
Real Analysis Final Summer 2008

1) Provide an example or state that no such example exists. Solve exactly five (3 points each).
a) A function f : (a, b) → R that is differentiable on the interval (a, b) but not uniformly

continuous on (a, b).
Example: f(x) = 1

x
is differentiable on (0, 1) but not uniformly continuous on (0, 1).

b) A function f : (a, b) → R that is uniformly continuous on (a, b) but not differentiable
on (a, b).

Example: f(x) = |x| is not differentiable on (−1, 1) and it is uniformly continuous on any
interval.

c) A continuous function f : R → R and a closed subset G of R such that f(G) is not
closed.

Example: when f(x) = ex and G = R (a closed set), f(G) = (0,∞), which is open and
not closed.

d) A continuous function f : R → R and an open subset H of R such that f(H) is not
open.

Example: when f(x) = 0 for all x ∈ R and H = R (an open set), f(H) = {0}, which is
closed and not open.

e) A one-to-one (injective) function f : R → R that is continuous on R and an open set
G ⊂ R such that f(G) is not open.

No such example exists. See exercise 22.11 in [1].
f) A function f : [a, b] → R that is differentiable on [a, b] but not Riemann integrable on

[a, b].
No such example exists since differentiability on [a, b] implies continuity on [a, b] and con-

tinuous functions on closed and bounded intervals are always integrable.
g) A function f : [a, b] → R that is differentiable on [a, b] and f ′ is not integrable on [a, b].
Example: let f : [−1, 1] → R be defined as

f(x) =

{
0 if x = 0

x2 sin
(

1
x2

)
if x 6= 0

Now f ′ is unbounded on [−1, 1], and hence, not integrable.

2) Prove or provide a counterexample. Solve exactly five (3 points each).
a) If f : (a, b) → R is differentiable on (a, b) and f is strictly decreasing on (a, b), then

f ′(x) < 0 for all x ∈ (a, b).
Counterexample: f(x) = −x3 is strictly decreasing and differentiable on (−1, 1) and

f ′(0) = 0.
b) Let f : D → R and g : D → R be two real-valued functions defined on the domain

D ⊂ R. If f and g are both uniformly continuous on D, then f−g is also uniformly continuous
on D.

Proof. Let ε > 0 be given. There exists a δ1 > 0 such that when x, y ∈ D and |x − y| < δ1,
|f(x) − f(y)| < ε/2. Also there exists a δ2 > 0 such that when x, y ∈ D and |x − y| < δ2,
|g(x)− g(y)| < ε/2. Now let δ = min{δ1, δ2} and observe that when |x− y| < δ, |(f − g)(x)−



(f −g)(y)| ≤ |f(x)−f(y)|+ |g(x)−g(y)| < ε/2+ ε/2 = ε. This establishes uniform continuity
of f − g on D.

c) If f : R → R is a continuous and bounded function on R, then f assumes its maximum
value or its minimum value.

Counterexample: f(x) = tan−1 x is continuous and bounded on R with the property that
the maximum and minimum values are both not attained/assumed; tan−1 x is an increasing
function bounded between its horizontal asymptotes y = ±π/2.

d) Suppose f : R → R is differentiable on R. Then for every c ∈ R, there exist a, b ∈ R
such that a < c < b and f ′(c) = f(b)−f(a)

b−a
.

Counterexample: when f(x) = x3, f ′(0) = 0 and for all a < 0 < b, f(b)−f(a)
b−a

> 0 because
the function is strictly increasing.

e) Let f : (a, b) → R and g : (a, b) → R be two functions and let c ∈ (a, b). If fg is
differentiable at c and g is differentiable at c, then f is also differentiable at c.

Counterexample: let f(x) = |x| and let g(x) = x, and then observe that x|x| and x are
both differentiable at 0 but |x| is not differentiable at zero.

f) Let f : [a, b] → R be bounded on [a, b]. If f 2 is integrable on [a, b], then so is f.
Counterexample: let f : [0, 1] → R be defined by

f(x) =

{
1 if x is rational

−1 if x is irrational

Now observe that f 2 is a constant function, and hence, integrable. However, f is not integrable
because L(f, P ) = −1 and U(f, P ) = 1 for any partition of P , which implies that L(f) = −1
and U(f) = 1.

g) Let f : [a, b] → R be integrable on [a, b]. Then there exists a c ∈ [a, b] such that

f(c)(b− a) =
∫ b

a
f dx.

Counterexample: let f : [−1, 1] → R be defined by

f(x) =

{
1 if x ≥ 0

−1 if x < 0

Let Pn = {−1,−1 + 1
n
,−1 + 2

n
, . . . , 0, 1

n
, 2

n
, . . . , 1} and notice that U(f, Pn) = 2

n
, L(f, Pn) = 0.

