1) Provide an example or state that no such example exists. Solve exactly five (3 points each).
a) A function $f:(a, b) \rightarrow \mathbb{R}$ that is differentiable on the interval (a, b) but not uniformly continuous on (a, b).

Example: $f(x)=\frac{1}{x}$ is differentiable on $(0,1)$ but not uniformly continuous on $(0,1)$.
b) A function $f:(a, b) \rightarrow \mathbb{R}$ that is uniformly continuous on (a, b) but not differentiable on (a, b).

Example: $f(x)=|x|$ is not differentiable on $(-1,1)$ and it is uniformly continuous on any interval.
c) A continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a closed subset G of \mathbb{R} such that $f(G)$ is not closed.

Example: when $f(x)=e^{x}$ and $G=\mathbb{R}$ (a closed set), $f(G)=(0, \infty)$, which is open and not closed.
d) A continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and an open subset H of \mathbb{R} such that $f(H)$ is not open.

Example: when $f(x)=0$ for all $x \in \mathbb{R}$ and $H=\mathbb{R}$ (an open set), $f(H)=\{0\}$, which is closed and not open.
e) A one-to-one (injective) function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous on \mathbb{R} and an open set $G \subset \mathbb{R}$ such that $f(G)$ is not open.

No such example exists. See exercise 22.11 in [1].
f) A function $f:[a, b] \rightarrow \mathbb{R}$ that is differentiable on $[a, b]$ but not Riemann integrable on $[a, b]$.

No such example exists since differentiability on $[a, b]$ implies continuity on $[a, b]$ and continuous functions on closed and bounded intervals are always integrable.
g) A function $f:[a, b] \rightarrow \mathbb{R}$ that is differentiable on $[a, b]$ and f^{\prime} is not integrable on $[a, b]$.

Example: let $f:[-1,1] \rightarrow \mathbb{R}$ be defined as

$$
f(x)=\left\{\begin{array}{cc}
0 & \text { if } x=0 \\
x^{2} \sin \left(\frac{1}{x^{2}}\right) & \text { if } x \neq 0
\end{array}\right.
$$

Now f^{\prime} is unbounded on $[-1,1]$, and hence, not integrable.
2) Prove or provide a counterexample. Solve exactly five (3 points each).
a) If $f:(a, b) \rightarrow \mathbb{R}$ is differentiable on (a, b) and f is strictly decreasing on (a, b), then $f^{\prime}(x)<0$ for all $x \in(a, b)$.

Counterexample: $f(x)=-x^{3}$ is strictly decreasing and differentiable on $(-1,1)$ and $f^{\prime}(0)=0$.
b) Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$ be two real-valued functions defined on the domain $D \subset \mathbb{R}$. If f and g are both uniformly continuous on D, then $f-g$ is also uniformly continuous on D.

Proof. Let $\epsilon>0$ be given. There exists a $\delta_{1}>0$ such that when $x, y \in D$ and $|x-y|<\delta_{1}$, $|f(x)-f(y)|<\epsilon / 2$. Also there exists a $\delta_{2}>0$ such that when $x, y \in D$ and $|x-y|<\delta_{2}$, $|g(x)-g(y)|<\epsilon / 2$. Now let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ and observe that when $|x-y|<\delta, \mid(f-g)(x)-$
$(f-g)(y)|\leq|f(x)-f(y)|+|g(x)-g(y)|<\epsilon / 2+\epsilon / 2=\epsilon$. This establishes uniform continuity of $f-g$ on D.
c) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous and bounded function on \mathbb{R}, then f assumes its maximum value or its minimum value.

Counterexample: $f(x)=\tan ^{-1} x$ is continuous and bounded on \mathbb{R} with the property that the maximum and minimum values are both not attained/assumed; $\tan ^{-1} x$ is an increasing function bounded between its horizontal asymptotes $y= \pm \pi / 2$.
d) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on \mathbb{R}. Then for every $c \in \mathbb{R}$, there exist $a, b \in \mathbb{R}$ such that $a<c<b$ and $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Counterexample: when $f(x)=x^{3}, f^{\prime}(0)=0$ and for all $a<0<b, \frac{f(b)-f(a)}{b-a}>0$ because the function is strictly increasing.
e) Let $f:(a, b) \rightarrow \mathbb{R}$ and $g:(a, b) \rightarrow \mathbb{R}$ be two functions and let $c \in(a, b)$. If $f g$ is differentiable at c and g is differentiable at c, then f is also differentiable at c.

