very difficult to obtain because that 

effect is very smail and conclusive research wouid require large number ofsubjects to 



obsewe. Because of high relative rmcertaintiia, standard formulac for dcdation of 

estimator uncertainties can not be used. In this work, we used a Monte Car10 simulation 

that started from the empirïcal data sets aad have generated, ushg appropriate amputer 

programs, many artincial data sets. Each generated data set represents one d c i a l  

experiment. Statisticai analysis of many (in our case one thousami) amficipl experiments 

gives oppominity to obtain values for estimators and their uncertainties in a more reliabie 

rnanner then using standard formulot. 

In this thesis, in agreement with cornmon statistical terminology [Shesk 97, p.6, 

Neter 90, chapter 11, k k  laters correspond to parameters of a model which d e s c n i  

parent population. When a specific sample is descn'kd, values thet correspond to 

parameters are called estimaton Specific estimator values are estimates. Estimators and 

estirnates are labeled with Latin lettea. For example, if we assume that a relatioaship 

between variables y and x in a parent population is linear, we write it in the fom 

ELv] = cr t p. x . Vaiues a and p are parameters of model. Wben a specific sample is 

described, the linear model has a form 3 = a + 6- x . Values a and b are estimators of the 

sample. The y ( k t )  refers to a y value on the fitted Iuie, y refers to a &ta point 



Chapter 1 

Iaduction of cancer, by ioitiag radiation 

1.1 Cancer mortdity rates 

Cancer induction due to ioniPng da t ion  U investïgated through two h d s  of 

relationships. One is the cdationship between cancer incidence and receivcd dose of 

ionizîng radiation, and the other is the relatioaship between cancer mortelity and the dose. 

The investigation o f  the incidence has, in the case of cancers that have higher survival 

rates (skin cancer excluding melanoma, thyroid cancers etc.), advantages in wmparison to 

the investigation of cancer moriality. The investigation of mortality for cancers that have 

higher survivai rates, can lead to the wrong wnclusion that the impact of ionking 

radiation to develop cancer is smaller than it actually is. This is not a problem for cancers 

with lower survival rates (lung, liver carcinoma) because the incidence and mortafity data 

are very close. 

Let us look at a group of perrons exposed to a certain dose of ioniEng radiation A 

control group is a group of unexposed penons. Denote the observed number of deaths in 

the exposed group with O, the nurnber of persons in the exposed group with N, the 

observed number of deaths in the control group with O,, and the number of personsi in the 

control group with No posai 95 p. 991. 

The cancer mortality rate A4R. for the observed group is dehed by 



and for the control group is 

The excess mortality rate is defined as 

1.2 Modei toms - 

A proposed relationship ôetween the e f f i  of ionizing radiation on human heaith 

( Y O )  and received dose (4 is defined as expected value of Y@; 

in low and medium dose ranges [Brill82]. 

in this thesis the effect of ionizing radiation is the excess cancer monality rate Y. 

This proposed functional form ùicludes a lincar term a + f l  d , and quadratic tenn 

y * d 2 *  

A linear function can describe two tnodels. One is the linear no-ttueshold model 

( a = O ). The other is the Iinear threshold model ( a + O ). 

The linear no-threshold mode1 &as the fonn: 



In this model even the s d e s t  dose ceceived incrcases ri& of developing cancer. Most 

authon have commonly used the iincar no~threshold model for cancer induction mir V 

90, UNSCEAR 94, Epa 941 in low and medium dose ranges. 

Some authors have assumed that the dose respoa~  M o n  for a Low dose region 

can have different forms than the form obtained ôy the iinear no-threshold model. One of 

those forms assumes the existence of a threshold dose below which da t ion  bas no effkct 

on human health peid 97, Hoel 981. Another assumes the existence of hormesis, mnefy 

that radiation has beneficial effect on human health below some dose. Other possible 

forms of dose response bctions klow 0.2 Sv are qualitatively npresented in figure 1.1 

The threshold mode1 has the fom: 

where T is the threshoId dose- 

ïhe homesis effect in its simplest fonn can be descnid by a linearquadratic 

fiuiction of the fonn: 

with parameter f l  negative. and y positive. nie coastant terni a in equation 1 -7 is 

omitted because at zero dose there is no efféct due to ioairing radiation. If f l+  0, the 

Iinearquadratic function 1.7 has another intercept with the &se axis. 





If this intercep is on the positive side of dose axis it is  d e d  the zero quivalent point 

(ZEP). At this point ionizing radiation has w eEect on human health. Below the ZEP 

value the effect is kneficial (homesis), above it radiation is harmful. This beneficiai 

effect might be related to the orgmism's aâaptive response caused by ionuing radiation 

wondo 93, Cohe 91.  

Depending on signs of panimetea and y , the LinearQuadratic fimction can 

describe other models pescmed on table 1.1. Graphid presentations of these modds is 

show in Figtire 1.2- 

Table 1.1 Special cases of the linearqiinrfratic mmod- Three combinations offl 

and y values are of no physicai interest and an labeled "Not of interest"- 

1 

2 

3 

4 

5 
r 

6 

Parameter fl  
P* 

Parameter y 

Y* 

- 

Pure qudratic 

Hormesis - 

Not of interest 
J 

Not of interest 
I 

Not of interest 

- 

/?=O 

Po 
fl* 

P o  

Mode1 

Linear-quadratic, 

- -- 

Y* 

Y* 

Y <O 

Y <O 

Y <O 



Figum 1.2 Forms of dependence of excess mortal@ nbr vemus mceived dom 
which can lm described by a linear quadmtk function. MIIning of numkn attached 
to cuives ii expkinetd in Table 1.1. 



According to pesait published evidcncc, îhere is no clear answcr as to *ch 

mode1 of dose response W o n  is most appropriate for a description in the low dose 

region This uncertainty in the shape of dose response function is due to weak impact of 

ioniong radiation on the excess carcinomi or leulremia 



Cbapter II 

Data sets used in rmlysis 

The analysis in this thesis was doue using data f?om two studies of mortaiity of 

atornic bomb sucyivors (ABS). The k t  study is: 

D- Perce, Y. Shimizu, D. Preston, M. Vaeth, and K. Uabuchi; 

4cStudies of the Mortaliîy of Atomic Bomb Swvivors. Report 12. Patt I Cancer: 1950- 1990", 

Radiation Reseamh 146, 1-27 (1 9%). 

This study ([Pier 961) was chosen because it has the most recent set of data for solid 

cancers, and leukemia It covers the period betweenl950 and 1990. The solid cancer data 

set was taken nom Table II on page 5, which we designate here "[Pier 961 solid cancers" 

(reproduced in Table 2.1). the leukemia data set was taken fiom Table V on page 7 and 

was designated "[Pier 961 leukemia" (reproduced in Table 2.2). 

The other midy is: Y. ShimUu, K Kato, W. Schdl, K. Mabuchi; 

"Dose-response anaiysis m o n g  atomic-bonab stuvivors exposed to low-levd radiation", 

published in " Low dose irradiation and biological defense mechanisms" Elsevier Science 

Publishers B.V., 1992. This study ( [ S m  921) is interesting because it has more data points 

in a the dose region below 0.5 Sv. This set of data reports on cancer rates for the pend 

between 1950 and 1985. Data sets were takeu from the original table on page 72 of the 

original paper. This paper includes data for the stomach (narned "[Shim 921 stomach"), 

the lung (named "[Sb 921 luag"), dl solid cancers ( "[Shim 921 al1 solid"), and leukemia 

("[Shim 921 leukemia"). The [ S M  92) stomach, Iung, al1 solid cancer data sets are 

reproduced in Table 2.3 in this thesis, the [Shim 92) leukemia &ta set is in Table 2.4- 

12 



The words "dose received" in this thesis refer to the dose equivalent in Siverts (Sv). 

The first column in tables 2.1-2.4 "ûbseved group j" labels seven dinerent 

groups of the ABS data AU individuais in a group are essumed to have received the samc 

mean dose for that group- 

The group in the lowest dose region was taken as the coatrol group. For pier 961 

the control group (i-e. background cancer mortality rates) b a group with received doses 

below 0.005 Sv. For [Shirn 921 the control group is a group that received doses in interval 

0.010-0.019 Sv. The conttol groups are labeled j = O. The highest observed groups labeled 

j = 6 and are not considerrd in this thesis because of uncertainties in fiding mean dose- 

In ali four tables column "Dose range (Sv)" lists dose ranges received by observai 

groups of survivoa. Column "Number of subjects Nd, " contains the number of people in 

each dose range group and wlumn 'Wumber o f  obsened deaths Od, " contains the 

number of observed deaths due to a particular cancer category in each dose group. 

The values in column "Mean dose, d, (Sv)" weie taken as mid-points of dose 

ranges in colimui “Dose raqge (Sv)". Dose mcatahties wtrc assamed to bc standard 

deviations equal to 25% of th width of the comsponding dose range. This value may be 

an overestimate but it was so chosen to put an upper limit on the effect of dose 

uncertainties (see chapter 6)- 

"Excess Cancer Mortality rate Y " is computed using equations 1.1- 1.3. 
J 

Speci fically, for a group j 



Q, a,, y=--- 
Nd, Ndo - 

where 

Od, is the number of observecl deaths due to cancer in j -dose group, 

Nd, is the number of prsoas in j - dose group, 

Oda is the number of observed deaths in the wntrol group, and 

Ndo is the number of persons in the control group. 

It is important to note that the subtraction in 2.1 introduces comeiation among the 

excess mortality rates because the same value (the control mortality rate) is subtracted 

fiom each one. This subtraction of background rate is quite common p h c e  in nuclear 

physics experiments because correlation introduced this way has u s d y  negligible effect 

on finai result. 

Following the practice of peid 971, [Losal 95 p. 1071, Pink1 75 p. 227 

uncertainties in the observed nurnber of deaths are assumed to be Poisson distrïbuted, thus 

the standard deviation in rnortality rate is equai to 

,PT -- 
S m ,  - 

Nd, ' 



and the standard deviation in exces mortality rates is e q d  to 

To illustrate the procedure used we shall look at an example in Table 2.2 v e r  961 

leukemia data The dose group labeled j = 1 has a range of received doses betwcen 0.005 

Sv and O. 1 Sv. The mean received dose is: 4 = (0.005+0.1 y2PO.OS Sv. In order to 

illustrate effect of dose mcertainties, the standard deviation of the mean dose was taken as 

0.25 x (0.14.005) = 0.024 Sv. The number of subjects in this group was Nd, =329 15 

penons and the nurnber of observed deaths due to leukemia mis Od, = 59 deaths- The 

control group has Ndo = 35458 perrons and Od0 = 73 observed deaths. The excess 

leukemia mortality rate according to equation 2.1 is & = -027 10" &atirs/ person (column 

six, Table 2.2). Uncertainty for the excess leukemia mortality rate according to equation 

2.3 is % = 0.33 - 1 O" deaths / person (column s k  Table 2.2). 



