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Abstract

We show that the modular group has an infinite family of finite index subgroups, each of which has
the same trace set as the modular group itself. Various congruence subgroups of the modular group, and
the Bianchi groups, are also shown to have this property.

1 Introduction

For a Riemannian manifold M , the eigenvalue spectrum is the set of eigenvalues of the Laplacian operator,
and the length spectrum is the set of lengths of closed geodesics, both counted with multiplicity. The two
spectra are closely related, and together determine much about the manifold: though constructions such
as Sunada’s [14] show that there exist isospectral, non-isometric manifolds, it is known that manifolds for
which these spectra are equal must share certain geometric and topological properties; for example, if the
manifolds are hyperbolic, they must have the same volume [12]. It is also possible to define the eigenvalue
set E(M) and the length set L(M) to be the respective spectra with multiplicities discarded. It is known
that these form invariants which are considerably coarser; for example, Leininger, McReynolds, Neumann,
and Reid [9] proved that if M is a compact hyperbolic manifold, then there exist sequences of pairs of covers

{Mi, Ni} such that for all i, E(Mi) = E(Ni) and L(Mi) = L(Ni), but the ratio Vol(Mi)
Vol(Ni)

diverges to ∞.

When the manifold in question is a hyperbolic surface, so that the fundamental group π1(M) is a subgroup
of PSL2(R), it is well-known that the length ` of a closed geodesic determines, and is determined by, (the
absolute value of) the trace tr of the corresponding hyperbolic isometry via the equation

|tr | = 2 cosh
`

2
.

There is a similar correspondence when M is a hyperbolic 3–manifold, so that π1(M) < PSL2(C) acts on
the hyperbolic 3–space H3. Here a complex trace corresponds to a complex length in M ; the corresponding
action on H3 involves a combination of translation along and rotation around the axis of the isometry. In
these cases, the length set (resp. complex length set) of the manifold M = Hn/Γ is in direct correspondence
with the trace set of the Fuchsian (resp. Kleinian) group Γ.

It is therefore a consequence of the aforementioned result of Leininger, McReynolds, Neumann and Reid
that there exist pairs of Fuchsian and Kleinian groups of different covolumes but with equal trace sets. One
may then ask the question of, given a prescribed trace set, how many (if any) groups possess precisely that
trace set. In particular, are there any Fuchsian or Kleinian groups which are uniquely determined by their
trace set? In this direction, Schmutz [13] showed that there are infinitely many Fuchsian groups with the
same trace set as certain congruence subgroups of the modular group PSL2(Z). In a similar direction, the
goal of this note is to determine to what extent PSL2(Z), and certain subgroups thereof, are determined
by their trace sets. It is a consequence of Takeuchi’s characterization of arithmetic Fuchsian groups [15]
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that any (cofinite) Fuchsian group with trace set precisely the rational integers Z must be arithmetic, and
in fact (conjugate to) a subgroup of PSL2(Z) (see also Geninska and Leuzinger [7]). We show that there
are infinitely many such finite index subgroups by constructing a finitely generated, infinite index subgroup
H with the same trace set, and appealing to the fact that the modular group has the property of being
subgroup separable, also called locally extended residually finite (LERF), which implies the existence of one
(and hence an infinite descending chain of) finite index subgroup(s) containing H.

More generally, we show the following.

Theorem 1.1. Let Γ < PSL2(R) be a cofinite Fuchsian group with trace set tr (Γ). Let G1, . . . , Gm be a
finite collection of finitely generated, infinite index subgroups of Γ such that

m⋃
i=1

tr (Gi) = tr (Γ),

and for each 1 ≤ i ≤ m, let Qi be a finite-sided, connected fundamental domain for Gi. Then there exist
αi ∈ Γ such that the subgroup H of Γ generated by the conjugates αiGiα

−1
i is a subgroup of Γ of infinite

index, with tr (H) = tr (Γ).

Theorem 1.1 is then applied to PSL2(Z), and to families of congruence subgroups thereof.

