1) Provide an example or state that no such example exists (3 points each).
a) A subset of \mathbb{R} that is open and compact.

Example: the empty set.
b) A subset of \mathbb{R} that is not bounded and has a supremum.

Example: the interval $(-\infty, 0)$ is not bounded and has a supremum.
c) An infinite set with no accumulation points.

Example: the set of integers \mathbb{Z} is infinite and has no accumulation points.
d) A monotone sequence that is bounded above and does not converge.

Example: the sequence $\left(s_{n}\right)=(-1,-2,-3, \ldots)$ is monotone, bounded above, and not convergent.
e) A function $f: D \rightarrow \mathbb{R}$, with $D=\{0\}$, such that $\lim _{x \rightarrow 0} f(x)$ exists.

No such example exists.
2) Prove or provide a counterexample (3 points each).
a) If sequences $\left(s_{n}+t_{n}\right)$ and $\left(t_{n}\right)$ both converge, then the sequence $\left(s_{n}\right)$ also converges.

Proof. Suppose that $\left(s_{n}+t_{n}\right)$ converges to a and $\left(t_{n}\right)$ converges to b. Let $\epsilon>0$ be given. There exists a $N_{1} \in \mathbb{R}$ such that when $n>N_{1},\left|s_{n}+t_{n}-a\right|<\frac{\epsilon}{2}$ and there exists a $N_{2} \in \mathbb{R}$ such that when $n>N_{2},\left|t_{n}-b\right|<\frac{\epsilon}{2}$. Let $N=\max \left\{N_{1}, N_{2}\right\}$.

Now when $n>N,\left|s_{n}-(a-b)\right|=\left|s_{n}+t_{n}-a+b-t_{n}\right| \leq\left|s_{n}+t_{n}-a\right|+\left|t_{n}-b\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. This shows that $\left(s_{n}\right)$ converges to $a-b$.

Remark. There is another proof that utilizes the theorems about sums and constant multiples of convergent sequences. It is known that sums of convergent sequences converge. Furthermore, if a sequence converges, then that sequence multiplied by the constant -1 also converges (see [1] for these results). Combining these two results, we obtain that the difference of convergent sequences is also convergent. Now, since $s_{n}=\left(s_{n}+t_{n}\right)-t_{n}$ for all $n \in \mathbb{N}$, $\left(s_{n}\right)$ converges.
b) If the sequence $\left(s_{n}\right)$ diverges, then every subsequence of $\left(s_{n}\right)$ must also diverge.

Counterexample. Let $s_{n}=(-1)^{n}$ for $n \in \mathbb{N}$. This sequence diverges but $\left(s_{2 n}\right)$ is a constant, and hence convergent, subsequence.
c) Let $\left(s_{n}\right)$ be a convergent sequence and let $\left(s_{n_{k}}\right)$ and $\left(s_{m_{k}}\right)$ be two subsequences of $\left(s_{n}\right)$. Then the sequence $\left(s_{n_{k}} s_{m_{k}}\right)$ also converges.

Proof. If (s_{n}) converges, the subsequences $\left(s_{n_{k}}\right)$ and $\left(s_{m_{k}}\right)$ must converge, and then $\left(s_{n_{k}} s_{m_{k}}\right)$ also converges. The text [1] is a good reference for these results.
d) Let $\left(s_{n}\right)$ and $\left(t_{n}\right)$ be cauchy sequences. Then the sequence $\left(s_{n} t_{n}\right)$ is also cauchy.

Proof. If $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are cauchy sequences, they must converge, and then $\left(s_{n} t_{n}\right)$ also converges. Since convergent sequences are cauchy, $\left(s_{n} t_{n}\right)$ is cauchy. Again, [1] may be consulted for references to these results.
e) Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$ be two functions and let c be an accumulation point of D. If $\lim _{x \rightarrow c}(f g)(x)$ and $\lim _{x \rightarrow c} g(x)$ exist, then $\lim _{x \rightarrow c} f(x)$ also exists.

