1 |f| and f^2 are integrable when f is integrable

Lemma 1.1. Let $f : [a, b] \to \mathbb{R}$ be a bounded function and let $P = \{x_0, x_1, ..., x_n\}$ be a partition of [a, b]. Then for each $i \in \{1, 2, ..., n\}$, $M_i(f) - m_i(f) = \sup\{|f(x) - f(y)| : x, y \in [x_{i-1}, x_i]\}$.

Proof. Let $x, y \in [x_{i-1}, x_i]$. Without loss of generality assume that $f(x) \ge f(y)$ and observe that $M_i(f) \ge f(x)$ and $m_i(f) \le f(y)$. These inequalities imply that $M_i(f) - m_i(f) \ge f(x) - f(y)$. It now follows that

$$M_i(f) - m_i(f) \ge \sup\{|f(x) - f(y)| : x, y \in [x_{i-1}, x_i]\}.$$
(1)

Let $\epsilon > 0$ be given. There exist $x, y \in [x_{i-1}, x_i]$ such that $f(x) > M_i(f) - \frac{\epsilon}{2}$ and $f(y) < m_i(f) + \frac{\epsilon}{2}$. So $f(x) - f(y) > M_i(f) - m_i(f) - \epsilon$, and therefore, $|f(x) - f(y)| > M_i(f) - m_i(f) - \epsilon$. It now follows that $\sup\{|f(x) - f(y)| : x, y \in [x_{i-1}, x_i]\} > M_i(f) - m_i(f) - \epsilon$. Since this holds for any $\epsilon > 0$, we have

$$\sup\{|f(x) - f(y)| : x, y \in [x_{i-1}, x_i]\} \ge M_i(f) - m_i(f).$$
(2)

The inequalities (1) and (2) imply the desired equality.

Theorem 1.2. Suppose that $f : [a,b] \to \mathbb{R}$ is an integrable function. Then |f| is also integrable on [a,b].

Proof. Let $\epsilon > 0$ be given. Since f is integrable, there exists a partition $P = \{x_0, x_1, \ldots, x_n\}$ of [a, b] such that $U(f, P) - L(f, P) < \epsilon$. For any $i \in \{1, 2, \ldots, n\}$ and all $x, y \in [x_{i-1}, x_i]$, we have $||f(x)| - |f(y)|| \le |f(x) - f(y)|$. So $M_i(f) - m_i(f)$ is an upper bound for the set $\{||f(x)| - |f(y)|| \le x, y \in [x_{i-1}, x_i]\}$, which implies that $M_i(|f|) - m_i(|f|) \le M_i(f) - m_i(f)$. Now,

$$U(|f|, P) - L(|f|, P) = \sum_{i=1}^{n} (M_i(|f|) - m_i(|f|)) \Delta x_i \le \sum_{i=1}^{n} (M_i(f) - m_i(f)) \Delta x_i$$
$$= U(f, P) - L(f, P) < \epsilon.$$

This shows that |f| is integrable on [a, b].

Theorem 1.3. Suppose that $f : [a, b] \to \mathbb{R}$ is an integrable function. Then f^2 is also integrable on [a, b].

Proof. Since f is bounded on [a, b], there exists a B > 0 such that |f(x) + f(y)| < B for all $x, y \in [a, b]$. Now let $\epsilon > 0$ be given. Since f is integrable, there exists a partition $P = \{x_0, x_1, \ldots, x_n\}$ of [a, b] such that $U(f, P) - L(f, P) < \frac{\epsilon}{B}$. For any $i \in \{1, 2, \ldots, n\}$ and all $x, y \in [x_{i-1}, x_i]$, we have $|(f(x))^2 - (f(y))^2| = |f(x) + f(y)| |f(x) - f(y)| < B|f(x) - f(y)|$. So $B(M_i(f) - m_i(f))$ is an upper bound for the set $\{|(f(x))^2 - (f(y))^2| : x, y \in [x_{i-1}, x_i]\}$, which implies that $M_i(f^2) - m_i(f^2) \le B(M_i(f) - m_i(f))$. Now,

$$U(f^{2}, P) - L(f^{2}, P) = \sum_{i=1}^{n} (M_{i}(f^{2}) - m_{i}(f^{2})) \Delta x_{i} \le \sum_{i=1}^{n} B(M_{i}(f) - m_{i}(f)) \Delta x_{i}$$
$$= B(U(f, P) - L(f, P)) < B\frac{\epsilon}{B} = \epsilon.$$

This shows that f^2 is integrable on [a, b].

2 Integration for continuous function

Theorem 2.1. Let $f : [a,b] \to \mathbb{R}$ be continuous on [a,b] and let $P_n = \{x_0 = a, x_1 = a + \frac{(b-a)}{n}, x_2 = a + 2\frac{(b-a)}{n}, \dots, x_n = b\}$. Then $\int_a^b f = \lim_{n \to \infty} U(f, P_n) = \lim_{n \to \infty} L(f, P_n)$.

Proof. It suffices to show that $\lim_{n \to \infty} (U(f, P_n) - L(f, P_n)) = 0$ since exercise 29.5 in [1] will then imply the result. Let $\epsilon > 0$ be given. Since f is uniformly continuous on [a, b], there exists a $\delta > 0$ such that when $|x - y| < \delta$, $|f(x) - f(y)| < \frac{\epsilon}{b-a}$. Also, continuity of f implies that for each $i \in \{1, 2, \ldots, n\}$, there exist points $s_i, t_i \in [x_{i-1}, x_i]$ such that $M_i = f(t_i)$ and $m_i = f(s_i)$. Now if $\Delta x_i = \frac{(b-a)}{n} < \delta$,

$$U(f, P_n) - L(f, P_n) = \sum_{i=1}^n (M_i - m_i) \Delta x_i = \sum_{i=1}^n (f(t_i) - f(s_i)) \Delta x_i < \frac{\epsilon}{b-a} \sum_{i=1}^n \Delta x_i$$
$$= \frac{\epsilon}{b-a} (b-a) = \epsilon.$$

Since $\lim_{n \to \infty} \frac{(b-a)}{n} = 0$, there exists a $N \in \mathbb{R}$ such that when n > N, we have $\frac{(b-a)}{n} < \delta$. So when n > N, we get $U(f, P_n) - L(f, P_n) < \epsilon$, which implies that $\lim_{n \to \infty} (U(f, P_n) - L(f, P_n)) = 0$.

Corollary 2.2. Suppose that $f : [a,b] \to \mathbb{R}$ is continuous on [a,b]. Let $P_n = \{x_0 = a, x_1 = a + \frac{(b-a)}{n}, x_2 = a + 2\frac{(b-a)}{n}, \dots, x_n = b\}$ and for each $i \in \{1, 2, \dots, n\}$, let $x_i^* \in [x_{i-1}, x_i]$ be sample points. Then $\int_a^b f = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x_i$.

Proof. For each $i \in \{1, 2, \ldots, n\}$, $m_i \leq f(x_i^*) \leq M_i$. So

$$L(f, P_n) = \sum_{i=1}^n m_i \, \Delta x_i \le \sum_{i=1}^n f(x_i^*) \Delta x_i \le \sum_{i=1}^n M_i \, \Delta x_i = U(f, P_n).$$

Since $\lim U(f, P_n) = \lim L(f, P_n)$, the Squeeze Theorem implies that

$$\int_{a}^{b} f = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x_i = \lim_{n \to \infty} U(f, P_n) = \lim_{n \to \infty} L(f, P_n).$$

References

[1] S. Lay, Analysis with an introduction to proof, Prentice Hall, Inc., Englewood Cliffs, NJ, 1986.