Corollary 1.2. Let Γ = PSL2(Z), or a congruence subgroup Γ0(n) or Γ(n) for some n ∈ N. Then there
exists a finitely generated, infinite index subgroup HΓ < Γ with the same trace set as Γ. Hence, there exist
infinitely many finite index subgroups of Γ with this trace set.

The most natural lattices in PSL2(C) which serve as analogues of the modular group are the Bianchi
groups PSL2(Od), where d > 0 is a square-free integer, and Od is the ring of integers in the imaginary
quadratic number field Q(

√
−d). We show a similar result for these groups.

Theorem 1.3. Given any Bianchi group PSL2(Od), there are infinitely many finite index subgroups Γ <
PSL2(Od) with the same complex trace set as PSL2(Od).

Acknowledgments. I wish to thank Chris Leininger and Alan Reid for helpful conversations.

2 Preliminaries

We refer to Beardon [3] for more details of the contents of this section. We consider the upper half-plane
and upper half-space models for hyperbolic 2- and 3-space H2 and H3 respectively. The group of conformal,
orientation-preserving isometries (or linear fractional transformations) of H2 (resp. H3) can be identified
with PSL2(R) (resp. PSL2(C)) via the correspondence(

a b
c d

)
←→ z 7−→ az + b

cz + d
.

Given an element γ ∈ PSL2(C), the trace tr γ is not well-defined, but is well-defined up to sign. Given a
discrete group Γ < PSL2(C), we define the trace set of Γ to be

tr (Γ) = {tr γ | γ ∈ Γ \ {1}} /(x ∼ −x).

For every n ∈ Z, the modular group PSL2(Z) has an element with trace n; taking the above into account,
throughout this note we will say that PSL2(Z) has trace set N0 = N ∪ {0}.

If |tr γ| < 2, then γ is elliptic and fixes a point of H2, or fixes an axis of H3 pointwise. If |tr γ| = 2, then γ
is parabolic and fixes exactly one point on the boundary circle or sphere. If |tr γ| > 2, then γ is hyperbolic,
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fixes two points on the boundary circle or sphere, and acts as a translation along the geodesic between these
two fixed points. If tr γ /∈ R, then γ is loxodromic, fixes two points on the boundary, and acts as both a
translation along, and a rotation around, the axis between the two fixed points.

We can study the action of an element γ ∈ PSL2(C) which does not fix∞ on the upper half-plane model
for H2 or H3 by considering isometric circles or isometric spheres. Given

γ =

(
a b
c d

)
∈ PSL2(C),

where c 6= 0 (since we assume γ does not fix ∞) the isometric sphere Sγ of γ has center −dc and radius
1
|c| ; furthermore, the isometric sphere Sγ−1 has center a

c and the same radius 1
|c| . The action of γ on Sγ is

by a Euclidean isometry, and γ sends the exterior Eγ (resp. interior Iγ) of Sγ to the interior Iγ−1 (resp.
exterior Eγ−1) of Sγ−1 . In particular, we note that when tr γ = 0, corresponding to a rotation of order 2,
the isometric spheres Sγ and Sγ−1 coincide, and γ then acts by exchanging the interior and exterior of Sγ .

In the following, when we refer to a closure P of a set P ⊂ H2, we mean the closure taken in H2 ∪ R ∪∞.

When Γ contains a parabolic element fixing ∞, the set of isometric circles of elements of Γ is invariant
under this subgroup. In this case, one may construct a fundamental domain, called a Ford domain, by taking
the set E of points exterior to all isometric circles, and intersecting it with a fundamental region for the
stabilizer of ∞. When Γ < PSL2(C) is generated by (at most two) parabolics fixing ∞ and a single element
γ which does not fix ∞, then we have two cases of how a Ford domain may be constructed. If the isometric
spheres of γ do not intersect, or if tr γ ∈ R, then they (and their translates) suffice to form the boundary of
a Ford domain. If not, then the isometric spheres of powers of γ may not be covered by those of γ, and so
appear in the boundary of a Ford domain. In this case, we will use the properties that any isometric circle
of γ±n contains one of the fixed points of γ, and that if γ belongs to a Bianchi group, then the isometric
spheres have radius bounded above by 1.