Counterexample. Let $f:(0,1) \rightarrow \mathbb{R}$ and $g:(0,1) \rightarrow \mathbb{R}$ be defined by $f(x)=1 / x$ and $g(x)=x$ respectively. In this case, the function $(f g)(x)=1, \lim _{x \rightarrow 0}(f g)(x)=1$, $\lim _{x \rightarrow 0} g(x)=0$, and $\lim _{x \rightarrow 0} f(x)$ does not exist.
3) Provide solutions for exactly two of the following (10 points each).
a) Prove that the set $S=\{\sqrt{2}+q: q \in \mathbb{Q}\}$ is dense in \mathbb{R}, that is, for all $x, y \in \mathbb{R}$ that satisfy $x<y$, there exists a $s \in S$ so that $x<s<y$.
Proof. Let $x, y \in \mathbb{R}$, with $x<y$. It follows that $x-\sqrt{2}<y-\sqrt{2}$. Since the rationals are dense, there exists a $q \in \mathbb{Q}$ such that $x-\sqrt{2}<q<y-\sqrt{2}$. This implies that $x<\sqrt{2}+q<y$. Note that $\sqrt{2}+q \in S$. This establishes the density of S.
b) Let $s_{1}=1$ and let $s_{n+1}=\sqrt{1+2 s_{n}}$, for $n \geq 1$. Show that the limit of this sequence exists and then find it.

Proof. First we provide a short argument to show that this sequence is bounded above. Observe that $s_{1}=1 \leq 3$. Now suppose that $s_{k} \leq 3$ for some $k \in \mathbb{N}$. So $s_{k+1}=\sqrt{1+2 s_{k}} \leq$ $\sqrt{1+2(3)}=\sqrt{7} \leq 3$. This induction argument shows that this sequence is bounded above by 3.

Now we will use another induction argument to prove that this is an increasing sequence. Observe that $s_{1}=1<s_{2}=\sqrt{3}$. Suppose that $s_{k}<s_{k+1}$ for some $k \in \mathbb{N}$. Now $s_{k+1}=$ $\sqrt{1+2 s_{k}}<\sqrt{1+2 s_{k+1}}=s_{k+2}$. This establishes that the sequence is increasing.

Every increasing sequence that is bounded above converges; so let $\lim s_{n}=s$. Since this limit exists, we may conclude that $\lim \left(s_{n+1} s_{n+1}\right)=\lim \left(1+2 s_{n}\right)$. Now, several limit theorems (see [1] for instance) imply that $s^{2}=1+2 s$, and so, $s=1 \pm \sqrt{2}$. Since the sequence is increasing, it is bounded below by $s_{1}=1$. It now follows that $s=1+\sqrt{2}$.
c) Show that $\lim _{x \rightarrow 0} x^{2} /|x|=0$.

Proof. Let $\epsilon>0$ be given and then let $\delta=\epsilon$. Observe that $\frac{x^{2}}{|x|}=|x|$ if $x \neq 0$. So when $0<|x-0|<\delta=\epsilon$, we have $\left|\frac{x^{2}}{|x|}-0\right|=|x|<\delta=\epsilon$. This proves that $\lim _{x \rightarrow 0} x^{2} /|x|=0$.
d) Let $\left(s_{n}\right)$ be a sequence of real numbers. If the subsequence $\left(s_{2 n}\right)$ converges to $s \in \mathbb{R}$ and the subsequence ($s_{2 n-1}$) converges to s, then the sequence $\left(s_{n}\right)$ also converges to s.
Proof. Let $\epsilon>0$ be given. Since $\left(s_{2 n}\right)$ converges to s, there exists a $N_{1} \in \mathbb{R}$ so that when $n>N_{1},\left|s_{2 n}-s\right|<\epsilon$. Since $\left(s_{2 n-1}\right)$ converges to s, there exists a $N_{2} \in \mathbb{R}$ so that when $n>N_{2}$, $\left|s_{2 n-1}-s\right|<\epsilon$. Let $N=\max \left\{N_{1}, N_{2}\right\}$. Now when $n>2 N,\left|s_{n}-s\right|$ is either equal to $\left|s_{2 n^{\prime}}-s\right|$ or $\left|s_{2 n^{\prime}-1}-s\right|$, where $n^{\prime}>N$. In both cases, $\left|s_{n}-s\right|<\epsilon$. This shows that $\left(s_{n}\right)$ converges to s.

References

[1] S. Lay, Analysis with an introduction to proof, Prentice Hall, Inc., Englewood Cliffs, NJ, 1986.

