
1 |f | and f 2 are integrable when f is integrable

Lemma 1.1. Let f : [a, b] → R be a bounded function and let P = {x0, x1, . . . , xn} be a partition of
[a, b]. Then for each i ∈ {1, 2, . . . , n}, Mi(f)−mi(f) = sup{|f(x)− f(y)| : x, y ∈ [xi−1, xi]}.

Proof. Let x, y ∈ [xi−1, xi]. Without loss of generality assume that f(x) ≥ f(y) and observe that
Mi(f) ≥ f(x) and mi(f) ≤ f(y). These inequalities imply that Mi(f)−mi(f) ≥ f(x)− f(y). It now
follows that

Mi(f)−mi(f) ≥ sup{|f(x)− f(y)| : x, y ∈ [xi−1, xi]}. (1)

Let ε > 0 be given. There exist x, y ∈ [xi−1, xi] such that f(x) > Mi(f)− ε
2 and f(y) < mi(f)+ ε

2 .
So f(x)− f(y) > Mi(f)−mi(f)− ε, and therefore, |f(x)− f(y)| > Mi(f)−mi(f)− ε. It now follows
that sup{|f(x) − f(y)| : x, y ∈ [xi−1, xi]} > Mi(f) −mi(f) − ε. Since this holds for any ε > 0, we
have

sup{|f(x)− f(y)| : x, y ∈ [xi−1, xi]} ≥ Mi(f)−mi(f). (2)

The inequalities (1) and (2) imply the desired equality.

Theorem 1.2. Suppose that f : [a, b] → R is an integrable function. Then |f | is also integrable on
[a, b].

Proof. Let ε > 0 be given. Since f is integrable, there exists a partition P = {x0, x1, . . . , xn} of
[a, b] such that U(f, P ) − L(f, P ) < ε. For any i ∈ {1, 2, . . . , n} and all x, y ∈ [xi−1, xi], we have
| |f(x)| − |f(y)| | ≤ |f(x)− f(y)|. So Mi(f)−mi(f) is an upper bound for the set {| |f(x)| − |f(y)| | :
x, y ∈ [xi−1, xi]}, which implies that Mi(|f |)−mi(|f |) ≤ Mi(f)−mi(f). Now,

U(|f |, P )− L(|f |, P ) =
n∑

i=1

(Mi(|f |)−mi(|f |))∆xi ≤
n∑

i=1

(Mi(f)−mi(f))∆xi

= U(f, P )− L(f, P ) < ε.

This shows that |f | is integrable on [a, b].

Theorem 1.3. Suppose that f : [a, b] → R is an integrable function. Then f2 is also integrable on
[a, b].

Proof. Since f is bounded on [a, b], there exists a B > 0 such that |f(x)+f(y)| < B for all x, y ∈ [a, b.]
Now let ε > 0 be given. Since f is integrable, there exists a partition P = {x0, x1, . . . , xn} of
[a, b] such that U(f, P ) − L(f, P ) < ε

B . For any i ∈ {1, 2, . . . , n} and all x, y ∈ [xi−1, xi], we have
| (f(x))2− (f(y))2 | = |f(x) + f(y)| |f(x)− f(y)| < B|f(x)− f(y)|. So B(Mi(f)−mi(f)) is an upper
bound for the set {| (f(x))2 − (f(y))2 | : x, y ∈ [xi−1, xi]}, which implies that Mi(f2) − mi(f2) ≤
B(Mi(f)−mi(f)). Now,

U(f2, P )− L(f2, P ) =
n∑

i=1

(Mi(f2)−mi(f2))∆xi ≤
n∑

i=1

B(Mi(f)−mi(f))∆xi

= B(U(f, P )− L(f, P )) < B
ε

B
= ε.

This shows that f2 is integrable on [a, b].



2 Integration for continuous function

Theorem 2.1. Let f : [a, b] → R be continuous on [a, b] and let Pn = {x0 = a, x1 = a + (b−a)
n , x2 =

a + 2 (b−a)
n , . . . , xn = b}. Then

∫ b

a
f = lim

n→∞
U(f, Pn) = lim

n→∞
L(f, Pn).

Proof. It suffices to show that lim
n→∞

(U(f, Pn)−L(f, Pn)) = 0 since exercise 29.5 in [1] will then imply

the result. Let ε > 0 be given. Since f is uniformly continuous on [a, b], there exists a δ > 0 such that
when |x − y| < δ, |f(x) − f(y)| < ε

b−a . Also, continuity of f implies that for each i ∈ {1, 2, . . . , n},
there exist points si, ti ∈ [xi−1, xi] such that Mi = f(ti) and mi = f(si). Now if ∆xi = (b−a)

n < δ,

U(f, Pn)− L(f, Pn) =
n∑

i=1

(Mi −mi)∆xi =
n∑

i=1

(f(ti)− f(si))∆xi <
ε

b− a

n∑
i=1

∆xi

=
ε

b− a
(b− a) = ε.

Since lim
n→∞

(b−a)
n = 0, there exists a N ∈ R such that when n > N , we have (b−a)

n < δ. So when

n > N , we get U(f, Pn)− L(f, Pn) < ε, which implies that lim
n→∞

(U(f, Pn)− L(f, Pn)) = 0.

Corollary 2.2. Suppose that f : [a, b] → R is continuous on [a, b]. Let Pn = {x0 = a, x1 = a +
(b−a)

n , x2 = a + 2 (b−a)
n , . . . , xn = b} and for each i ∈ {1, 2, . . . , n}, let x∗i ∈ [xi−1, xi] be sample points.

Then
∫ b

a
f = lim

n→∞

n∑
i=1

f(x∗i )∆xi.

Proof. For each i ∈ {1, 2, . . . , n}, mi ≤ f(x∗i ) ≤ Mi. So

L(f, Pn) =
n∑

i=1

mi ∆xi ≤
n∑

i=1

f(x∗i )∆xi ≤
n∑

i=1

Mi ∆xi = U(f, Pn).

Since lim U(f, Pn) = lim L(f, Pn), the Squeeze Theorem implies that∫ b

a
f = lim

n→∞

n∑
i=1

f(x∗i )∆xi = lim
n→∞

U(f, Pn) = lim
n→∞

L(f, Pn).
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