Table 2.1 Number of observed deaîhs for solid cancers, and the excess in cancer 

mortality rate. Columns 2.4 and 5 were taken fiom pier 96, TaHe II, page 5 )  and columns 

3 and 6 were calculated as explained in the text 

Obs. 

P'UP 

i 

Total 1 

Dose 

m g =  Mortality Rate I 
Meun 3 h e  

4 
Num- of 

Subjects 

Num_ of 

Obs. Deaths 



Table 2.2 Number of obsewed deaths for teukemia, and the excess in leukemia 

mortality rate. Columns 2,4 and 5 were taken fkom [Pier 96, Table V, page 7] and columns 

3 and 6 were calcdated as explained in the text 

Excus Leukemia Obs. 

gtQUP 

i 

>2.0 
Total 



Table 2.3 The number of observed deaths for stomach, lung and al1 solid cancers, and corresponding excess mortality rates 
( Y, ). Columns 2,4 and 5 were taken from [Shim 92, page 721 and columns 3 and 6 were calculated as explained in the text. 

Dose 
range 
(Sv) 

Num, of 
Subjects 

Numb. of observed deaths (% ) due I 
Stomach 
cancer 

Lung 
cancer 

338 

Total 

All 
cancers 

3246 

Stomach 

O 

Luog 

O 

Total aolid 

O 



Table 2.4 Number of observed deaîhs for Ieukemia, and co~csponding excess 

leukemia rates. Coliunns 2,4 and 5 were taken from [Shim 92, page 721 and coiumns 3 and 

6 were caiculated as explained in the text 

Total 1 1 86520 



Cbapter IIï 

Statistical methods u d  in data analysis 

In this muiy two models were wd; Iinear, and iinear-quadratic. The methd of the 

least-squares was applied to both models. The estimators for both modtis and th& 

uncertainties were compaed Then the confidence intemals mc cornputad for the fitted 

estimators by analyzhg Chi-square cwes.  Next the statistical analysis of the resuits 

obtained by the Monte Cario simuiation was Worrneci In this chapter dose uncertaUities 

are not taken in account 

3.1 LeastSqaiares fit 

3.1.1 Fit by a linear funetion 

Set (d,, 5)  of the data points can be fitted with a straight lhe by malring 

standard weighted least-squares fit [Bevi 92, p. 1031: 

f ( d ) = a + b d  + 

The Chi-square fiuiction for the linear fit is de6ned as 

where 

5 are data points (exces mortdity rates) to fiî, 

d, are dose values, 
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a, b are estimaîors of linear fit, 

s, are uncertainties in 5 , 
n is number of data points to be fitkd. 

Estimators of the fit, intercept a and slope b, are obtained by u*ng formulas from [Bevi 

92, p. 104, eqn 6-12]. These equations in our notation are: 

and 

where 

3.1.2 Fit by a linearquadratic funetion 

As discussed in section 1.2, the Liwarquadratic mode1 has the form 



The Chi-square fhction for Linearquadratic fit is 

Estimators b and c were obtained by mniimWng the Chi-square functîon 3.7. Equations 

3.8-3.10 were denved using formuias for le-squares fit to a polynomial which is given 

in chapter 7 of [Bevi 92, pl 151. These estimaton d e n  applied to eq. 3.6 are 

where 

(3. IO) 

3.1.3 Estimation of errors 

Uncertainties of estimators can be determined by cdculating enor matrices 

[Bevi 92, p. L23J. The error ma& for a Lhear fit is 



8a 8b  2 x sj -*- 

1 au, q 
and for a linearquadrafic fit is 

Diagonal elements of mor matrk E are vaciances of estimators a and b ( 3 and si , 
a 

the linear fit), or b and c ( st and s2 , the limarquadratic fit). Off-diagonal elements 
C 

represent covariance of estimators (sa, for the linear fit and sbc for the linearquadratic 

fit). Covariance terms are written without squares according to the peter  90, p.51. 

Numerical values of enor matrices 3.1 1-3-12 were computed using Maple p r o m s  (see 

Appendices B- l and B-2). 

In order to detemine the goodness of fit, t values were cornputed using the values 

of the estimaton 4 b. c and their standard deviations sa , % , s, - The t values for 

estimators a, b, and c were computed in the following manne: 

Using the t values, and tables of t ostudent distribution, the goodness of fit can be estimated. 

The discussion of the goodness of fit tests is given in Appendices A4 and A-2. 
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3.2 Chi-sqaan amrrlysis 

The Chi-square fùnction can k wd to compute d d e n c e  regions of fittcd 

parameters. Denote with n the number of points to k fitted Denote with in the numkr of 

parameters. The Chi-square de- with eq. 3.2 (1- fit) and eq. 3.7 (IWarquadratic 

fit) can be reWntten in a general fom as 

where 

d, is received dose in a dose group labeied j 

5. is excesses mortaiity rate in a dose group labeled j 

x2 is the chi-square fiinction calculated for a given set of data (d,, 5- ) , 

sk are parameters of fit For a hear fit E, are a , and p. For iinearquadcatic 

fitg are p, and y .  

E [Y(&, , d, )] is a îimction of fit For a linear fit it has the form: a + p. d, . 

For a linearquadratic fit it has the form: p. d - + 7 .  d2 .  
I J 

(The regression parameter f l  is often calied the hear effect coefficient, while y 

is called the quaciratic effect coefficient peter 90 p.3 161). 



Minimum of Chi-square X: is obcained by minimiring equation 3.14. It is 

e,, are specinc values of esthators obgined by minhhhg x2. For Iinear fit 

e,, are a,, and 4.  For a hearquadratic fit eot are b,, and c0. 

E [Y@,, , d, )] is fiinction of the "bestn fit *ch is obtained by rninimizing Chi- 

square firnction 3.14. 

The new fimctioa "delta Chi-squaren( A x2 ) is defined as 92, p. 692 1: 

A X ~ = X ~ - X ~ -  (3.16) 

Function A x2 is distributed as the Chi-square distribution with rn degras of fkeedom 

mess 96, page 6901. For the linear, and the linearquadratic function used in this work m 

is equal to two (two parameten). A x2 can k used to obtain the confidence regions for 

the parameten of fit E~ mess 92, p.6871. 

Equatioa 3.14 describes the huictional dependence of the Chi-square fiuiction 

versus parameters &, . This dependence has a paraboloid form (see Figure 4.7). 

Intersections of that paraboloid with constant Chi-square planes (values are given in 

Table 3.1) give curves that define confidence regions for the panuneters. The projection of 

these curves ont0 the parameter's axes give confidence intervals for each prameter of fit 



Table 3.1 Confidence Leveis as fimetion of chi-square. The table is reproduced 

from [Prrss 92, p.6921 

2 A X as s a hction of: 

Confidence 

level 



3.3 Monte CarIo simuirtion 

Assume that a set of data Do (d,, &,) is obtaineâ by a measurement, (index j 

denotes j-th measured value) where d stands for dose and Y for excess in cancer 

(leukemia) mortality rate. The set Do is our information about the true set of data D, 

that is only "known" to nature. Denote by e,(d,. Y,) the set of estimators which are 

obtained by minimin'ng the Chi-square fûnction (in equation 3.14). Experhentai 

uncertainties for m e a d  viùues are %J [Pm 92 p. 6W]. Du is not the d y  possible 

redization of D, . Repeated measurements would give other sets of data Q (d,, Y,) 

with estimaton ei (dj , q-) (index i denotes i-th experiment). In order to investigate other 

possible experimental outcoma one can simulate new events q' (dj, Y. ) using a 

computer. This can be doue using experimentai set of data Do@, , Y,, ), and generating 

values of the dependent variable Y/ for each independent variable point d, . 

The generation of simulated points bas to be done with experirnental values of the 

unceriainties, sr , beuiuse the mie uncertainties, q, . are unkaown. Thus, we assume 
0.1 0.1 

- 
%., - %., - A diagram of this procedure ~liimed Monte Carlo, is show in Figure 3.1. 

Then, each generated event has to be fitted by mînimizing the Chi-square using eq. 3.14. 

This procedure, gives new sets of esthaton &(d - y ) which are subject of the statisticd 
1 J )  j 

analy sis. 

For the simulation of new "measurements" in this thesis empirical values of the 

cancer and leukemia rnortality rates were used fiom tables 2.1-2-4. The Gaussian 

distribution of excess rnortality rates was assumed The Gaussian distribution had a mean 

value equal to the experimented excess mortaiity rate and the standard deviation was taken 
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to be equal to the mcertainty of conesponding cancer (leukemia) mortaiity rate 

(Tables 2.1-2.4, column 6). 

in order to illustrate above, we consider the data fiom table 2.1 ([Pier %] solid 

cancer data). Table c o l u x ~ ~  "Mean Dose dj ", and "Excess cancer mortaiiiy rate 5 " are 
of interest for simulation Excess cancer mortality rates were sirnulated The point wiih 

the mean dose 0.05 Sv ( j  = 1) was &SL For this &ta point one thousand new values of 

excess mortaiity rates were generated as the Gaussian dismIbuted dues  with mean value 

2.44, and with a standard deviation which is quai to 2.2O.This was done using the Minitab 

statistical program. This procedure was repeated using the comsponding values of the 

excess mortaiity rates and theîr uncertainties for the dose groups labeled j = 2,3,4,5. 

In this way one thousand generated events were obtained for the exceu cancer 

mortali ty rates. This one thousend generated events make simulated data set. Each 

simulated event has five values of cancer martaiity rates. in the process of fit the meaa 

dose values were kept the same as in the original data set For each simulated event a 

least-squares fit was done and the values of the esthators a and b for linear, or b and c for 

linear-quaciratic, mode1 were cornputed 

33.1 Fitting by a b a r  function 

Assurning that the lin- dependence between excess of deaths due to solid cancers 

(or leukemia) and received dose exists, each simulated set of data was fitted by a straight 

line. The least-squares fit was used to fïnd estimaton for each set of simulated points 

(section 3.1.1). 

Specifically, for each simulated set of points (d, , qJ) (i denotes the simulation 
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number, and j denote a spcinc dose point in the i-th simulation) the slop and the 

segment of the straight Iine was calculated usiag equaîions 3.3-3.4. Repeating this for one 

thousand new simulated events gcnerates one thousand values of an intercept a and slope 

b.For this task a Maple program was written 

One thousand values for an intercept o and slope b detemine one thousand straight 

lines. For each line intercept to the dose axis was calculated ushg 

Solutions of3.17 are called t h h o l d  These solutiom can k separatecl into two 

groups. One group of the solutions are the threshold values that are positive in sign, and 

the other group includes solutions with a negaîive siga The gmup of solutions (with 

positive 7') are values permissible under the linear-tbreshold model. The group solutions 

with negative T descni. non-kshold models. For these one thousaad thresholds the 

mean value, the tnmmed mean vaIue, the standard deviation, the standard error of the 

mean, the first and third quartiles are calculated using program Minitab. The fonnulae for 

these calculations are given in Appendix A-3. 