Counterexample: let $f(x)=|x|$ and let $g(x)=x$, and then observe that $x|x|$ and x are both differentiable at 0 but $|x|$ is not differentiable at zero.
f) Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded on $[a, b]$. If f^{2} is integrable on $[a, b]$, then so is f.

Counterexample: let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{aligned}
1 & \text { if } x \text { is rational } \\
-1 & \text { if } x \text { is irrational }
\end{aligned}\right.
$$

Now observe that f^{2} is a constant function, and hence, integrable. However, f is not integrable because $L(f, P)=-1$ and $U(f, P)=1$ for any partition of P, which implies that $L(f)=-1$ and $U(f)=1$.
g) Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable on $[a, b]$. Then there exists a $c \in[a, b]$ such that $f(c)(b-a)=\int_{a}^{b} f d x$.

Counterexample: let $f:[-1,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{aligned}
1 & \text { if } x \geq 0 \\
-1 & \text { if } x<0
\end{aligned}\right.
$$

Let $P_{n}=\left\{-1,-1+\frac{1}{n},-1+\frac{2}{n}, \ldots, 0, \frac{1}{n}, \frac{2}{n}, \ldots, 1\right\}$ and notice that $U\left(f, P_{n}\right)=\frac{2}{n}, L\left(f, P_{n}\right)=0$. This implies that $U(f) \leq 0$ and $L(f) \geq 0$. Since $U(f) \geq L(f)$, we have $U(f)=L(f)=0$, that is, $\int_{-1}^{1} f d x=0$.

In our present context, $f(c)(b-a)=\int_{a}^{b} f d x$ is the equation $2 f(c)=\int_{-1}^{1} f d x=0$. So a solution exists if and only if there is a $c \in[a, b]$ such that $f(c)=0$. Note that no such point exists.
3) Provide solutions for exactly two of the following (10 points each).
a) Let $f:(a, b) \rightarrow \mathbb{R}$ be a function that satisfies $|f(x)-f(y)| \leq(x-y)^{2}$ for all $x, y \in(a, b)$. Prove that f is constant on (a, b).

Proof. Let c be a point in (a, b) and note that $|f(x)-f(c)| \leq(x-c)^{2}$ for all $x \in(a, b)$. This implies that for all $x \in(a, b)$ and $x \neq c$,

$$
-\left|\frac{(x-c)^{2}}{x-c}\right| \leq \frac{f(x)-f(c)}{x-c} \leq\left|\frac{(x-c)^{2}}{x-c}\right| .
$$

Now since

$$
\begin{gathered}
\lim _{x \rightarrow c}-\left|\frac{(x-c)^{2}}{x-c}\right|=\lim _{x \rightarrow c}\left|\frac{(x-c)^{2}}{x-c}\right|=0, \\
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=0 .
\end{gathered}
$$

So f^{\prime} is identically equal to zero on (a, b), which implies that f is constant on (a, b).
b) Show that $|\log x-\log y| \leq|x-y|$ for all $x \geq 1$ and all $y \geq 1$. Use this inequality to prove that $\log x$ is uniformly continuous on $[1, \infty)$. Also, show that $\log x$ is not uniformly continuous on $(0,1]$.

Proof. Let $f(x)=\log x$ and assume that $x, y \in[1, \infty)$, with $x \neq y$. The Mean Value Theorem implies that there exists a $c \in(x, y)$ such that $\frac{f(x)-f(y)}{x-y}=f^{\prime}(c)=\frac{1}{c}$. Notice that when $c \geq 1$, $0 \leq \frac{1}{c} \leq 1$. So $|f(x)-f(y)|=\frac{1}{c}|x-y| \leq|x-y|$ for all $x, y \in[1, \infty)$, with $x \neq y$. Also, this inequality holds trivially when $x=y$. This establishes that $|\log x-\log y| \leq|x-y|$ for all $x \geq 1$ and all $y \geq 1$.