Given two non-cofinite Fuchsian or Kleinian groups G1, G2 < G, the Klein–Maskit combination theorem
gives a way of ensuring that the group 〈G1, G2〉 generated by these two subgroups inside of G is also non-
cofinite. Precisely, it states (see Maskit [11], p. 139):

Theorem 2.1 (Klein–Maskit Combination Theorem). Suppose G1, G2 < G have fundamental domains D1

and D2 respectively, and that D1 ∪D2 = Hn (n = 2, 3) and D1 ∩D2 6= ∅. Then 〈G1, G2〉 = G1 ∗ G2, and
D = D1 ∩D2 is a fundamental domain for G1 ∗G2.

A group G is called residually finite if for any non-trivial element g ∈ G, there is a finite index subgroup
K < G such that g /∈ K. The group G has the stronger property of being subgroup separable (or LERF) if
for any finitely generated subgroup H < G and any g ∈ G \H, there exists a finite index subgroup K < G
such that H ⊂ K and g /∈ K. Equivalently, G is LERF if every finitely generated subgroup H < G is the
intersection of finite index subgroups of G; we will appeal to this alternative formulation. The fact that
PSL2(Z) is LERF follows from the fact that it contains a free group of finite index, and Hall’s result [8] that
free groups are LERF; the fact that the Bianchi groups are LERF follows from work of Agol, Long and Reid
[2], Agol [1], Calegari and Gabai [4], and Canary [5].

Given a natural number n, the principal congruence subgroup Γ(n) < PSL2(Z) consists of those matrices
which are congruent to the identity modulo n; that is

Γ(n) =

{(
1 + an bn
cn 1 + dn

)
∈ PSL2(Z)

}
.

All principal congruence subgroups are finite index and normal in PSL2(Z), since they are the kernels of
the natural surjective homomorphisms ψn : PSL2(Z) → PSL2(Z/nZ) given by reducing entries modulo n.
A similar family of groups is given by the upper triangular congruence subgroups Γ0(n) < PSL2(Z); these
consist of matrices which are congruent to upper triangular matrices modulo n. Any maximal arithmetic
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Fuchsian group which is commensurable with PSL2(Z) is obtained by taking the normalizer N(Γ0(n)) of
Γ0(n) for n square-free, where the normalizer is taken in PSL2(R).

3 Fuchsian groups

In this section, we establish that certain families of Fuchsian groups have the property that each contains
infinitely many finite index subgroups with the same trace set as itself. This will be a consequence of the
following more general result.

Theorem 3.1. Let Γ < PSL2(R) be a cofinite Fuchsian group with trace set tr (Γ). Let G1, . . . , Gm be a
finite collection of finitely generated, infinite index subgroups of Γ such that

m⋃
i=1

tr (Gi) = tr (Γ),

and for each 1 ≤ i ≤ m, let Qi be a finite-sided, connected fundamental domain for Gi. Then for each i
there exists αi ∈ Γ having isometric circle Sαi

with interior Iαi
such that:

• for each 1 ≤ i ≤ m, αi /∈ Gi;

• for each 1 ≤ i ≤ m, we have Iαi
⊂ Qi ⊂ H2; and

• for any j 6= k, we have Iα−1
j
∩ Iα−1

k
= ∅.

Hence, the subgroup H of Γ generated by the conjugates αiGiα
−1
i is a subgroup of Γ of infinite index, with

tr (H) = tr (Γ).

Proof. The existence of such αi follows from the assumptions on the Gi as follows. Choose disjoint open
intervals (xi, yi) ⊂ Qi ∩ R and isometries αi ∈ Γ such that for each i, Iαi ∩ R, Iα−1

i
∩ R ⊂ (xi, yi). These αi

can for example be constructed by taking a hyperbolic isometry γi whose axis endpoints are in the relevant
interval (which must exist by the assumption that Γ is cofinite), and taking a sufficiently high power for the
αi in order that the isometric spheres satisfy the required condition.