3.3.2 Fitting by a linerrquadratic functioo 

Besides a linear fit, a linearquadtatic function was also used in fitthg leukemia 

data. The procedure is basically the same as the linear fit desmbed in section 3.3.1. The 

linearquadratic fiinction was used in the form given in equation 3.6 (section 3.1). 

Equations 3.8-3.9 were used to calculate estimatoa b and c for each set of simulateci data 

One thousand simulations determined one thourand parabolas forced through the 
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coordinate ongin (equation 3.6).The mudels âcscri'bad with these pMbdas wcre discussed 

in section 1.2. 

The intersection of a parebola to the dose axis is called the mo equivaIent point 

(ZEP) (see section 1.2). The vaiues of ZEP wae calculated by solving the cquation 

de = q = - 4 / c , -  
The statistical analysis of ZEP values was done in the same manner as the 

statistical analpis of  the threshold values for the Linear fit 

3.4 Uncertaiatia in the independent variable 

Sections 3.1-3.2 descn'kd the fitting procedure with the uncertainties only in the 

dependent variable (Y). This method is valid only i f  the uncertaintia in the independent 

variable (6) were much smaller than the uncertainties in the dependent variable. If this 

were not the case, or if someow wanted to study influence of mcertainties in the 

independent variable on the results, those uncertainties can be taken in account by 

combining d and Y uncertainties as descn'bed in 92, page 1001. 

Let s, be the uncertainty in the independent variable and s, in the dependent 

variable. Let fp, ,a be the fitted value at dose d and e, be the estimators of the fit (a 

and 6 for linear fi& b and c for linearqiiadratic fit, see section 3.2). The total uncertainty 

in the dependent variable Y, which is labeled sr , , can be caleulateci by adding the 

uncertainties for the ody independent s, and the only dependent s, variables in the 

following manner 
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The total uncertainty in the dependent vafiable can be used for minimizing 

the Chi-square hction (equation 3.14, section 3.1). By using equation 3.20, equation 3.14 

becomes 

for the linear fit For the iinearquadratic fit, chi-square hction (3.14) becornes 

In order to find the values of estimators a and b for linear m u ,  and b and c for 

linearquadratic modei the Chi-square firnction in equations 3.2 1 and 3.22 bas to be 

minimized, and estimatoa comsponding to Chi-square minimum be numerically found 

M i n i m i ~ g  the Chi-square in equations 3.2 1 or 3.22 was doue by finding 

derivatives by parameters of fit e, : 

Mer partial derivatives were f o d  the system of equations 3.23 was solved for 

estimators e, . System 3.23 was compided and solved numerically for estimatocs of fit e, , 

by writing a Maple program. Cornparison ofthe resdts with and without dose 

uncertainties is included in chapter 6. 



Chapter N 

Results for the linear fit 

This chapter presents resuits of the standard statistical anaiysis and of the Monte 

Car10 simulation of data. Metbod used was summarized in chapter 3. Dose uncertainties are 

not included in this analysis. 

4.1 Least-squares fit 

The excess cancer and leukemia mortaiity rates with theV errors are au taken from 

column six of Tables 2.1,2.2,2.3 and 2.4. The graphical representatioa o f  the excess 

cancer (leukemia) mortality rates as a fiinction of received dose (column 3 in all tables) are 

presented in Figures 4.14.6. The error bars are equal to the uncertainties of the excess 

mortality rates. Each set of these empïrical data is fitted by a linear fiuiction using equations 

3.3-3 -4. The result is npresented by the heavy Line in Figures 4.14.6. 

Table 4.1 contains results for best line fits shown in figures 4.14.6. The specific 

values of estimators (estimates) a and b are in coluinns 3 and 4. Threshold vdues are in 

column 5. Standard deviations of estimators sa and s, are in columas 6 and 7. Standard 

deviations are equai to square rwt of variances s: and si . The variances s: and si  and 

covariance sa, of a and b were calcuiated ushg enor matrix 3.1 1. The t values were 

calculated using 3.13. Thep probabilities are obtained using the table of the t distribution 

meter 90, p. 1 1281- More detaiis are provided in Appendix A-1. 

Ln this section, errors for threshold values were not calcuiated because the 

commonly used formula for combining uncertainties [BeM 92 p. 501 
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Figure 4.4 Excrrs in cancer rater for [Shim 921 al1 solid cancers r a function of 
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Table 4.1 The values for estimators of fit and their corresponding uncertainties obtained by the least-squares method. 

Conesponding t hreshold values (7'2 a / b ) are included, for explanations of errors and goodness of fit see text. 

Figure 
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I 

4.2 

" 

4.3 

4.4 
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r 

4.6 

1' (Sv) Data set 

[Pier 961 
solid 
cancers 

[Shim 92: 
Stomach 
cancer 

[Shim 92 
Lung 
cancer 

[Shim 92 
All solid 
cancers 

[Pier 961 
leukemia 

:Shim 92 
leukemia 



a-b 

is not valid because relative errors A a /a and A b / b are not much d l e r  than oae- 

For example, ratio A a /a for pier %] solid cancer is 2-04 1 1.99 >1 (see Table 4.1) 

4 3  Chi-square anrlysis 

in addition to the vatues of the estimators a and b and their standard devîations for 

the best fit, conndence regions for these parameters were calcidatecl Confidence regions 

are represented with areas enclosed by delta Chi-square ellipses. Regions were calculateci 

using the confidence levels of A x2 .The chosen confidence levels are 68.3%, 95.4%, and 

99% (Table 3.1). Appropriate tail values of the delta Chi-square statistic as a fiinction of 

the confidence levels, and degrees of necdom are given in Table 3.1. From that table, for 

two degrees of &dom the delta Chi-square values which comspond to 68.3%, 95.4%, 

and 99% of the confidence are 2.30,6.17, and 9.2 1 for parameten a . and f l  jointly 

pres 92, p. 6881. 

Figure 4.7 represents the delta Chi-square paraboloid for the pier 961 solid cancer 

data set Horizontal planes cut the paraboloid at A x2 equal to 2.30,6.17, and 9.21. The 

intersections have a fonn of ellipses which are shown in Figure 4.8. The projections of the 

ellipses ont0 coordinate axes give the joint confidence intervals for parameten a and p. 

In Figure 4.8 projections labeled 3, and 5 correspond to 68.3% confidence, projections 

labeled 2, and 6 correspond to 95.4% confidence, and projections labeled 1, and 7 

correspond to 99% confidence. The point labeled j = 4 comsponds to the values of 

1 
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Figure 4.7 The delta Chi-square paraboloid (equation 3.16) for [Pier 961 

solid cancer data (Table 2.1). The data set is fit by a iinear function with intercept a and 

slope p .  The intersections of the horizontal planes and the paraboloid correspond to 

68.3%, 95%, and 99% joint confidence regions for the panuneters a and p.  These 

intersections have the form of ellipses (Figure 4.8). 



Figure 4.8 The delta Chi-square ellipses for F e r  961 solid cancer data, 

Table 2. L plotted as hction of intercept a7 and dope b. The ellipses are obtained by 

projecting the intersections of the delta Chi-square paraboloid (Figure 4.7) and the 

constant delta Chi-square planes quai to the 2.30,6.17, and 9.2 1. The areas enclosed by 

ellipses are 68.3%, 95%, and 99% confidence regions for parameters a and fljointly- 

Values of projections labelled 1,..,7 are given in Table 4.2. 



parameten for the %est" fit (A x2 = O). 

Table 4.2 iists end points for the confidence limits of estimators a and b. The 

relevant ellipses are shown in Figure 4.8 for pier 96 ] solid cancer daîa This table dso 

includes the codidence Wts for al1 other data sets computed in the spme mariner as mer 

961 solid cancer data set These numerical values of the projections of the delta Chi-square 

ellipses onto coordinate axes were obtained uing a program written in Maple. In addition 

to the confidence levels for estimators, the threshold values, the Chi-square value, and the 

reduced Chi-square value ( ~2 1 3 ) are listed The threshold values were wmputed using 

equation 3.17 for each üne in Figures 4.14.6. The tbreshold values (labeled j = 4) 

correspond to the intercepts of the bbbest" fit liws and the dose ais. The other theshoid 

values given (j=l,2,3 J,6,7) correspond to the (a, fl) pairs obtained nom projections of 

the appropnate delta Chi-square ellipses onto axes (see Figure 4.8). The dose intercept of 

the appropriate line is the threshold. 

The value of Chi-square was calculated using equation 3.2. To obtain the point 

estimates, reduced Chi-square was calculated for three degrees of fkeedom. Chi-square 

defined in equation 3.2 has v = n - m = 5 - 2 = 3 degrees of fieedom* Lakling is done 

according to figure 4.8. The straight lines using estimators fkom Table 4.2 are presented in 

Figures 4.14.6. The lines labeled with 4 are c'best" fit lines. The lines which are labeled 

with 1,2,3,5,6,7 have the values of a , and f l  as shown in Table 4.2, and are labeled with 

the same indices j. 



Table 4.2 The atimates of intercept a a d  dope b are obtained by pjecting the 

Chi-square ellipses onto the corresponding axes The threshold, the Chi-square. and the 

reduced Chi-square values are also in the table below. 

Data Set 

pier 96 J 

solid 

cancers 

[Shirn 921 

stomach 

cancer 

[Shim 92 

lung 

cancer 



Table 4.2 wntinued. 

f Shim 921 

ail solid 

cancers 1 5  1 -2.72 1 57.2 

leukemia -1.25 9-7 1 

leukemia -1 .O7 9.40 



Table 4.2 indudes some parameters of /? which arc negatïve in siga (a negative 

slope). There is no evidence of negative wmlation between cancer mortality and the 

received dose in whole low, and medium dose ranges, however they are in the Iimits of 

required confidence. 

Intersections of lines with negative slope do not have meanhg ofthmhold This is 

why negative dopes an recognized as not of interest Figure 4.2 (stomach cancer), 4.3 

(lung cancer), and 4.6 ([Shim 921 leukemia) aii bave ne*-ve dope lines It fan k sem 

fiom Table 4.2 that the best fit hue has the positive tbrrshold for [Shim 92) stomach 

cancer and both leukemia data sets. The other three sets of solid cancer data have negative 

threshold values. Negative threshold values are consistent with supra-linear nodel (see 

Figure t. 1). 