This implies that U(f) ≤ 0 and L(f) ≥ 0. Since U(f) ≥ L(f), we have U(f) = L(f) = 0,

that is,
∫ 1

−1
f dx = 0.

In our present context, f(c)(b − a) =
∫ b

a
f dx is the equation 2f(c) =

∫ 1

−1
f dx = 0. So a

solution exists if and only if there is a c ∈ [a, b] such that f(c) = 0. Note that no such point
exists.

3) Provide solutions for exactly two of the following (10 points each).
a) Let f : (a, b) → R be a function that satisfies |f(x)−f(y)| ≤ (x−y)2 for all x, y ∈ (a, b).

Prove that f is constant on (a, b).



Proof. Let c be a point in (a, b) and note that |f(x)− f(c)| ≤ (x− c)2 for all x ∈ (a, b). This
implies that for all x ∈ (a, b) and x 6= c,

−
∣∣∣∣(x− c)2

x− c

∣∣∣∣ ≤ f(x)− f(c)

x− c
≤

∣∣∣∣(x− c)2

x− c

∣∣∣∣ .

Now since

lim
x→c

−
∣∣∣∣(x− c)2

x− c

∣∣∣∣ = lim
x→c

∣∣∣∣(x− c)2

x− c

∣∣∣∣ = 0,

f ′(c) = lim
x→c

f(x)− f(c)

x− c
= 0.

So f ′ is identically equal to zero on (a, b), which implies that f is constant on (a, b).

b) Show that |log x − log y| ≤ |x − y| for all x ≥ 1 and all y ≥ 1. Use this inequality
to prove that log x is uniformly continuous on [1,∞). Also, show that log x is not uniformly
continuous on (0, 1].

Proof. Let f(x) = log x and assume that x, y ∈ [1,∞), with x 6= y. The Mean Value Theorem

implies that there exists a c ∈ (x, y) such that f(x)−f(y)
x−y

= f ′(c) = 1
c
. Notice that when c ≥ 1,

0 ≤ 1
c
≤ 1. So |f(x) − f(y)| = 1

c
|x − y| ≤ |x − y| for all x, y ∈ [1,∞), with x 6= y. Also, this

inequality holds trivially when x = y. This establishes that |log x − log y| ≤ |x − y| for all
x ≥ 1 and all y ≥ 1.

Now let ε > 0 be given and then let δ = ε. So when x, y ∈ [1,∞) and |x− y| < δ = ε, we
have |log x− log y| ≤ |x− y| < ε. This proves that log x is uniformly continuous on [1,∞).

Consider the cauchy sequence (sn) in (0, 1] defined by the equation sn = 1
n

for n ∈ N.
It suffices to show that (f(sn)) = (− log n) is not cauchy in order to prove that log x is not
uniformly continuous on (0, 1]. We will show that (− log n) is not cauchy by proving that
(− log n) is not bounded. Let M > 0 be given and then choose N ∈ N such that N > eM .
Observe that | − log N | > log eM = M—this follows from the fact that log x is an increasing
function (f ′(x) = 1

x
> 0 for x > 0). So (− log n) is not bounded, and therefore, log x is not

uniformly continuous on (0, 1].

c) Let f : R → R be a function defined as follows.

f(x) =

{
x2 if x is rational

−x2 if x is irrational

Show that f is continuous only at 0. Is f differentiable anywhere? Explain.

Proof. Suppose f is continuous at some x ∈ R. Let (xn) be a sequence of rationals converging
to x and let (yn) be a sequence of irrationals converging to x. So lim f(xn) = x2 and lim f(yn) =
−x2. Since f is continuous at x, x2 = −x2, which is only possible at x = 0. So f is not
continuous when x 6= 0. This also means that f is not differentiable when x 6= 0.



We will now show that f ′(0) = 0. For all x 6= 0, we have

−
∣∣∣∣x2

x

∣∣∣∣ ≤ f(x)− f(0)

x− 0
≤

∣∣∣∣x2

x

∣∣∣∣ .

Now since

lim
x→0

−
∣∣∣∣x2

x

∣∣∣∣ = lim
x→0

∣∣∣∣x2

x

∣∣∣∣ = 0,

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= 0.

This also proves that f is continuous at 0.

d) Suppose that f : [a, b] → R is continuous on [a, b] and
∫ b

a
(f(x))2 dx = 0. Prove that

f(x) = 0 for all x ∈ [a, b].

