$1|f|$ and f^{2} are integrable when f is integrable

Lemma 1.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function and let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$. Then for each $i \in\{1,2, \ldots, n\}, M_{i}(f)-m_{i}(f)=\sup \left\{|f(x)-f(y)|: x, y \in\left[x_{i-1}, x_{i}\right]\right\}$.

Proof. Let $x, y \in\left[x_{i-1}, x_{i}\right]$. Without loss of generality assume that $f(x) \geq f(y)$ and observe that $M_{i}(f) \geq f(x)$ and $m_{i}(f) \leq f(y)$. These inequalities imply that $M_{i}(f)-m_{i}(f) \geq f(x)-f(y)$. It now follows that

$$
\begin{equation*}
M_{i}(f)-m_{i}(f) \geq \sup \left\{|f(x)-f(y)|: x, y \in\left[x_{i-1}, x_{i}\right]\right\} . \tag{1}
\end{equation*}
$$

Let $\epsilon>0$ be given. There exist $x, y \in\left[x_{i-1}, x_{i}\right]$ such that $f(x)>M_{i}(f)-\frac{\epsilon}{2}$ and $f(y)<m_{i}(f)+\frac{\epsilon}{2}$. So $f(x)-f(y)>M_{i}(f)-m_{i}(f)-\epsilon$, and therefore, $|f(x)-f(y)|>M_{i}(f)-m_{i}(f)-\epsilon$. It now follows that $\sup \left\{|f(x)-f(y)|: x, y \in\left[x_{i-1}, x_{i}\right]\right\}>M_{i}(f)-m_{i}(f)-\epsilon$. Since this holds for any $\epsilon>0$, we have

$$
\begin{equation*}
\sup \left\{|f(x)-f(y)|: x, y \in\left[x_{i-1}, x_{i}\right]\right\} \geq M_{i}(f)-m_{i}(f) \tag{2}
\end{equation*}
$$

The inequalities (1) and (2) imply the desired equality.
Theorem 1.2. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is an integrable function. Then $|f|$ is also integrable on $[a, b]$.
Proof. Let $\epsilon>0$ be given. Since f is integrable, there exists a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$ such that $U(f, P)-L(f, P)<\epsilon$. For any $i \in\{1,2, \ldots, n\}$ and all $x, y \in\left[x_{i-1}, x_{i}\right]$, we have $||f(x)|-|f(y)|| \leq|f(x)-f(y)|$. So $M_{i}(f)-m_{i}(f)$ is an upper bound for the set $\{||f(x)|-|f(y)||$: $\left.x, y \in\left[x_{i-1}, x_{i}\right]\right\}$, which implies that $M_{i}(|f|)-m_{i}(|f|) \leq M_{i}(f)-m_{i}(f)$. Now,

$$
\begin{array}{r}
U(|f|, P)-L(|f|, P)=\sum_{i=1}^{n}\left(M_{i}(|f|)-m_{i}(|f|)\right) \Delta x_{i} \leq \sum_{i=1}^{n}\left(M_{i}(f)-m_{i}(f)\right) \Delta x_{i} \\
=U(f, P)-L(f, P)<\epsilon
\end{array}
$$

This shows that $|f|$ is integrable on $[a, b]$.
Theorem 1.3. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is an integrable function. Then f^{2} is also integrable on $[a, b]$.
Proof. Since f is bounded on $[a, b]$, there exists a $B>0$ such that $|f(x)+f(y)|<B$ for all $x, y \in[a, b$.] Now let $\epsilon>0$ be given. Since f is integrable, there exists a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$ such that $U(f, P)-L(f, P)<\frac{\epsilon}{B}$. For any $i \in\{1,2, \ldots, n\}$ and all $x, y \in\left[x_{i-1}, x_{i}\right]$, we have $\left|(f(x))^{2}-(f(y))^{2}\right|=|f(x)+f(y)||f(x)-f(y)|<B|f(x)-f(y)|$. So $B\left(M_{i}(f)-m_{i}(f)\right)$ is an upper bound for the set $\left\{\left|(f(x))^{2}-(f(y))^{2}\right|: x, y \in\left[x_{i-1}, x_{i}\right]\right\}$, which implies that $M_{i}\left(f^{2}\right)-m_{i}\left(f^{2}\right) \leq$ $B\left(M_{i}(f)-m_{i}(f)\right)$. Now,