The subgroups Hi := αiGiα
−1
i , and their fundamental domains αi(Qi) have the properties that for any

j 6= k, αj(Qj) ∪ αk(Qk) = H2, and αj(Qj) ∩ αk(Qk) 6= ∅. As such, the repeated application of Theorem
2.1, to H1 and H2, and then to H1 ∗H2 and H3 etc., gives that the subgroup H generated by the Hi has a
fundamental domain

Q =

m⋂
i=1

αi(Qi).

Since for each i, the complement H2 \ αi(Qi) is contained in Iα−1
i

, and these Iα−1
i

are mutually disjoint, it

follows that Q contains the intersection of the exteriors Eα−1
i

, and thus has infinite area. This implies that

H < Γ is an infinite index subgroup. Finally, each trace of tr (Γ) also belongs to tr (H), and so tr (H) = tr (Γ)
as required.

The following Lemma will be helpful in applying Theorem 3.1 to specific examples.

Lemma 3.2. Let G be a Fuchsian group generated by two elements of the form

G =

〈
g1 =

(
1 m
0 1

)
, g2 =

(
a b
c d

)〉
,

where c 6= 0, and suppose that |a+d|
c < |m|

2 , and that Eg2 ∩Eg−1
2

is a Ford domain for 〈g2〉. Then if |m| > 4
|c| ,

the group G admits a finite-sided Ford fundamental domain of infinite area.

4



Proof. The hypothesis that |a+d|
c < |m|

2 implies that the centers of the isometric circles of g2 and g−1
2 are at

most |m|2 apart, and since |m| > 4
|c| , their most distant endpoints are at most |m|2 + 2

|c| <
|m|
2 + |m|

2 = |m|
apart. We set

F =

{
z ∈ H2 |

∣∣∣∣Re(z)− a− d
2c

∣∣∣∣ ≤ |m|2

}
,

which is a fundamental region for 〈g1〉, and note that the hypotheses imply that

Q = Eg2 ∩ Eg−1
2
∩ F

is a fundamental domain for G, and has infinite area. Hence, we are done.

We now apply Theorem 3.1 to show that PSL2(Z) has infinitely many finite index subgroups with the
same trace set as itself.

Corollary 3.3. The modular group PSL2(Z) has a finitely generated, infinite index subgroup H with trace
set tr (H) = N0. Hence, there exist infinitely many finite index subgroups of PSL2(Z) with this trace set.

Proof. We apply Theorem 3.1 to the following subgroups:

G0 =

〈(
0 −1
1 0

)
,

(
1 5
0 1

)〉
,

G1 =

〈(
1 −1
1 0

)
,

(
1 5
0 1

)〉
,

and

G2 =

〈(
2 −1
1 0

)
,

(
1 5
0 1

)〉
.

Each subgroup satisfies the hypotheses of Lemma 3.2, and we may take for each fundamental domain Qi
the Ford domain bounded by the isometric spheres of the first generators and the vertical geodesics from −1
and 4 to ∞ respectively. Note that for each 0 ≤ i ≤ 2, the closure Qi ⊂ H2 ∪ S∞ contains the open interval
(3, 4). For the conjugating elements, we take

α0 =

(
142 −545
37 −142

)
, α1 =

(
17 −58
5 −17

)
, α2 =

(
117 −370
37 −117

)
.

Thus the subgroup H is generated by the elements(
26269 −100820
6845 −26271

)
,

(
−82644 317189
−21533 82644

)
,

(
424 −1445
125 −426

)
,

(
−782 2667
−229 781

)
,

(
21644 −68445
6845 −21646

)
, and

(
−20241 64009
−6400 20239

)
.