4.3 Discussion of the goodacs of fit 

In order to estimate the goodness of the "best" fit lines, values of t ratio (e~uation 

3-13) and their corresponding p values, the Chi-square values (equation 3.2 for linear fit), 

and the reduced Chi-square were caicdated The numencal values of these calculations for 

the Iinear fit are presented in Tables 4.1 and 4.2. Table 4.1 contains t an4 p values. Table 

4.2 contains the Chi-square, and the reduced Chi square values. index j = 4 labels "best" 

fit lines in these two tables. 

The two sided t test was used to test whether or not a linear relatiomhip exists 

between the excess mortality rates and the received dose (is slope b different nom zero). 

The description of this test is included in Appendix A-1 . 

ïhe  t values tb , and the probability values po, which were obtained usiag table 
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of the t distribution are presented in two of the last three columas of Table 4.1. The pcb, 

value (Le. probability ofobserving this or a larger value of I I ,  1 if the true dope is zen, - 
less evidence of a significant slope) for mer solid cancer data set is 0.01 for a Linear 

relationship between the excess mortdi@ mte and the receiveâ dose. The p(b, vaiue 

for pier 961 leukemia cWa is 0.02. The p,, values for the [Shim 921 sets are higher than 

for the Fier 961 data sets (stornach and leukemia 0.20, and al1 solid cancers 0.10). The 

highest po, value is for the lung cancer data (0.30). 

The reduced Chi-square values for a good fit should be close to one mvi 92 

p. 1951. The values greatcr than one are due to high values of squares of deviations b e e n  

the points and the fit line. The values which are very small suggest unusualiy high 

uncertainties in variables. The reduced Chi-square valws for the best fit lines (j 4) are 

0.69,0.63,0.63,0.3 1,0.30 for pier 961 soiid cancer set, [Shim 921 stomach, [Shim 921 

lung cancer sets, pier 961 leukemia, [Shim 921 leukernia data sets, respectively. The fact 

that d l  of these reduced Chi-square values are quite a bit smailer than one suggests that the 

assumed errors are too large. The hear fit of the [Shim 921 al1 solid cancers set of data 

has the poorer Chi-square vaiue of 2-37. The best fit lines which are labeled 4 in figures 

4.1.4.5. and 4.6 appear to fit the "data" well, the lines in Figures 4.2 and 4.3 fit somewhat 

less well. The best line in Figure 4.4 ([Shim 921 al1 solid cancers), fits least well of all six 

best lines. Figure 4.4 shows that the best line goes outside of error bars that are 

detemined by the values of excess mortaiity rates and theu uncertainties. Specifically, the 

best line goes only through two out of five intends detenninated with emr bars. This 

high dispersion around the best fit line gives higher value for the Chi-square. 
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High Chi-square values, and low values for thïs fit niggest a poor fit 

Both [Pier %] sets of data (soiid cancers and Ieukemia) have good Iinear fia. 

The [Shim 921 data sets have worsc fi& than pier 961. The [ S b  921 stomach, [un& 

leukemia fits have low Chi-squares, but higher p(b, values. This suggest a d e r  linear 

corre1 ation, 



4.4 Using Monte Carlo simulation to determine thruhoid trmn 

In order to get an abmate of threshold confidence intervais. a Monte k l o  

simulation was done as d e s c n i  in section 3.3. For each of six sets of excess mortaüty 

rates (Tables 2.1 to 2.4). one thousand simulated events were generated and fined with 

snaight l k s  as descn'bed in section 3.3.1. This procedure gives one thousaad lina. The 

intersections of these lines to the dose axis detennine one thousand threshold vatues. 

Figures 4.9 and 4.10 present the distri'butions of the estimators (intercept a and 

slope b)  obtained by the simulation for the pier %] solid cancer set of data The area 

under Gaussian distri'bution cimes is normalized to one. 

Figures 4.1 14.16 are histograms of the simulated tbreshold values for each cancer 

category. Distributions nom Figures 4.1 1-4-16 are asymmetrical and are skewed on the lefi 

side. ILI order to present (almost) aU simulated points the Erequency axes in Figures 4.12- 

4.14, and 4.16 are logarithmic. A certain number of threshold values in Figures 4.13.4-14, 

and 4.16 are omitted. in order to show thteshoid distribution produced by lines with 

positive slope only, the histograms 4.12a-4.14a, and 4.16a were plotted In order to better 

present the form of the distribution, a certain nurnber of pin& from the le& side is also 

omitted in these histograms. Al1 threshold values for [Pier 961 solid cancer, and leukemia 

data are produced by lines with positive slopes (see Figures 4.1 1 and 4.15, and Table 4.4 j. 

Some threshold values are extremely high (an example, ornitteci point 452 Sv . 
Figure 4.13). In this case the simulation has produced a fit line with a small negative slope. 

This line intercepts the dose axis on the far right side. 



Figure 4.9 The distnbdon of the simuiated intercepts a and conesponàing 

Gaussian f i t  The mean value and standard deviation of Gaussian cuve are given in 

Table 4.3. The areas under the Oawian curve and the histogram are nomalized to one. 

(pier 961 solid cancer data). 



Figure 4.10 The distribution of the simulated slopes b and wmsponding 

Gaussian fit. The mean value and standard deviation of Gawiau curve are given in 

Table 4.3. The areas under the Gaussian cuve and the histognun are normalized to one. 

(pier 961 solid cancer data). 





Figure 4.1- nirrrhold hi.dogrun producad by lim with porithn slopi b. 
Total 962 thm)io(d. producd ôy linos wi!h &6, m Trbh 4.4). 
Tho smrllast 6 thnrhold valuos a n  omW. (.Qmrch uncor data). 





FIgun 4-14 Hhto@nm of thmhold valri.. for total .dM crmcam, 
([Shim 94, Trbk 2.3 and Figun 4.4). Thrmahdd values: -9.48 and 3-95 
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Table 4.3 repfescnts the statisticaî d y s i s  of estimaors (interccpt a, and siope b), 

and the adys i s  of thteshold values (T ) obtained using simuiated data points. Fonnuiae 

A-9 to A43 h m  Appendix A-3 were useâ for these calculations. The third column 

contains the meaa values, the next columas contain the median, trim mean values, their 

standard deviations, and their standard mean deviatioas (see Appendix A-3). The mniimnl 

simdated vaiues and maximal simulated values of the estimatnrs are in columns 9, and 10. 

The next two columns contain the fint and duid qUamles fw the simuiatcd estimaton. 

The last coIumn of table 4.3 contains 95% confidence intervals for median values of 

estimators a, b, and T for the simulateci &ta sets (explaincd in Appendix A-3). Values as 

standard deviation of mean, minimal and maximal simulated values are not of particular 

physical interest, but they are included in Table 4.3 in order to get better description of 

simulated distributions. 

Simuiated data set for stomach cancer has a positive median threshoid value of 

0.026 Sv. The 95% confidence interval for the threshold median is in positive limits 

between 0.02 Sv and 0.03 Sv. Both leukemïa d i a  sets have a positive median threshold 

values which are equal to 0.099 Sv, and 0.102 Sv for [Pier %] and [ S b  921 leukemia 

data sets, respectively. The 95% confidence intervals for the threshold median also are in 

positive limits between 0.096 Sv and 0.10 1 Sv for [Pier 961 leukemia, and between 0.099 

Sv and 0.105 Sv for [Shim 921 leukemia 

The simulated data sets (lung cancer, and al1 solid cancers) have negative median 

threshold values, and negative limits of their 95 % confidence intervals. 



Table 4.4 lists number of simulations with positive dope b for each shulated drtr 

set (see Figures 4.1 14-16). Column three contains maximum thnshold values obtained by 

lines with positive slop. Column four lis& b i t s  obtained by subtroicting fie thrtshold 

vaiues produced by lines with positive slopc (column three) for each simulated data set 

AI1 threshold values in columns thm and four are positive. Threshold values in column 

four (Upper 95) define the upper h i t  sinnifLiag that 95% of simulated data bave 

threshold smailer than thet value or negatïve dope (tbt violates the model). For %] 

solid cancer and leukemia data sets values in colwnn four give the 95% upper M t s  of 

threshold for the next simulation This column lists upper iirnits of threshold uncertainties. 



Tabk 4.3 Statistical analysis of a and b estimators of simulation, and threshold values (9') for the linear fit (solid cancer and 

leukemia data). The threshold values are expressed in Sv. Number (N) of simulations is one thousand. 

2olumn t j  

Data 
Set kstimator ?T Mean Median 

[Pier 961 
Solid 

cancer 

IShim 92 
Stomach 
cancer 

:Shim 92 
L w  

cancer 

:Shim 92 
All solid 
cancers 





Tabk 4.4 Number of simulations with positive dope b. Column three contains 

maximum threshold values obtained by lines with positive slope. Column four (Upper 

95%) lists limits obtained by subtracting füty tbreshold values produced ôy hes with 

positive slope (column thrre) for each simulated data set. Total number simulations is one 

thousand (The difference between one thousand and numkr of simulations with positive 

slope is nrmiber of simulations with negative dope). 

Simuiated data set 1 Number I 
simulations with value for simulations 

b>0 with 6%) (Sv) 

[Shirn 921 al1 solid 1 999 1 O, 103 1 0.06 1 1 

pier 96) solid 

[Shim 921 stomach 

pier 961 leukemia 1 f 000 1 0.2 16 1 O. 154 1 
[Shirn 921 leukemia 1 986 1 3.88 1 O. 193 I 

1000 

962 

O. 144 

0.898 

0,037 
1 

O. 128 



Chapter V 

Linearquadntic fit of kukemîa data 

Besides the lïnear fit, the leukemia deta were fitted with the Iinearquadratic 

fûnction. This section indudes the results of the standard statistical anaiysis aad of the 

Monte Car10 simulation for the liaearqiiariratic fit as explaineci in sections 3.3. D o s  

uncertainties are not included in analysis in this section 

5.1 Raulb  of the Ltrwt-square and Cbi-Jqcime anilyru 

Figures 5.1, and 5.2 show the same measured values for the excess in the leuk-a 

mortality rates as a fiinction of received dose as in Figures 4.5 and 4.6- The leuketnia data 

fitted with a linear model in section 4, are used in this section to fit with a hearquadratic 

model. Estirnates b and c were caiculated by perfonning the weigbted least squares fit. 

These estimates were calculated uing equations 3.8 and 3.9. The variance, and 

covariance of the estimators were calculated as elements of error matrix 3-12, The t values 

were calculated using 3.13. The p values were computed using the table of r distribution in 

the same manner as in section 4.1. The results of these calculations are show in Table 5.1. 

