
Real Analysis Midterm Summer 2008

1) Provide an example or state that no such example exists (3 points each).
a) A subset of R that is open and compact.

Example: the empty set.
b) A subset of R that is not bounded and has a supremum.

Example: the interval (−∞, 0) is not bounded and has a supremum.
c) An infinite set with no accumulation points.

Example: the set of integers Z is infinite and has no accumulation points.
d) A monotone sequence that is bounded above and does not converge.

Example: the sequence (sn) = (−1,−2,−3, . . . ) is monotone, bounded above, and not
convergent.

e) A function f : D → R, with D = {0}, such that limx→0 f(x) exists.
No such example exists.

2) Prove or provide a counterexample (3 points each).
a) If sequences (sn + tn) and (tn) both converge, then the sequence (sn) also converges.

Proof. Suppose that (sn + tn) converges to a and (tn) converges to b. Let ε > 0 be given.
There exists a N1 ∈ R such that when n > N1, |sn + tn − a| < ε

2
and there exists a N2 ∈ R

such that when n > N2, |tn − b| < ε
2
. Let N = max{N1, N2}.

Now when n > N , |sn− (a− b)| = |sn + tn−a+ b− tn| ≤ |sn + tn−a|+ |tn− b| < ε
2
+ ε

2
= ε.

This shows that (sn) converges to a− b.

Remark. There is another proof that utilizes the theorems about sums and constant
multiples of convergent sequences. It is known that sums of convergent sequences converge.
Furthermore, if a sequence converges, then that sequence multiplied by the constant −1 also
converges (see [1] for these results). Combining these two results, we obtain that the difference
of convergent sequences is also convergent. Now, since sn = (sn + tn)− tn for all n ∈ N, (sn)
converges.

b) If the sequence (sn) diverges, then every subsequence of (sn) must also diverge.
Counterexample. Let sn = (−1)n for n ∈ N. This sequence diverges but (s2n) is a

constant, and hence convergent, subsequence.
c) Let (sn) be a convergent sequence and let (snk

) and (smk
) be two subsequences of (sn).

Then the sequence (snk
smk

) also converges.

Proof. If (sn) converges, the subsequences (snk
) and (smk

) must converge, and then (snk
smk

)
also converges. The text [1] is a good reference for these results.

d) Let (sn) and (tn) be cauchy sequences. Then the sequence (sntn) is also cauchy.

Proof. If (sn) and (tn) are cauchy sequences, they must converge, and then (sntn) also con-
verges. Since convergent sequences are cauchy, (sntn) is cauchy. Again, [1] may be consulted
for references to these results.

e) Let f : D → R and g : D → R be two functions and let c be an accumulation point of
D. If limx→c(fg)(x) and limx→c g(x) exist, then limx→c f(x) also exists.



Counterexample. Let f : (0, 1) → R and g : (0, 1) → R be defined by f(x) = 1/x
and g(x) = x respectively. In this case, the function (fg)(x) = 1, limx→0(fg)(x) = 1,
limx→0 g(x) = 0, and limx→0 f(x) does not exist.

3) Provide solutions for exactly two of the following (10 points each).
a) Prove that the set S = {

√
2 + q : q ∈ Q} is dense in R, that is, for all x, y ∈ R that

satisfy x < y, there exists a s ∈ S so that x < s < y.

Proof. Let x, y ∈ R, with x < y. It follows that x −
√

2 < y −
√

2. Since the rationals are
dense, there exists a q ∈ Q such that x−

√
2 < q < y−

√
2. This implies that x <

√
2+ q < y.

Note that
√

2 + q ∈ S. This establishes the density of S.

b) Let s1 = 1 and let sn+1 =
√

1 + 2sn, for n ≥ 1. Show that the limit of this sequence
exists and then find it.

Proof. First we provide a short argument to show that this sequence is bounded above. Ob-
serve that s1 = 1 ≤ 3. Now suppose that sk ≤ 3 for some k ∈ N. So sk+1 =

√
1 + 2sk ≤√

1 + 2(3) =
√

7 ≤ 3. This induction argument shows that this sequence is bounded above by
3.

Now we will use another induction argument to prove that this is an increasing sequence.
Observe that s1 = 1 < s2 =

√
3. Suppose that sk < sk+1 for some k ∈ N. Now sk+1 =√

1 + 2sk <
√

1 + 2sk+1 = sk+2. This establishes that the sequence is increasing.
Every increasing sequence that is bounded above converges; so let lim sn = s. Since this

limit exists, we may conclude that lim(sn+1sn+1) = lim(1 + 2sn). Now, several limit theorems
(see [1] for instance) imply that s2 = 1 + 2s, and so, s = 1 ±

√
2. Since the sequence is

increasing, it is bounded below by s1 = 1. It now follows that s = 1 +
√

2.

c) Show that limx→0 x2/|x| = 0.

Proof. Let ε > 0 be given and then let δ = ε. Observe that x2

|x| = |x| if x 6= 0. So when

0 < |x− 0| < δ = ε, we have
∣∣∣ x2

|x| − 0
∣∣∣ = |x| < δ = ε. This proves that limx→0 x2/|x| = 0.

d) Let (sn) be a sequence of real numbers. If the subsequence (s2n) converges to s ∈ R
and the subsequence (s2n−1) converges to s, then the sequence (sn) also converges to s.

Proof. Let ε > 0 be given. Since (s2n) converges to s, there exists a N1 ∈ R so that when
n > N1, |s2n−s| < ε. Since (s2n−1) converges to s, there exists a N2 ∈ R so that when n > N2,
|s2n−1− s| < ε. Let N = max{N1, N2}. Now when n > 2N , |sn− s| is either equal to |s2n′ − s|
or |s2n′−1 − s|, where n′ > N. In both cases, |sn − s| < ε. This shows that (sn) converges to
s.
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