We may now invoke the equivalent definition of LERF to see that this finitely generated, infinite index
subgroup H must be the intersection of finite index subgroups of PSL2(Z). There must be infinitely many
of these finite index subgroups, and the trace set of each contains tr (H) = N0, so we are done.

The existence of the subgroup H (and hence a descending chain of finite index subgroups with the same
trace set) raises a number of questions. For example, this method does not give explicitly a finite index
subgroup, and so we would like to know more about the structure of such subgroups.

Question. What is the minimal index for a finite index subgroup H < PSL2(Z) with tr (H) = N0?
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It is possible to prove that the unique index 2 subgroup, and the two (conjugacy classes of) subgroups of
index 3, do not have trace set N0, and so we can say that the minimal index must be at least 4. Also, this
method also fails to produce a subgroup whose trace set is N0 \{0, 1}, which would correspond to a manifold
with the same trace set as PSL2(Z) except for torsion elements.

Question. Does there exist a finite index subgroup of PSL2(Z) with trace set N0 \ {0, 1} = {2, 3, 4, . . .}?

It is possible to show the existence of infinitely many families of groups with the same trace set. The next
two results show that congruence subgroups of certain forms have infinitely many finite index subgroups of
the same trace set. In particular, this shows that there are examples of torsion-free groups with this property.

Corollary 3.4. For each n ∈ N, the congruence subgroup Γ0(n) < PSL2(Z) admits a finitely generated,
infinite index subgroup Hn < Γ0(n) such that tr (Hn) = tr (Γ0(n)).

Proof. Consider the maps

PSL2(Z)
π−→ PSL2(Z/nZ)

tr−→ Z/nZ,

where π : PSL2(Z) → PSL2(Z/nZ) denotes the natural projection where each entry is reduced modulo n,
and tr is the trace map. For an element of Γ0(n),(

a b
c d

)
π7−→
(
ā b̄
0 ā−1

)
tr7−→ ā+ ā−1,

and thus the set {ā + ā−1 | ā ∈ Z/nZ has a multiplicative inverse} contains the image of Γ0(n) under the
composition tr ◦ π. Let Sn denote the preimage in Z of this set under the standard projection Z → Z/nZ.
We claim that tr (Γ0(n)) = Sn. To see this, let a ∈ {1, . . . , n− 1} be coprime to n, and let d ∈ {1, . . . , n− 1}
be such that ad ≡ 1 mod n. Then ad = 1 + bn for some integer b, and so the matrix(

a b
n d

)
∈ Γ0(n)

has trace a+ d. Furthermore, the matrices(
1 1
0 1

)m(
a b
n d

)
=

(
a+mn b+md

n d

)
ensure that all integers of the form (a+ d) +mn, m ∈ Z, appear as traces of elements of Γ0(n).

When n ≥ 5, we generate the subgroup Hn as follows. Let {ai} ⊂ {1, . . . , n − 1} be a complete set of
residue classes coprime to n, and for each i, let di ∈ {1, . . . , n − 1} be such that aidi ≡ 1 mod n; that is,
aidi = 1 + bin for some bi ∈ Z. By Lemma 3.2, since n ≥ 5, the subgroups

Gi =

〈(
1 1
0 1

)
,

(
ai bi
n di

)〉
.

are of infinite index in Γ0(n) for each i.

For n = 2, 3, 4 the above method does not generate infinite index subgroups, so we treat these cases
individually. For n = 2, we take the subgroups

G1 =

〈(
1 3
0 1

)
,

(
1 0
2 1

)〉
, G2 =

〈(
1 3
0 1

)
,

(
1 −1
2 −1

)〉
.

For n = 3, we take the subgroups

G1 =

〈(
1 2
0 1

)
,

(
1 0
3 1

)〉
, G2 =

〈(
1 2
0 1

)
,

(
2 −1
3 −1

)〉
.
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For n = 4, the subgroup

G1 =

〈(
1 2
0 1

)
,

(
1 0
4 1

)〉
generates all the required traces, and has infinite index in Γ0(4). This treats all cases, and we are done.