The numerical values of the estimates represented in Table 5.2 were obtained by 

projecting the delta Chi-square ellipses ont0 conesponding axes in the same manner as for 

linear fit (section 4). Like for the linear fit in section 4.1, the projections refer to the joint 

confidence intervals, this time for parameters f l  and y . This table includes zero 

equivalent points (ZEP) values obtained using equation 3.26. Table 5.2 also contains 

values of the Chi-square (equation 3.n and of the reduced Chi-square. 
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Figure 5.2 Exœss in leukemia mortality rates plotted as a function of receiced dos, 
linear-qudratic fit. ([Shim 921 leukemia data. Table 2.4. ) 

Figure 5.2a Cornparison of th. bmt fit lines (Irklod 4) nprmentod 
in Figum 5.t and 5.2. It k cleu thrt kst  fit prrrbda of [Shirn 9a 
leukemir bta 8ot (Figun 5.2) daas not lit whda mng. of ph? 96) 
leukemia data sot (Figun 5.1). Data poirit. and thair anor bars am fiom 
[Pior 9a laukomir data u t  





Figures 5.3 and 5.4 represent the delta Chi-square paraboloid and the 

corresponding joint confidence ellipses obtained as intersections of the delta Chi-square 

paraboloid to the constant values of the delta Chi-s~uare planes. Values of these constant 

planes are same as for linear fit in section 4.2. Both figures were plotted using [ S M  921 

leukemia data, 

For the [Pier 961 leukemia data the best fit estimates b and c are positive. A linear- 

quadratic fiinction with positive b. and c conespoilds ta the no-threshold mode1 according 

to table 1.1. For the [ S b  921 leuicemia data the ben fit, the estimate 6 is negative, whiie 

the estimate c is positive-This case conesponds to the honnesis effact, according to table 

1.1. Dose range of [Pier 961 leukemia data set is wider (up to 1.5 Sv) than dose range of 

[Shim 921 leukemia data set (up to 0.35 Sv). Figure 5.2a shows that k s t  fit parabda of 

[ S b  921 leukemia data set does not fit last two points (at 0.75 Sv and 1.5 Sv) of [Pier 

961 leukemia &ta set. 

5.2 Discussion of goodness of fit 

Let us  consider goodness of fit for the linear-quadratic fits. The analyses of 

goodness of fit for this fit was done in sirnilar rnanner as for the iinear fi< values of t ratio 

(equation 3.13) and their conespondhg p values, the Chi-square values (equation 3.7 for 

linear quadratic fit), and the reduced Chi-square for the 'Cbest" fit lines were calculated 

The numerical values of these calculatioas for the Iinear fit are presented in Tables 5.1 and 

5.2. Table 5.1 contains t an4 p values. Table 5.2 contains the Chi-squue, and the reduced 

Chi square values. index J = 4 labels c'best" fit lines in these two tables. 
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The two sided t test was used to test whether or not a quadratic coefficient (c) is 

equal to zero (the test of existence of quadratic relationship). The description ofthis test is 

included in Appendix A-2. 

The reduced Chi-square values (table 5.2 j = 4) are 1.19 for the [Piu 961 leukemia 

data set, and 0.39 for the [Shim 921 leukemia data set which were fitted by linear- 

quadratic fuoctioas These dues are slightly closer to one than the linear fit values- 

However the fa~t  that the p, d u e s  for the quadrati-c tenn in both fits (pier 961 leukemia 

and [Shim 921 leukemïa) are 0.2 together with an iiiJpction of Figures 5.1 and 5.2 suggest 

that in both cases a linear mode1 should be fit. 



IO- 

8 - 

6- 

4- 

2- 

0- 
- 

Figure 5.3 The delta Chi-square paraboloid for [Shim 921 leukemia data 

(Table 2.4). The data set is fit by a linearquadratic fùnction in the Linear coefficient @, 

and quadratic coefficient Y . The intersections of the horizontal planes and the paraboloid 

correspond to 68.3%,95%, and 99% joint conftdence regions for parameters f l  and Y - 

These intersections have the form of ellipses (Figure 5.4). 
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-20 O 20 40 60 80 

Quadmtic coefficient y 

Figure 5.4 The delta Chi-square ellipses plotîed as hction of linear 

coefficient b and quadratic coefficient c. The ellipses are obtained by projecting the 

intersections of the delta Chi-square parabdoid (Figure 5.3) and the constant delta 

Chi-square planes that are equal to the 2.30,6.17, and 9.2 1. The areas that are enclosed 

by ellipses are 68.3%. 95%. and 99% confidence mgions for parameters f l  and y jointly. 

([Shim 921 leukemia data, Table 2.4, a linearquadratic fit-) 
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Table 5.2 The estimates b and c obtained by projecting Chi-sqwre ellipses ont0 

corresponding axes, ZEP, Chi-square, and reduced Chi-square for the leukemia data sets 

fitted by a linearquadratic dose response h c t i o m  

Data Set 

(Leukemia) 

pier 961 

Table 2.2 

[Shim 921 

Table 2.4 

Proje 

ction 

s 

(i 

Linear 

coefficient 

(6,) 

Quadratic 

coefficient 

Cc,) 



5.3 ZLFP analysir of Monte Car10 simulted leukemh data 

The common formulae for combing uncertaintics can not k used for the same 

reason as for the linear fit (large estimptor relative uncertainties, see Table 5.1)- in order to 

estimate confidence intervals of ZEP, a Monte Car10 simulation was done as d e s c n i  in 

section 3.3. The simulation was repeated one thousaad times, and the simulated points 

were fitted with linearquadratic bctions as shown in section 3.3.3. This procedure 

produces one thousand parabolas which are forced through the coordinate origin For each 

of the parabolas intersection with the dose axis (tEP value) was calculated ushg equation 

3.19. Estimaton, the Linear coefficient b and the quaciratic coefficient c, for the linear- 

quadratic mode1 were calculated using equations 3.8 and 3.9. Table 5.3 contains results for 

estimators b, c and ZEP values. The fourth column contains the mean values, next columns 

contain median, tnmed mean values for the simulated estimaton, their standard 

deviations, and their standard deviations of the mean The minimum simulated values and 

the maximum simdated values of the estimators are in columns 9, and 10. The next two 

columns contain the fim and third quartiles for the simulated estimators. The last column 

of Table 5.3 contains 95% confidence intervals for the median values of linear coefficient 

6, quadratic coefficient c, and ZEP values. Appendix A-3 explains how these values were 

obtained. The standard deviation of mean minimal and maximai simulated values are not 

of particular physical interest, but they are Iisted in order to characterize simulated 

distributions. 

The median values of ZEP are -0.675 Sv for [Pier 961 leukemia simulated data, and 

0.203 Sv for [ S m  92) leukernia simulated data. The confidence interval of simulated data 
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for median value (95%) of ZEP is between - 0.752 Sv and - 0.624 Sv for pier %] 

shulated data set, and between 0.197 Sv and 0.206 Sv for [Shim 921 simdated data set 

These different mults can be explainec! by the Wuence of the dose points at 0.75 Sv, cmd 

1 -5 Sv on fit for mer 961 leukemia data set (Figure 5.1). 

Table 5.4 contaias the number of simulations in each "'signW group for each 

simulated data set The "sign" refers to sign of estimaton b and c as shown in column 2. 

The distribution of simulations for pier %] simulated data set is different h m  [Shim 921 

simulated data set: 85.6% of simulations comspoad to the no-tfireshold model. 9 9 %  of 

simulations correspond to the hormesis model, and 4.5% of simulations are with b > O and 

c < O. The greatest number of simulations for the [Shim 921 data corresponds to the 

hormesis mode1 (85.6% simulation). The 9.8% of simulations correspond to the no- 

threshold model, 4.5% of simulations has b>O and 6 0 .  

Table 5.4 Number of simulations classified according to signs of estimators b, and 

c. For each simulated data set the total number of simulations is one thousand 

Mode 1 1 Sign of 1 Number of simulations in each sign group 1 
I estimatorr 

' 1 

Fier 961 leukemia [Shim 921 leukemia 

1 Total simulations 1 IO00 1 Io00 1 

Hormesis 

Not of interest 

Not of interest 

b<O; CM 

W; cc0 

k0; -0 

99 

45 

O 

856 
1 

45 

1 



Figure 5.5 The distribution of the simuiated linear coefficients b (for the 

linearquadratic fit) and correspondhg Gaussian fit The mean value and the standard 

deviation of Gaussian function are listed in Table 5.3. The areas under Gaussian c w e  and 

histogram are normalized to one, ([Shim 921 leukernia &a). 
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QuadmUc coeWkJent (c) 

Figure 5.6 The distribution of the simulated quadratic coefficients c (for the 

linearquadratic fit) and corresponding Gaussian fit. The mean value and the standard 

deviation of Gaussian fiinction are listed in Table 5.3. The areas under Gaussian curve and 

histogram are normalued to one, ([Sb 921 leukernia data). 
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Figures 5.5 and 5.6 present distriiutions for tstunators 6, d c fiacd ôy Gaussiaa 

fiinctions with mean values, and standard deviations taken fiom Table 5.3. The arca ua&r 

Gaussian hc t ion  is normalized to one. The [Shim 921 simulated data set wu d for 

these two graphs. Histograms on Fi- 5.7 and 5.8 represent distri'butioos of ZEP values 

obtained by simulation The fkequency on both histograms is logarithmic. The 

histograms 5.7a were plottecl in order to get a better resolution of central part of 

histograms 5.7. In this histogrsm the lowest twenty five points and highest fi* points are 

omitted. The histognun S.& includes ZEP values poduced by panbolas with b4) and czO 

only (homiesis, total 856 simulations). For the pier %] Leukemia data th* kind of 

histogram was not plotted because total number simulations with b 0  and czO is only 99 

(9.9% of total number of simulations , Table 5.4). 

Maximum ZEP value prodwed by parabolas with bc0 and c>O for [Shim 921 

leukemia data set is 1.27 Sv, and 95% of simulations with &O and CHI is up to 0.293 Sv- 





F r q m c y  (Total 987) 



Chapter VI 

Resulb for the case when d e  unœrtrintia a n  iachded 

in this section dose uncertainties are included in calculations using equation 3.20. 

For a linear fit the Chi-square hc t ion  has a form given by equation 3.21, and for a linear- 

* -  * .  
quadratic fit a form is given by equation 3 22. Minuninng Chi-square in equations 3.2 1, 

and 3.22 was doae by numerically solving system of equations 3.23 using a Mapie progrpm 

wTitten for this purpose. Dose uncertainties, as discussd in &on 2. were assurneci to k 

25% of the width of each dose interval. In order to distinguish estimaton of fit obtained in 

this section fiom comsponding estimators obtained in sections 4 and 5. esthators of fit in 

this sections are labeled with index 1. To clarify, intercept and dope are laôeled withq 

and &, . Linear and quaciratic coefficients for the linearquadratic fit are labeled with 4 

and c, . 