$$
\begin{array}{r}
U\left(f^{2}, P\right)-L\left(f^{2}, P\right)=\sum_{i=1}^{n}\left(M_{i}\left(f^{2}\right)-m_{i}\left(f^{2}\right)\right) \Delta x_{i} \leq \sum_{i=1}^{n} B\left(M_{i}(f)-m_{i}(f)\right) \Delta x_{i} \\
=B(U(f, P)-L(f, P))<B \frac{\epsilon}{B}=\epsilon
\end{array}
$$

This shows that f^{2} is integrable on $[a, b]$.

2 Integration for continuous function

Theorem 2.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and let $P_{n}=\left\{x_{0}=a, x_{1}=a+\frac{(b-a)}{n}, x_{2}=\right.$ $\left.a+2 \frac{(b-a)}{n}, \ldots, x_{n}=b\right\}$. Then $\int_{a}^{b} f=\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\lim _{n \rightarrow \infty} L\left(f, P_{n}\right)$.

Proof. It suffices to show that $\lim _{n \rightarrow \infty}\left(U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right)=0$ since exercise 29.5 in [1] will then imply the result. Let $\epsilon>0$ be given. Since f is uniformly continuous on $[a, b]$, there exists a $\delta>0$ such that when $|x-y|<\delta,|f(x)-f(y)|<\frac{\epsilon}{b-a}$. Also, continuity of f implies that for each $i \in\{1,2, \ldots, n\}$, there exist points $s_{i}, t_{i} \in\left[x_{i-1}, x_{i}\right]$ such that $M_{i}=f\left(t_{i}\right)$ and $m_{i}=f\left(s_{i}\right)$. Now if $\Delta x_{i}=\frac{(b-a)}{n}<\delta$,

$$
\begin{array}{r}
U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta x_{i}=\sum_{i=1}^{n}\left(f\left(t_{i}\right)-f\left(s_{i}\right)\right) \Delta x_{i}<\frac{\epsilon}{b-a} \sum_{i=1}^{n} \Delta x_{i} \\
=\frac{\epsilon}{b-a}(b-a)=\epsilon
\end{array}
$$

Since $\lim _{n \rightarrow \infty} \frac{(b-a)}{n}=0$, there exists a $N \in \mathbb{R}$ such that when $n>N$, we have $\frac{(b-a)}{n}<\delta$. So when $n>N$, we get $U\left(f, P_{n}\right)-L\left(f, P_{n}\right)<\epsilon$, which implies that $\lim _{n \rightarrow \infty}\left(U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right)=0$.

Corollary 2.2. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$. Let $P_{n}=\left\{x_{0}=a, x_{1}=a+\right.$ $\left.\frac{(b-a)}{n}, x_{2}=a+2 \frac{(b-a)}{n}, \ldots, x_{n}=b\right\}$ and for each $i \in\{1,2, \ldots, n\}$, let $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ be sample points. Then $\int_{a}^{b} f=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$.

Proof. For each $i \in\{1,2, \ldots, n\}, m_{i} \leq f\left(x_{i}^{*}\right) \leq M_{i}$. So

$$
L\left(f, P_{n}\right)=\sum_{i=1}^{n} m_{i} \Delta x_{i} \leq \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i} \leq \sum_{i=1}^{n} M_{i} \Delta x_{i}=U\left(f, P_{n}\right)
$$

Since $\lim U\left(f, P_{n}\right)=\lim L\left(f, P_{n}\right)$, the Squeeze Theorem implies that

$$
\int_{a}^{b} f=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}=\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\lim _{n \rightarrow \infty} L\left(f, P_{n}\right)
$$

References

[1] S. Lay, Analysis with an introduction to proof, Prentice Hall, Inc., Englewood Cliffs, NJ, 1986.