Corollary 3.5. For p prime, the maximal arithmetic Fuchsian group N(Γ0(p)) has infinitely many finite
index subgroups with the same trace set at itself.

Proof. It is known (see Chinburg and Friedman [6] and Maclachlan [10]) that elements of N(Γ0(p)) either
belong to Γ0(p) or have the form (

a
√
p b√

p

c
√
p d

√
p

)
,

where a, b, c, d ∈ Z and the determinant is 1. To obtain all rational integer traces, we use the same collection
of infinite index subgroups which were used in Corollary 3.4; when p ≥ 5, we add to this collection the
subgroup 〈(

0 −1√
p√

p 0

)
,

(
1 1
0 1

)〉
,

which has a Ford domain of infinite area, and generates all traces of the form m
√
p for m ∈ Z. When p = 2,

we add the two subgroups 〈(
0 −1√

2√
2 0

)
,

(
1 3
0 1

)〉
,

〈(√
2 −1√

2√
2 0

)
,

(
1 3
0 1

)〉
,

and when p = 3, we add the subgroups〈(
0 −1√

3√
3 0

)
,

(
1 3
0 1

)〉
,

〈(√
3 −1√

3√
3 0

)
,

(
1 3
0 1

)〉
.

We remark that the next result is closely related to a theorem of Schmutz [13]. In particular, Theorem
3 of [13] gives infinitely many non-isometric surfaces with the same trace set as certain principal congruence
subgroups. Our result shows that this holds for every principal congruence subgroup.

Corollary 3.6. For each 2 ≤ n ∈ N, the principal congruence subgroup Γ(n) < PSL2(Z) admits a finitely
generated, infinite index subgroup H ′n < Γ(n) such that tr (H ′n) = tr (Γ(n)).

Proof. An element of Γ(n) can be given the form(
1 + an bn
cn 1 + dn

)
for integers a, b, c, d. Thus traces of such elements have the form 2 + (a+ d)n. The determinant is

1 + (a+ d)n+ adn2 − bcn2 = 1,

from which we deduce that (a + d)n is an integer multiple of n2; this implies that (a + d) is a multiple of
n. Hence, the trace set tr (Γ(n)) contains only elements of the form 2±An2, for A ∈ Z. Moreover, for each
integer A, the matrix (

1 An
0 1

)(
1 0
n 1

)
=

(
1 +An2 An

n 1

)
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realizes this trace. Thus tr (Γ(n)) = {An2±2 | A ∈ N0}. These traces can all be obtained from the subgroup〈(
1 n
0 1

)
,

(
1 0
n 1

)〉
,

and by Lemma 3.2, we find that when n > 2, this subgroup is of infinite index. We take H ′n to be this
subgroup. When n = 2, we take

H ′2 =

〈(
1 4
0 1

)
,

(
1 0
2 1

)〉
;

this subgroup has the required trace set and is of infinite index.

These results also raise interesting questions. One defines a group commensurable with PSL2(Z) to be
a congruence subgroup if it contains a principal congruence subgroup Γ(n) for some n. In the light of the
above results, it is natural to ask:

Question. Does every congruence subgroup commensurable with PSL2(Z) admit an infinite index subgroup
with the same trace set as itself?

The above results also rely on the congruences, and related trace information, which are induced by being
a congruence subgroup. Since there exist Fuchsian groups commensurable with PSL2(Z) which are not
congruence subgroups, it is also pertinent to ask whether there exist non-congruence subgroups with this
property.

Question. What can we say about non-congruence subgroups commensurable with PSL2(Z)?

4 Bianchi Groups

In this section, we show that there are results analogous to Corollary 1.2 for each Bianchi group. As above,
there is a more general result involving any trace set that can be written as the union of finitely many
(translates of) sublattices of the ring of integers. For brevity, we will only prove an analogue of Corollary
1.2 for each Bianchi group, rather than an analogue of the more general Theorem 1.1.