The above dose uncertainties an only for illustration purposes. Wider discussion of 

dosimetry for the atomic bomb survivors can be found in [Beir V 90, p. 190, Pier 90, Spos 

913. 

6.1 The linear f i t  

Values of intercept a,, and dope 4 for the linear fit were obtahed by 

minimizing the Chi-square and are presented in Table 6.1. The threshold values in this 

table were calculated using equation 3.17. The last sto columns of this table present the 

Chi-square, and its reduced Chi-square values. 

By comparing the values of estimators a and a,, and b and bl in tables 4.1 and 

6.1, it can be easily observed that dose uncertainties cause a small changes of intercept a 
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and slope b, (see Table 6.1 columns A a , A b ). Changes in thresholds A T are also 

srnail. 

Table 6.1 Intercept a,, slope 4 , threshold I; , corresponding Chi-square 

values for the linear fit taking into accomt emon in doses. Table dso includes differences 

( A a = a , - a ,  A b = & - b , A T =  I ; -  T,aadbx,2=xgj-~~)fiOm 

corresponding values in Table 4.2. Dose errors were asnoned to be quai to 25% of the 

dose intervai width 

Figures 6.1-6.6 present the excess in mortality rates plotted as a fuaction of the 

received dose with included dose uncertainties. In these figures best fit lines from Figures 

4.14.6 are also plotted (thin Iines) in order to compare the ciifferences when dose 

uncertainties are included (heavy Lines). 

Set of data 

Fier 961 solid 

cancer 
d 

a1 

1.85 

Aa 

-0.14 

7 

ni 921 Al1 solid 0.49 

pier 961 4-77 

O 

O 

-0.1 

O 

0.01 

leukemia 

[Shim 921 

leukemia A 

4 
33.4 

-0.58 

14.1 

5.86 

37.6 

7.67 

5.59 

A b 

0.8 

Z;(SV) 

-0.1 

0.2 

O 

1 

O 

-0.1 

0.03 

-0.11 

O 

O. 1 

O. 104 



Dose (Sv) 

Figure 6.1 Solid cancer death excess is plotted r a function of meiveci dorr with dose 
uncertainties equal to +1- 25 % of the dose interval width (heavy lim). 
The light line ir th. b t  fit line when dose erron am not takm in account. 
([Pier 961 solid cancer data, Tabk 2.1, Flgun 4.1) 







Figun 6.4 The excess in cancer moifility rate h pdotted as a knction of receiveâ dose with 
dose uncertrinties equal to +1- 25 % of th. dow inteival width (heavy line). 
The light line is the best lit line when dcme emn a n  not taken in account 
([Shim 921 al1 solid cancer data. Table 2.3. Fiaure 4-41 



6.2 The b a r  qradratic fit for lerlremh data 

Results of the linearqudratic fit with dose uncertainties taken into account art 

presented in Table 6.2. The &se mcertainties are the same as the ones presented in 

section 6.1. The ZEP, values were caiculated using eqdon 3.19. 

By cornparhg the values of estimatom b and 4, and c and c, in Tables 5.2 and 

6.2 it can be easily observed that dose un- - .  
es cause an increase of values for 

estimator c, and decrease of estunator b. These changes are greater than for Iinau fit This 

can be seen in Figures 6.5 and 6.6, 

Tabk 6.2 Estimaton4 and c, , ZEP, , comsponding Chi-square values for the 

linearquadratic fit taking into account enon in doses. Table includes and ciifferences 

( A b =  b I - b ,  Ac=cl-c, A Z E P = Z E P , - Z E P , ~ ~ ~ A X ~ = X ~ . , - X , ' ) ~ ~ ~ ~  

corresponding values in Table 5.2. Dose errors were assurned to be equal to 25% of the 

dose interval width. 

Figures 6.5-6.6 present the excess in leukemia mortaiity rates plotted as a fiuiction 

of received dose (heavy lines) with the dose uncertainties for both leukemia data sets. The 

linear and the linearquadratic fits are presented. In these figures comsponding best fits 

obtained in section 5 (dose uncertainties not included) are also show (Light lines). 
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1.11 

O. 19 

ZEP, 
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Chapter VII 

Analysis of cancer and Ieukemia mort.lity rates 

As we have stated in Chapter II, subaaaion of cancer (leukernia) mortality rates of 

control group in expression for excess mortalîty rates (equation 2.1) introduces correlation 

among excess rnortality rates. This correlation p r o b h  c m  be avoided by fitting mortality 

rates instead of excess mortality rates. In this chapter, mortdity rates as a function of 

received dose an fitted with linear, "threshold" and quadratic fonn of dose response 

function. Cornparison of "threshoa' and quaciratic fits with the hear fit was paformed 

using F test- 

7.1 Models for cancer (ieukemia) mortality rates 

Mortality rates and their uncertainties were caiculated using equations 1.1 and 2.2 

respectively. Mondity rates (MR) as a anaion otreceived dose (d) were first fitted with 

linear function in the standard manner, i.e. 

Second, the following ttnctional fom was used to describe threshold effect 

The parameter do has a meaning of threshold. For the do equal to zero, equation 7.2 

becomes ordinary linear fit 7.1. For dose values greater than threshold value do fimaion 

7.2 is a straight line with dope equal to p, and y-intercept equal to p, - p2 do - For dose 

values smaiier than threshold value do , the second and third terms in equation 7.2 
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are canceUed and the dose response nuiction 7.2 is a constant equal to PI . 

The third functional form is ordinary quadratic fit in the form 

The threshold and the quadratic fits were compaed to hear fit using F test of additional 

term. 

Test of additional term 

The ratio of two independent reduced Chi-square distnbution x2 and x2 is 
"2 

distributed according F distribution Devi 92, p. 2051. 

The F distnbution can be used to measure an Unprovernent of fit with m parameters caused 

by fit with additional parameter ( m i l )  pevi 92, p. 2091. Let us illustrate this using the 

linear and threshold models. The threshold model has one additional parameter (do ) more 

than the linear model. The test of additionai term, tests whether or not that additional 

parameter (term) (4 ) significantly irnproves fit. This test is define using Fr ratio. 

For the linear and threshold fits Fy ratio is 



The decision rule for p = 0.05 is: 

If Fx < F',, the threshold model is not a statisticdy significant 
improvment over the hear model. 

If Fx > F', , the threshold model fits sigrdïcantly better 
than the linear mode4 where critical value 
F', = F(v, = 1, v, = 3) = 10.1, pevi 92, Table CS, p. 2621. 

This fonn of statisticai test is aiso valid for cornparison the linear and quadratic models 

because quadratic fit (7.3) has one additionai paramaer more than linear model. 

7.2 Results o f  analysis 

Monality rates were fitted in the forms 7.1-7.3 using the "Ongin" computer 

program fiom Microcal. Results of fit are presented in Figures 7.1-7.6. Figures 7.1, 7.3,4.4 

contain linear (equation 7.1) and quadratic (equation 7.3) fits. For data sets (the pier 961 

solid cancer, [Shim 921 lung cancer and [Shim 921 al1 solid cancers) presented in these 

figures threshold fit (equation 7.2) is identical to the linear fit (i-e. parameter do 4)- 

The [S km921 stomach cancer and both leukemia data sets have threshold parameter 

do different from zero (Figures 7.2, 7.5 and 7.6). 

During minirnization, the global minimum of Chi-square function has to be 

determined and other local minima must be avoided. For a poor choice of initial estimates 

of p, , pz,  do,  the non-linear fitting algorithm may find a local minimum that is not the 

global minimum. For example for the [Shim 921 leukemia data, the non-linear fitting 

algorithm converged to the local minimum at pl = 0.00167, p, = 0.00923, do = 0.1683 1 

(shown in Figure 7.7), which differs from the global minimum s h o w  in Figure 7.6. 



Dose (Sv) 

Figure 7.1 Linar and quadmtic fits for [Pier 96) solid cancer mortaliîy rates. 
nireshold fit is identical to l inar Ta (d@, sec Tables 7.1 and 7.2). 







Dose (Sv) 

Figure 7.4 Linear and qwdratic fits for [Shim 921alI solid cancer mortelity rates, 
Threshold fit is identical to linear fit (do 4, see Tables 7.1 and 7.2). 







Al1 fits were examineci graphidy and fits that did not look reasonable (as in Figure 7.7) 

were rejected on the assumption that f i h g  puameters were a local minha, but not the 

global could be minimum. Another indication of a minimum that was not a global minimum 

unrealistic parameter uncertainties. For example uncertainties for the parameten in 

Figure 7.7 were Ap, = 0.00013, Ap, = 277403. Ad, = 5460617. 

Figures 7.8 shows the Chi-square for [Shim92] leukemia data set as a ftnction of 

parameter do . For each value of do, p, and p, were optimized before cakulating x2 . 
For values of parameter do above 0.15 the Chi-square fùnction has a constant value 

because p, cm be chosen such that the fit goes through the data point for dose 0.35 Sv 

for any value of do greater than O. 15. If we aarted muùmuation with do greater than O. 1 5 

the program can not tind the global minimum. The problem of minirnization is descnbed in 

more details in chapter 10 of p r e s  921. 

Tables 7.1 and 7.2 summarize results of dl fits (linear, threshold, quadratic). 

Table 7.1 shows parameters of fit and their uncertainries. Stornach cancer [Pier 961 and 

[Shim 921 leukemia data sets have threshold parameter do different from zero (0.014 Sv, 

0.1 27 Sv and 0.084 Sv respectively). Three other data sets (@?ier 961 solid cancer, 

[Shim 921 lung and aii solid cancers) data have threshold parameter do practically equal 

to zero (threshold fit is equivdent to the b a r ) .  Threshold fits of these three data sets have 

threshold uncertainties equal to 0.025 Sv, 0.056 Sv and 0.107 Sv respectively. 

Table 7.2 Contains Chi-square and reduced Chi-square values for each fit. The Chi- 

values were used to compute F values in columns six and ten. Columns six and ten 

contain 4 values for threshold and quadratic fits respectively. Al1 these values are smaller 
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Tabk 7.1 Table presents parameters of fit for cancer and leukemia mortality rates. The threshold values for [Pier 961 solid 
cancer data, [Shim 92) lung and all solid cancer data sets are zero (the threshold fit corresponds to the linear fit). 

Fit Linear fit ( I O-') Threshold fit ( 10') Quadrat ic fit ( i O-') 

[Pier %] 83 35 
solid c, 1 

[Shim 92) 25 13 
stomach c. 

[Shim 92) 7.7 7.9 
lung c. 

