A few challenging problems

1) Let $f:[0,1] \rightarrow R$ be continuous on $[0,1]$. Evaluate the following limits.
a)

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x
$$

b)

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) d x
$$

2) Let $f: R \rightarrow R$ be continuous on all of R with the property $|f(x)-f(y)| \geq|x-y|$ for all x and y in R. Show that the image of f is all of R.
3) Let $\left\{a_{n}\right\}$ be a sequence of positive real numbers and suppose $\sum a_{n}$ converges. Show that the series $\sum \sqrt{a_{n} a_{n+1}}$ and $\sum \frac{a_{n} a_{n+1}}{a_{n}+a_{n+1}}$ also converge.
4) Let C be a collection of disjoint crosses in R^{2}. A cross is a union of two line segments of equal, finite length that meet at their centers, with a segment parallel to the x-axis and the other parallel to the y-axis. Show that C is finite or countably infinite.
5) Evaluate the following limit.

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\ldots+\frac{1}{2 n}\right)
$$

6) Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be continuous functions satisfying $f(x+1)=f(x)$ and $g(x+1)=g(x)$ for all x in R. Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g(n x) d x=\int_{0}^{1} f(x) d x \int_{0}^{1} g(x) d x
$$