Consider the Bianchi group PSL2(Od), where d > 0 is a square-free integer, Od denotes the ring of
integers in the imaginary quadratic field Q(

√
−d). It is a standard fact that Od is an integer lattice in C

generated by 1 and ω =
√
−d (if d ≡ 1, 2 mod 4) or by 1 and ω = 1+

√
−d

2 (if d ≡ 3 mod 4).

Theorem 1.3. Given any Bianchi group PSL2(Od), there are infinitely many finite index subgroups Γ <
PSL2(Od) with the same complex trace set as PSL2(Od).

Proof. As in the Fuchsian case, we construct finitely many subgroups which together generate every trace,
and then conjugate them so that together they generate a subgroup of infinite index. We then appeal to the
fact that the Bianchi groups are LERF. The following general method works whenever there are no non-real
integers in Od of complex modulus less than 2; this includes all Bianchi groups PSL2(Od) for d 6= 1, 2, 3; we
deal with these cases afterwards.

The subgroups which we take are the five subgroups of the form

Px =

〈(
x −1
1 0

)
,

(
1 3
0 1

)
,

(
1 3ω
0 1

)〉
,

for x ∈ {0, 1, ω, 1 + ω, 2 + ω}. In each case, a Ford domain for Pi is bounded by isometric spheres of radius
1 centered at 0 and x respectively, together with vertical planes which form the boundary of a fundamental
domain for the parabolics fixing ∞. We conjugate the Pi so that we may apply Theorem 2.1; to do this, we
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conjugate by involutions δi which have isometric spheres disjoint from those of the Pi and from each other.
If d ≡ 1, 2 mod 4, we take

δ1 =

(
38 + 85ω −17− 76ω − 85ω2

85 −38− 85ω

)
=

(
38 + 85ω 85d− 17− 76ω

85 −38− 85ω

)
,

δω =

(
7 −10
5 −7

)
, δ1+ω =

(
68 −125
37 −68

)
, δ2+ω =

(
43 −50
37 −43

)
;

and if d ≡ 3 mod 4, we take

δ1 =

(
−2 + 3ω + 4dω 1 + 4ω − 7ω2 − 4ω2d

4d− 1 2− 3ω − 4dω

)
,

δω =

(
7 −10
5 −7

)
, δ1+ω =

(
7− 5ω 5d− 10 + 14ω

5 5ω − 7

)
, δ2+ω =

(
43 −50
37 −43

)
.

For the three remaining cases, we choose conjugations specific to each case, and take care because
isometric spheres of higher powers of the generators of the subgroups may appear. We treat the cases
d = 1, 2 together. We take the same Pi as above, and conjugations

δ1 =

(
38 + 85ω 85d− 17− 76ω

85 −38− 85ω

)
, δω =

(
43 −50
37 −43

)
,

δ1+ω =

(
68 −125
37 −68

)
, δ2+ω =

(
91 −101
82 −91

)
.

The last case is where d = 3. We take

δ1 =

(
−2 + 3ω + 4dω 1 + 4ω − 7ω2 − 4ω2d

4d− 1 2− 3ω − 4dω

)
, δω =

(
43 −50
37 −43

)
,

δ1+ω =

(
68− 37ω 99ω − 88

37 37ω − 68

)
, δ2+ω =

(
68 −125
37 −68

)
.

By construction, the subgroups P0 and δxPxδx for x ∈ {1, ω, 1 + ω, 2 + ω} satisfy the hypotheses of
Theorem 2.1, and so the group H generated by P0 and the δxPxδx is the free product of the generating
subgroups, has infinite index in PSL2(Od), and has all the same traces as PSL2(Od). Since the Bianchi
group is LERF, this implies that there exists a proper finite index subgroup Kd < PSL2(Od) which contains
this subgroup, but not

g =

(
1 1
0 1

)
,

and therefore is a proper, finite index subgroup with the same trace set as the Bianchi group. Moreover,
by the alternative formulation of LERF, H can be written as the intersection of infinitely many finite index
subgroups of PSL2(Od), each of which therefore has trace set the same as PSL2(Od).
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