Proof. Let g(x) = (f(x))2 and observe that g is continuous on [a, b], g(x) ≥ 0 on [a, b], and

L(g) = 0 (because
∫ b

a
g dx = 0). Now exercise 29.7 in [1] implies that g is identically zero on

[a, b]. Since g(x) = (f(x))2, f must be identically equal to zero on [a, b].

e) If f : [0, 1] → [0, 2] is a differentiable on [0, 1], with f(0) = 0 and f(1) = 2, then there
exists a point c ∈ [0, 1] such that f ′(c) = 2. You may assume that f ′ is continuous on [0, 1] to
simplify the proof; however, this result holds even when f ′ is not a continuous function.

Proof. The simplest approach is to apply the Mean Value Theorem. There exists a c ∈ (0, 1)

such that f ′(c) = f(1)−f(0)
1−0

= 2. There are at least two other proofs that do not (directly)
utilize the Mean Value Theorem; these are outlined below.

If there exist points x, y ∈ [0, 1] such that f ′(x) < 2 and f ′(y) > 2, then the Intermediate
Value Theorem for Derivatives would imply that there exists a point c ∈ [0, 1] such that
f ′(c) = 2. If we assume that f ′ is continuous on [0, 1], the Intermediate Value Theorem (for
continuous functions) is sufficient and we need not employ the Intermediate Value Theorem
for Derivatives.

So assume that either f ′(x) < 2 for all x ∈ [0, 1] or f ′(x) > 2 for all x ∈ [0, 1]. Now
if f ′ is continuous on [0, 1], f ′ is integrable on [0, 1], and we may apply the Fundamental

Theorem of Calculus to conclude that 2 = f(1) − f(0) =
∫ 1

0
f ′(x) dx. However, if f ′(x) < 2

for all x ∈ [0, 1], we have
∫ 1

0
f ′(x) dx <

∫ 1

0
2 dx = 2. Similarly, if f ′(x) > 2 for all x ∈ [0, 1],

we have
∫ 1

0
f ′(x) dx >

∫ 1

0
2 dx = 2. In both cases we contradict our earlier conclusion that∫ 1

0
f ′(x) dx = 2. This completes the proof when f ′ is continuous on [0, 1].
Now suppose that f ′ is not continuous on [0, 1]. We can still assume that either f ′(x) < 2

for all x ∈ [0, 1] or f ′(x) > 2 for all x ∈ [0, 1]; otherwise the Intermediate Value Theorem for
derivatives would imply that there exists a point c ∈ [0, 1] such that f ′(c) = 2. If f ′(x) < 2
for all x ∈ [0, 1], let h(x) = f(x) − 2x. Observe that h′(x) = f ′(x) − 2 < 0 for all x ∈ [0, 1]
and h(0) = 0. This implies that the function is strictly decreasing on [0, 1] and f(x) < 2x for
all x ∈ (0, 1]. In particular, f(1) < 2, which contradicts the fact that f(1) = 2. Similarly, if
f ′(x) > 2 for all x ∈ [0, 1], we argue that f(x) > 2x for all x ∈ (0, 1]. In particular, f(1) > 2,
which is again a contradiction. So there exists a point c ∈ [0, 1] such that f ′(c) = 2.



f) Let f : [a, b] → R be a continuous function on [a, b]and let g : [a, b] → R be integrable

on [a, b], with g(x) ≥ 0 for all x ∈ [a, b]. Prove that there exists a c ∈ [a, b] so that
∫ b

a
(fg) dx =

f(c)
∫ b

a
g dx. This result is often referred to as the Extended Mean Value Theorem for Integrals.

Proof. Let h(x) =
∫ b

a
(fg) dx− f(x)

∫ b

a
g dx for all x ∈ [a, b]; note that h is continuous on [a, b]

since f is continuous on [a, b]. Also, since f is continuous, there exist points x1, x2 ∈ [a, b]
where f assumes its minimum m and its maximum M respectively.

Now f(x)g(x) ≤ Mg(x) for all x ∈ [a, b] since f(x) ≤ M and g(x) ≥ 0 for all x ∈ [a, b]. This

implies that
∫ b

a
(fg) dx ≤

∫ b

a
Mg dx = M

∫ b

a
g dx = f(x2)

∫ b

a
g dx. In other words, h(x2) ≤ 0.

Similarly, f(x)g(x) ≥ mg(x) for all x ∈ [a, b] implies that
∫ b

a
(fg) dx ≥

∫ b

a
mg dx = m

∫ b

a
g dx =

f(x1)
∫ b

a
g dx. In other words, h(x1) ≥ 0. If h(x1) = 0, let c = x1, and if h(x2) = 0, let c = x2. If

h(x1) 6= 0 and h(x2) 6= 0, the Intermediate Value Theorem applied to the continuous function
h yields a point c ∈ [a, b] such that h(c) = 0. In all cases, h(c) = 0 implies the desired equality∫ b

a
(fg) dx = f(c)

∫ b

a
g dx.
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