IShim92) 72 38 
al1 solid c, 

- - - - 

[Pier 961 1 1.7 1 6.7 
leukemia 

[Shi111921 1 1.6 1 3,6 
leukemia 



Table 7.2 Table includes Chi-square and reduced Chi-square values for linear, threshold and quadratic fits. Column 
six contain Ftest values for the threshold fit (see text). Column ten contain F test values for the quadratic fit. All test 
F values are smaller than required critical values, what indicates that threshold and quadratic fits do not significantly 
fit data better than the linear fit. 

Data Set Linear fit ( v  = 4 ) Threshold fit ( v = 3 ) 

I [Pier %] 
solid c, 

W 1 [Shim 92) 

1 [Shim 921 
al1 solid c. 



than the correspondhg criticai value (10.1) of F distribution. This irnplies that 

atiding one additional parameter in threshold and quadratic fits do not signiocantly hprove 

these fits in a cornparison to the linear fit. Thus, these data do not provide signincant 

evidence for the threshoid or quadratic models. 



8. Conclwion 

In ihis thesis reanalysis of the excess cancer and leukemia mortality rates for the 

atomic bomb suncivors was C8med out on a transformeci version of the raw data; methods 

used included the standard Chi-square andpis and a Monte M o  simulation. The 

simulation was used to obtain estimates of the threshold for a Linear model, the ZEP for a 

linearquadratic model and upper limits of their uncertainties. The limar model was 

applied to soiid cancer and leukemia data, the b q u a d m t i c  modct to leukemia data 

only. First the standard Chi-square method was applied to the excess cancer (leukemia) 

mortality rates. The Cancer and leukemia data were fitted with a linear fiinction in the 

form describeci in Chapter 1. That fom is capable of descniing the thmhold effect The 

linear no-threshold mode1 uses a maight line wtùch is forcd to go through the cwrdinate 

origin (the intercept to the dose axis is equal to zero). Depending on the s i p  of estimators 

b, and c, a linearquadratic fûnction can describe several models, as shown in section M. 

The linearquadratic model has the ability to describe the hormesis effect which is of 

particuiar interest. 

When statistical dose uncertainties (arbitrariiy estimated as 25% of dose interval 

width) are included in the calculation, estimators of the fit an not too diffennt nom the 

case when these uncertainties were not hcluded for the linear fit (see Figure 6-1-64, and 

Table 6.1). For the linearquadratic fit the effect of including dose uncertaïnties is more 

apparent (see Figure 6.5 and 6.6, Table 6.2). 

Table 8.1 sununarizes results of the atialysis of al1 data sets. Columas three to 

seven contain results obtain by least-squares fit Columns four and five containp values 
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for estimates 6 and c The p values higher than 0.1 are u s d y  taken as statistid 

non-significant. Colunus eight to eleven contain d t s  of Monte Car10 simulation for 

threshold The column eight contains median threshold and ZEP values obtained by 

simulation. The nine eight contains upper limit of95%~threshol& produceci by straight - 

Iines with positive s lop 6 for linear fit ( negative slopes are excludeü, see sections 4.3). 

the column ten contains uppr  limit of 95% tEP values produced by parabolas with b<O 

and CHI, homesis mode1 for liaearquadratîc fit, (see d o n  5-3). ïhe last column eleven 

contains 95% confidence interual for median threshold value for the l i n s  fit, or 95% 

confidence interval for median ZEP value for the linearqiindratic fit as obtained âom 

thousand simuiated experiments. 

Stomach cancer data set and both leukemia data sets (linear fit) suggest possibility 

of existence of threshold aamely, median threshold values (obtaiwd by the least-squares 

fit and by simulation) are positive, 95% confidence intervals for threshold median are in 

positive lirnits, and of course the upper limits of 95% thresholds produced by lines with 

bXl are positive. Upper limits of9S% thresholds produced by lines with b>O are positive 

for al1 data sets. Only pier 961 leukemia data set has significant p, value equal to 0.02. 

For both leukemia data sets fitted with linearquadratc function the p, values are 
- 

0.20 (it is high value that suggests non-signïficaat resuit for quadratic coefficient c). Only 

9.9% of simulations for the pier 961 leukemia data set correspond to hormesis mode1 

(bc0, oO). The [ S b  921 ledcemia data set has 85.6% simulations that correspond to 

hmiiesis model. The median ZEP ,95% confidence interval for Z P  median and the 

upper limits of 95% ZEP values produced by parabolas with bQ) and CM are positive. 
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This suggests weak possibility ofhomesis existence for the [Shim 921 leukcmia âata Tbis 

result shouid be interprend with resewe because OF high p, value (0.20). 

Analysis of cancer and Leukexnia modi ty  rates (Chapter V[I) does not introduce 

correlation among dependent varubles. Threshold parameter do is different h m  zero for 

[Shim 921 stomach cancer data and both leuk-a data sets. According to the F-test none of 

the six data sets provide significant evidence for threshold and quaciratic models. 



Appendices 

A-1. The tno sided t tut concerniig sbpe b 

This test tests whether or not there is a Linear relationship between fitted miable Y 

and variable d, using a linear rcgrespion mode1 (Naa 90, p. 691. The test is in the form of 

alternatives: 

The k t  alternative is a nuil hypthesis Ho . The null hypothesis assumes t ' t  slope b is 

equal to zero. If the nul1 hypothesis is true, then there is no linear relationship between 

variables. In order to test the null hypothesis the t value (ratio) is calculated: 

The t value is used to establish the decision de: 

a 
I f t >  t (1--;n-2) ,  Ha isvalzd 

2 

where a is a level of significance. 
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For example consider the mer 9q solid cancer data . In table 4.1 the value of dope 

b is 32.6, and the value of variance s,' is 28.9. The standard deviation s, is 5.36 . The t 

value is 6.06. In this example the number of de- offkxbrn is 3. In the table of t 

distribution the value of 6.06 is between t (0.995,3) = 5.841 and t (0.9975.3) = 7.453 for 

three degrees of W o m  [Neter 90 p. 1 1281. According to A4 we cm conclude diet slope 

b is diserent fiom zero with confidence 

a h =  1-0995= 0.005 or a = 0.01. CA-3) 

The d u e  of p smaller than 0.0 1, because t = 6.06 > 5.&41. Thus, it can k 

concluded that slope b is different fiom zero with 99% of confidence. 

A-2. The two sided t test coacerning quadratic effcet coefficient c 

This test tests whether or not quadratic terni c could be omitted nom the mode1 

veter 90 p 3261. The test is in the fom of alternatives: 

I f  Ho is valid quadratic terni c can be dropped nom the model. The t value is calculated 

as 

The decision nile is established by A-3 and A 4  as for previous test. 



For example consider the mer 96] le&-a deta I ~ I  the table 5.1 value o f  

quadratic term c is 3.56, aad value of variance sf is 4.63. The standard deviation s, io 
C 

2.15 . The t d u e  is 1.65. In thc table of t distribution the value 1.65 is between t (0.90,3) 

= 1.638 and t (0.95.3) = 2.353 for 3 degms of fhedom. Accorduig to A4 we can 

conclu& that quadratic coefficient c is different f?om zero with confidence 

a / 2 =  1-O-= 0.10 or a=020- (A-8) 

The value of p is .mialler than 0.20, because r = 1-65 >1.638. It meam that quadratic tcrm 

c is difBerent b m  zero (cm aot k h p p e d  b r n  the mdel)  with 80% ofconfidence. 

Usually required level of conf?dence to accept assumed hypothesis is 95% or more, or 

p S 0.05. 



A93 Determiution of thrahold rad its mtïstics 

As was descn'bed in section 3.3 1 each simulation with a hear fit, gives one 

thousand estimators for T (equation 3.17). A sîatistid analysis of those estimators was 

performed, then a histogram (fkquency of Tvenus the dose) was plotîed, the mean d u e ,  

the ûîmmed mean vaiue, the standard devïation, the standard error of the mean, the fkst 

and third quartiles, 95% confidence intend for the median d u e  was calcuiated The 

disîri'bution of the estimated thnsholds versus raceived dose is a ~ e t r i c ~  Because of 

that non-parametric, sign wnfïdcnce interval for the median is used to obtain a con.fidence 

interval of the threshold This part of the analysis is npresented in section 4. Calculations 

were done using the Usticai program Minitab. Minitab calculates those values as 

follows [Ryan 851: 

Denote the i -th estimated threshold value ( i = 1.. 1000 (N)). 
1 

Mean value is 

Median value shows a central point of data (50% are below and 50% above thai 

point). The data are ordered in ascending order. If N is odd, median is the middle value. 

In case of N = 1000 (even) the median is calculated as the average value of two central 

points (500-th and 501-st). 



Trimmeà m e u  (e-g. 5% trimmd mean), is calculated by oorting the data in 

ascending order, then the smallest 5% and the largest 5% of the values are dcleted, and the 

rest (90%) of the values are averaged in the standard mamer thnt is using quation A -9. 

Standard d d t i o n  is calculateci in the standard manet 

Standard e m r  of the mean is 

Fint and thùd quirtiie's divide the data in groups that contain the nrst 25% of 

data and the last 25% of data sorted in ascending order. 

Sign test for meàian confidence intervil does not assume a form of distribution. 

This test is used because simulated thnshold distrihtion is asymmetric. This test uses the 

Binomial distribution to compute the required confidence level. 

Binomial distribution can be w d  to compute that x values out of the total N 

observations are or are not in one of the two possible categories. For purposes of the 

caiculation confidence interval x-th value can k in or out of required interval of 

confidence. 



Binomial distniution has the form: 

In order to calculate the confidence level equal top. first ali data points have to be 

ordered The position of each data point has a b i n o ~ ~ a l  proôability according to equation 

A- L 2 ( x is nurnber of data points less than the median, N is the total number of data 

points, Z 4.5).  Forp = 95% (95% of confidence) the cumulative probability o f d  points 

in the interval has to k 0.95. This means that the cumulative probability of al1 points out 

of the interval is 0.05. The cumulative binomial probability for x smallest values in the 

row is 

Because for ~r = 0.5, the binomial distribution is syrm~caical, the cumulative probability 

for the largest x values in the row is quai to the cumulative probability for the smallea x 

values in the row. In order to get 95% confidence interval, al1 of the smailest x values 

(cumulative probability 0.025). and al1 of the largest x values (the wune cumulative 

probability 0.025) have to be left out of the interval. The endpoints of the smailest 

interval containing the rest of the points is 95% confidence interval. 

For example if N =1000. the binomial cumulative probability for the smallest and 

largest 469 points (together) is 0.0463. The binomial cumulative probability for the 

smallest and largest 470 points (together) is 0.0537. 
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The interval whose eadpoints are the 470-th and 53 1-st @ v u  95.37?% confidence interval. 