Now let $\epsilon>0$ be given and then let $\delta=\epsilon$. So when $x, y \in[1, \infty)$ and $|x-y|<\delta=\epsilon$, we have $|\log x-\log y| \leq|x-y|<\epsilon$. This proves that $\log x$ is uniformly continuous on $[1, \infty)$.

Consider the cauchy sequence $\left(s_{n}\right)$ in $(0,1]$ defined by the equation $s_{n}=\frac{1}{n}$ for $n \in \mathbb{N}$. It suffices to show that $\left(f\left(s_{n}\right)\right)=(-\log n)$ is not cauchy in order to prove that $\log x$ is not uniformly continuous on $(0,1]$. We will show that $(-\log n)$ is not cauchy by proving that $(-\log n)$ is not bounded. Let $M>0$ be given and then choose $N \in \mathbb{N}$ such that $N>e^{M}$. Observe that $|-\log N|>\log e^{M}=M$-this follows from the fact that $\log x$ is an increasing function $\left(f^{\prime}(x)=\frac{1}{x}>0\right.$ for $\left.x>0\right)$. So $(-\log n)$ is not bounded, and therefore, $\log x$ is not uniformly continuous on $(0,1]$.
c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined as follows.

$$
f(x)=\left\{\begin{aligned}
x^{2} & \text { if } x \text { is rational } \\
-x^{2} & \text { if } x \text { is irrational }
\end{aligned}\right.
$$

Show that f is continuous only at 0 . Is f differentiable anywhere? Explain.
Proof. Suppose f is continuous at some $x \in \mathbb{R}$. Let $\left(x_{n}\right)$ be a sequence of rationals converging to x and let $\left(y_{n}\right)$ be a sequence of irrationals converging to x. So $\lim f\left(x_{n}\right)=x^{2}$ and $\lim f\left(y_{n}\right)=$ $-x^{2}$. Since f is continuous at $x, x^{2}=-x^{2}$, which is only possible at $x=0$. So f is not continuous when $x \neq 0$. This also means that f is not differentiable when $x \neq 0$.

We will now show that $f^{\prime}(0)=0$. For all $x \neq 0$, we have

$$
-\left|\frac{x^{2}}{x}\right| \leq \frac{f(x)-f(0)}{x-0} \leq\left|\frac{x^{2}}{x}\right| .
$$

Now since

$$
\begin{aligned}
& \lim _{x \rightarrow 0}-\left|\frac{x^{2}}{x}\right|=\lim _{x \rightarrow 0}\left|\frac{x^{2}}{x}\right|=0 \\
& f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0
\end{aligned}
$$

This also proves that f is continuous at 0 .
d) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and $\int_{a}^{b}(f(x))^{2} d x=0$. Prove that $f(x)=0$ for all $x \in[a, b]$.
Proof. Let $g(x)=(f(x))^{2}$ and observe that g is continuous on $[a, b], g(x) \geq 0$ on $[a, b]$, and $L(g)=0$ (because $\int_{a}^{b} g d x=0$). Now exercise 29.7 in [1] implies that g is identically zero on $[a, b]$. Since $g(x)=(f(x))^{2}, f$ must be identically equal to zero on $[a, b]$.
e) If $f:[0,1] \rightarrow[0,2]$ is a differentiable on $[0,1]$, with $f(0)=0$ and $f(1)=2$, then there exists a point $c \in[0,1]$ such that $f^{\prime}(c)=2$. You may assume that f^{\prime} is continuous on $[0,1]$ to simplify the proof; however, this result holds even when f^{\prime} is not a continuous function.

Proof. The simplest approach is to apply the Mean Value Theorem. There exists a $c \in(0,1)$ such that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}=2$. There are at least two other proofs that do not (directly) utilize the Mean Value Theorem; these are outlined below.

If there exist points $x, y \in[0,1]$ such that $f^{\prime}(x)<2$ and $f^{\prime}(y)>2$, then the Intermediate Value Theorem for Derivatives would imply that there exists a point $c \in[0,1]$ such that $f^{\prime}(c)=2$. If we assume that f^{\prime} is continuous on $[0,1]$, the Intermediate Value Theorem (for continuous functions) is sufficient and we need not employ the Intermediate Value Theorem for Derivatives.