The intenial whose endpoints are the 47141 and 530-st gives 94.63% confidence 

interval. The exact 95% confidence intervai for 1OOO events can only be interpolatcd 

between 94.63% and 95.37% confidence. 











APENDIX B-3 

Maple program for computiog the .Delta-Chi-Squarem parabolofci for lfnear 

fit (see Chapters 1x1 and IV). 

> restart; 

> dl:=valu-l:..---&:=valueen: 

> M:=array(l..N,1..3, [[dlrYlrsY1],[d2,~2,sY2I,,...., [dNIYNl~YN]]); 

> abest:=aO: 

> bbest:=bO: 

> planel:=2.30: 

> plane2:=6.17: 

> pLane3:=9.21: 

> pogled:=O..ll: 

> orent:=[40,83] : 

> N:=Integer-1: 

> xl:=valu - xl: xS:=value-x2: 

> yl:=value-y1: yZ:=value-y2: 

> x l k ]  :=M[k, 11 : 

> y [ k ]  :=M[k,2] : 

> s[k] :=M[k,3] : 

> 

> Ko:=sum((y[k]-abest-bbest*~[kI)~2/(s(k])~2~k=l..N) : 

> ffk]:=a+bcx[kJ: 

> Ki:=sum( ( y [ k ] - f t k ]  i A2/(s[kl )"2,k=11 .N) : 

> K:=Ki-Ko: 

> a:=y:b:=x: 

> z:=K: 



> colorplot3d:=proc(f::algebraicr cange::'=', yrange::'=') /* colr3d 

comrnand [Kofler 97 p.485) +/ 

local varx, Vary, x, xO, x l ,  y, yO, yL, i, j, opts, gridopt, 

datafl, dataf2, datacl, datac2, c: 

Digits : =6: 

# analyse parameters 

# 

varx : =op ( l , xrange 1 : Vary : =op ( 1, yrange ) : 

xO:=evalf (op(1, op(2,xrange))): xl:=evalf(op(2, op(2,xrange))) : 

# analyse options 

# 

gridopt:= [20, 201 : # defaults 

w h i l e  i<=nops(opts) do: 

if type (opts fil, identical ( 'grid' ) =list) then 

gridopt:=rhs (opts [il 1 : 

opts:=subsop(i=NULL, opts): # remove from options list 

elif type (opts Cil, identical ( 'color') =function) or 

type (opts [il, identical ( 'COLOR' j =function) then 

c:=C op(2-.4, rhs(opts[i])) 1: 

o p t s  : =subsop (i=NüLL, opts 1 : # remove from options list 

od: 



> if c='cl then # no coloroption 

> ERROR ( 'wrong or missing color function, use 

color=COLOR(RGB, r,g, b) - )  : 

> fi: 

> # loop to calculate graphic- and colordata 

> 

> # 

> datafl:=[]: datacl:=[]: 

> for i from I to gridopttll do: 

> x:=evalf (xO+(xl-x0) / (gridopt [Il-l)* (i-1) 1 : 

> dataf2:=f 1 : datac2:=[] : 

> for j from 1 to gridopt [2] do: 

> y:=evalf (yO+ (yl-y0) / (gridopt 12 1-1) (j-1) 1 : 

> dataf2 :=[ op (dataf2 1 , evalf ( subs (varx=x, vary=y, f 1 1 1 : 

> datac2 := [ op (datac2 , op (evalf ( subs (varx=x, vary=y, c) ) : 1 : 

> od: 

> dataf 1 :=l op (datafl) , dataf2J : 

> datacl : = i  op (datacl), op (datac2) 1 : 

> od: 

> # show plot, use remaining options 

> # 

> plots [display] ( PLOT3D ( GRID (xO . .xl, yO.. yl, dataf 1, 

COLOR(RGB, op (datacl) 1 1 , op (opts) ) ; > 

> end: 

> 

> greyscale:=(x) ->COLOR(RGB, 0.85, 0.9, 0.95) : 
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> with(plots1 :gO:=colorplot3d(z8 x=xl,,x2, y=yl.,y2, 

color=greyscale(z~0.01+O~1)8 

> grid= [40,40 1, view=pogled, 

orientation=orent, axes=boxed, numpoints=lO0OO8 labels= [ ' * . 1 8 

scaling=unconstrained, style=patch) : 

7 with (plottools) :with (plots) : 
. . 

> gl :=plot3d(plane18 x=xl. .x2, y=y l . ,  ~ 2 ,  axes=none, labels=V ' 8 ' , 'II: 

> g2:=plot3d(pianeS, x=xl. .x2, p y l ,  .y2, axes=none, labels=[ ' ', ' ' , ' 'Il: 

> g3 : =plot3d (plane3, x=xl,, x 2 ,  y=yl,  . y2, axes=none8 labels= C' ' , ' ' 8 ' -1): 

> plotsetup (jpeg, 

plotoutput=~File~ame~jpg',plotopti0n~=~portrait,~idth=6OO~height=7OO~nobor 

der') ; 

display( [go, gl8g2,g3I axes=boxed8 ambientlight=[O- O .g8 0-81, font= [TIMES8%0 

LD, 151, axesfont=fTfMES8BOLD8 151 ) ; 



AE'ENDIX 13-4: 

Maple program for lincar-qua-atic fit of simulated set of data (see 

Chapters 1 f f and V) . 
/*N is number of simulations; n number of points in each simulation.*/ 

> restart; 

> readdata ( ' FileNAme. t x t * ,  f loa t ,  n) : 

> MO:=rnatrix(%) : 

> close('FileNAme.txt'); 

> pl:=*ralue-1: 

> p 2 : = v a l u e 2 :  

> p n : = v a l u e n :  

> N:=Integer-1: 

> b b e s t : = v a l u e - b b e s t :  cbest:=value-c-best: 

> f o r  z from 1 by 1 to N do 

Mz:=array(l..n,l.-3,[Edl,MO[~,l],plf,.--.--~..~ [ d n , M O [ z , S ] , p S ] ] ) :  

x [ k j  :=Mz[k, l ]  : 

y [ k l  :=Mz[k,2]  : 

s [ k ] : = M z f k , 3 ] :  

A21:=sum( ( x [ k j + y f k l )  / s [ k l A 2 , k = l .  .N) : 

A23:=sum( ( x [ k I A 3 / s [ k l  ̂ 2 ) ,  k = l .  .NI : 

A 1 3 : = s u m ( x [ k ]  " 2 / s [ k l h 2 ,  k=1- .N)  : 

A3l :=sum(  ( y [ k l + ~ [ k ] ~ Z )  /~[k]~2,k=I- .NI : 

A.33:=sum(x [ k ]  ̂ 4 / s [ k ]  "2, k=l. .N )  : 

C l : = a r r a y ( l .  .2,1.,2, [ [A13 ,A23] ,  [ A 2 3 , A 3 3 ] ] ) ;  

c : = l i n a l g [ d e t ]  ( C l )  : 

A 2 : = a r r a y ( l .  .2,1..2, [CA21,A23], [A3l,A33lI) : 

a: = l i n a l g  [det ] (A2) : 



a2 :=evalf (a/c) ; 

A3:=array(l..2,1..2, [[A13,A2L], [A23,A31]]) : 

b:=linalg[det] (A3) : 

a3 : =evalf ( M c )  ; 

sLn: =solve (a2+x+a3*xA2=O) ; 

v:=sln[l] : 

T:=sln[2] : 

f[kl :=bbestfxCk] +&est* (x[k] ) ^S: 

Kl:=sum( (y[k]-fEkl)&2/(s[kl I62,k=1. .N) : 

appendto ( ' FileName-Res . txt ) : 

array( [z,a2, a3,TrKl, Z ]  ) ; 

writeto (terminal) ; 

od; 



Glossary 

Absorbed dose (Dk the energy imparted to matter by ionuing radiation pr unit mas. SI 

unit of absorbeci dose is p y  (Gy). 

Background radiatioa - radiation that is part of nanirztl environment (not causai by a 

human action). It is c a d  by nahiral radio-isotopes in 

environment and wsmic radiation. 

Cancer (leulremia) incidence rate - number of cancer (ledcemia) cases per person in 

observed population 

Cancer (Ieukemia) mortality rate - number of  deaths due to cancer (leukemia) per person 

in observed population 

[ c e .  ] - means cancer (leukemia) deaths per penon 

Cumulative dose - is a total dose received if someone was repetitiously exposed to 

radiation. 

Dose equivalent (DE)- is a product of the absorbed dose and quality factor (see Quality 

factor) DE=Q*D. Si unit for dose equivalent is Sievert (Sv). 

Dose ranges - Arbitmy ranges of received dose. Low dose is below 0.2 Sv, intemediate 

dose is between 0.2 and 2.5 Sv, high dose is above 2.5 Sv. [Brüi 821. 

Gray ( G y )  - Si unit for absorbed dose. One Gray 1s 1 Joule of energy impaned to 1 kg of 

matter by ionking radiation, (1Gy = 1 J/kg). 

Hormesis - beneficiary influence of some agent on heaith. For case of ionking radiation it 

is hypothetical. 



Ioniziag radiation - any radiation that produces ionization in primary or secondary 

processes (X and gamma ray photoas, charged and uncbarged 

particles). 

Lineir ncr-threshold mode1 - a mode1 that assumes hear dependence between number of 

cancers and received dose of ionuùig radiation It assumes 

that straight Liae passes through the coordinate ongin. 

Linear threshoïd modeî - a mode1 tbat assumes existence of a tîueshold dose below wbich 

ionking radiation b s  no effect on health. Above the threshold 

linear depdence between number of cancer and received dose 

is assumeci 

Maple - a computer algebra program, developed by Waterloo Maple, hc. 

Minitab - a computer statistical program developed by Minitab Inc. 

Origia - a computer program for data anaiysis and technical graphies developed by 

Microcal Software, hcc 

Quality factor (Q) - is a multiplicative factor that express effectiveness of ionizing 

radiation on biological tissue. This factor is equal to one for x rays, 

gamma rays and beta particles. Quality Eictor is qua1 to 20 for fast 

neutrons, alpha particles, and heavy @cles. For fast neutrons some 

authon use quality fiictor equal to ten. 

Sievert (Sv) - Si unit for dose equivaleat. For ionizïng radiation with quality factor one (x 

rays, gamma rays beta particles) I Sv = 1Gy. 



Threshold m- an assumeci dose below which the effect of ionking radiation on health 

does not exist. 

ZEP - refea to Zero Eipivalent Point In the horrnesis mode1 tbis is the dose below which 

radiation has beneficial e f f i  on a biological systetas, and above it hPs hamiN 

effect. At that point the effkct of ioaiting radiation is equal to zero (no effect). 
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