So assume that either $f^{\prime}(x)<2$ for all $x \in[0,1]$ or $f^{\prime}(x)>2$ for all $x \in[0,1]$. Now if f^{\prime} is continuous on $[0,1], f^{\prime}$ is integrable on $[0,1]$, and we may apply the Fundamental Theorem of Calculus to conclude that $2=f(1)-f(0)=\int_{0}^{1} f^{\prime}(x) d x$. However, if $f^{\prime}(x)<2$ for all $x \in[0,1]$, we have $\int_{0}^{1} f^{\prime}(x) d x<\int_{0}^{1} 2 d x=2$. Similarly, if $f^{\prime}(x)>2$ for all $x \in[0,1]$, we have $\int_{0}^{1} f^{\prime}(x) d x>\int_{0}^{1} 2 d x=2$. In both cases we contradict our earlier conclusion that $\int_{0}^{1} f^{\prime}(x) d x=2$. This completes the proof when f^{\prime} is continuous on $[0,1]$.

Now suppose that f^{\prime} is not continuous on $[0,1]$. We can still assume that either $f^{\prime}(x)<2$ for all $x \in[0,1]$ or $f^{\prime}(x)>2$ for all $x \in[0,1]$; otherwise the Intermediate Value Theorem for derivatives would imply that there exists a point $c \in[0,1]$ such that $f^{\prime}(c)=2$. If $f^{\prime}(x)<2$ for all $x \in[0,1]$, let $h(x)=f(x)-2 x$. Observe that $h^{\prime}(x)=f^{\prime}(x)-2<0$ for all $x \in[0,1]$ and $h(0)=0$. This implies that the function is strictly decreasing on $[0,1]$ and $f(x)<2 x$ for all $x \in(0,1]$. In particular, $f(1)<2$, which contradicts the fact that $f(1)=2$. Similarly, if $f^{\prime}(x)>2$ for all $x \in[0,1]$, we argue that $f(x)>2 x$ for all $x \in(0,1]$. In particular, $f(1)>2$, which is again a contradiction. So there exists a point $c \in[0,1]$ such that $f^{\prime}(c)=2$.
f) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$ and let $g:[a, b] \rightarrow \mathbb{R}$ be integrable on $[a, b]$, with $g(x) \geq 0$ for all $x \in[a, b]$. Prove that there exists a $c \in[a, b]$ so that $\int_{a}^{b}(f g) d x=$ $f(c) \int_{a}^{b} g d x$. This result is often referred to as the Extended Mean Value Theorem for Integrals.

Proof. Let $h(x)=\int_{a}^{b}(f g) d x-f(x) \int_{a}^{b} g d x$ for all $x \in[a, b]$; note that h is continuous on $[a, b]$ since f is continuous on $[a, b]$. Also, since f is continuous, there exist points $x_{1}, x_{2} \in[a, b]$ where f assumes its minimum m and its maximum M respectively.

Now $f(x) g(x) \leq M g(x)$ for all $x \in[a, b]$ since $f(x) \leq M$ and $g(x) \geq 0$ for all $x \in[a, b]$. This implies that $\int_{a}^{b}(f g) d x \leq \int_{a}^{b} M g d x=M \int_{a}^{b} g d x=f\left(x_{2}\right) \int_{a}^{b} g d x$. In other words, $h\left(x_{2}\right) \leq 0$. Similarly, $f(x) g(x) \geq m g(x)$ for all $x \in[a, b]$ implies that $\int_{a}^{b}(f g) d x \geq \int_{a}^{b} m g d x=m \int_{a}^{b} g d x=$ $f\left(x_{1}\right) \int_{a}^{b} g d x$. In other words, $h\left(x_{1}\right) \geq 0$. If $h\left(x_{1}\right)=0$, let $c=x_{1}$, and if $h\left(x_{2}\right)=0$, let $c=x_{2}$. If $h\left(x_{1}\right) \neq 0$ and $h\left(x_{2}\right) \neq 0$, the Intermediate Value Theorem applied to the continuous function h yields a point $c \in[a, b]$ such that $h(c)=0$. In all cases, $h(c)=0$ implies the desired equality $\int_{a}^{b}(f g) d x=f(c) \int_{a}^{b} g d x$.

References

[1] S. Lay, Analysis with an introduction to proof, Prentice Hall, Inc., Englewood Cliffs, NJ, 1986.

