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1 Existence of finite-sheeted covering spaces

For compact 2-manifolds (assume orientable, genus g ≥ 2, with nonempty boundary and free non-abelian
fundamental group), there are lots of finite-sheeted covering spaces that arise from group theory since F2

surjects onto G, where G is finite and non-abelian.
For this course: All 3-manifolds are connected. All groups are finitely generated. The goal of this section

is the following theorem:

Theorem 1.1 (Thurston, Hempel). Let M be a compact 3-manifold. Then π1M is residually finite.

Definition. Let G be a group. G is residually finite (RF) if for all 1 6= g ∈ G, there exists a homomorphism
φ : G→ A, with A finite, such that φ(g) 6= 1.

Examples. 1. If G is finite, G is RF.

2. (Exercise) If G is abelian, G is RF.

Remark. With a view to Theorem 1.1, we can assume that π1M is infinite.

Lemma 1.2. Let G be a group, and H < G a subgroup. Then

1. If G is RF, H is RF.

2. If [G : H] <∞ and H is RF, then G is RF.

Proof. 1. Let 1 6= h ∈ H. If G is RF, there is a homomorphism φ : G → A, with A a finite group with
φ(h) 6= 1. Letting ψ = φ|H shows that H is RF.

2. To prove this, we make the following reformulation.

Claim. G is RF if and only if for all 1 6= g ∈ G, there is a finite index subgroup H < G such that g 6∈ H.

Proof. If G is RF, then Ker φ is a finite index subgroup of G that excludes g. Let H be a finite index
subgroup of G and let g ∈ G (g 6= 1). Take C = CoreG(H) =

⋂
(all conjugates of H). Then C is a normal

subgroup of finite index in G and φ(g) 6= 1 in G/C. This proves the claim.

If g ∈ G \H, this reformulation of RF applies. If g ∈ H and H is RF, then by the reformulation, there
is a finite index subgroup K in H with g 6∈ K. Since [G : H] < ∞ and [H : K] < ∞, we have that K has
finite index in G.

Remark. With a view to Theorem 1.1, it suffices to prove residual finiteness on finite covers. In particular,
we can assume M is orientable.

We now introduce another reformulation of residual finiteness, which suggests that it corresponds to
having “lots” of subgroups of finite index.

1



Claim. G is RF if and only if
⋂

[G:H]<∞

H = 1.

Proof. If G is RF and g ∈ ∩H, then by RF, there is a finite index subgroup K < G such that g 6∈ K, a
contradiction. If ∩H = 1 and g ∈ G, then there is some finite index subgroup H < G such that g 6∈ H.

The following corollary summarizes the formulations of RF:

Corollary 1.3. The following are equivalent:

1. G is RF;

2. For all g ∈ G \ {1}, there is a finite index subgroup H < G with g 6∈ H;

3.
⋂

[G:H]<∞

H = 1.

Remark. If G is RF and g1, . . . , gn ∈ G \ {1}, then there exists a finite index subgroup H of G such that
g1, . . . , gn 6∈ H. To see this, we intersect the subgroups of G constructed for each gi.

Topological Reformulations of RF

Let X be a compact topological space and X̃ be its universal cover. Let G = π1X.

What does G RF mean for finite covering spaces of X?

Let g ∈ G (g 6= 1) and represent g as a based loop α : I → X. By RF, g 6∈ H. If XH denotes the cover
corresponding to H, the there is some lift of α to XH that is not a loop. We see the following reformulation
of RF in this setting: G is RF if and only if given any based loop α : I → X, there is a finite sheeted cover
X1 → X such that some lift of α is not a loop. (If X1 is a regular cover, all lifts of α are not loops.)

Figure 1.1: XH is the cover corresponding to the subgroup H

Claim. G is RF if and only if the following condition holds: if C is any compact subset of X̃, there exists
a finite-sheeted covering space XC → X such that under the natural covering map X̃ → XC , C projects
homeomorphically.

Proof. Since G acts properly discontinuously on X̃ and C is compact, the set {g ∈ G \ {1} | g(C) ∩ C 6= ∅}
is finite. Let g1, . . . , gn ∈ G be the nontrivial elements in this set. By the previous remark, there is a finite
index subgroup H < G such that g1, . . . , gn 6∈ H. Let XH → X be the finite cover corresponding to H.
Then C projects homeomorphically to XH .
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Figure 1.2: C projects homeomorphically to the finite cover XC

Assume the topological condition holds. Use part 1. Let g ∈ G \ {1} and let α : I → X be a based loop
representing g. By the topological condition, there is a finite sheeted cover XC → X for which C embeds.
Then α does not lift to XC by covering space theory and map lifting.

Figure 1.3: The arc [p, q] embeds into the finite cover XC

Theorem 1.4. Let F be a finitely generated free group. Then F is RF.

Proof. The exercise above shows this for abelian groups, so we may assume F is free non-abelian. By Lemma
1.2, it suffices to take F to be the free group of rank 2, i.e. F = 〈a, b | −〉. View F as the fundamental group
of a wedge of 2 circles, with one circle colored red and one circle colored blue.

Figure 1.4: View F as the fundamental group of the wedge of two circles X
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At each vertex v ∈ X̃, we see an incoming and outgoing red edge and an incoming and outgoing blue
edge. Also recall that to construct a cover of X, it suffices to arrange the local picture at each vertex.

Figure 1.5: The universal cover X̃ of the wedge of two circles

Let C ⊂ X̃ be compact. (We can assume C is connected.) Let C have k vertices, and edges of C are
labeled Red and Blue. If we consider an edge of C labeled Red (respectively, Blue) connecting vertices u
and v, one of u and v will be an incoming Red vertex (respectively, outgoing Red vertex).

Let k∗ be the number of * edges, where * is Red or Blue. The number of vertices of C missing an
incoming or outgoing Red edge is k − kR, and the number of vertices of C missing an incoming or outgoing
Blue edge is k−kB . Take a bijection between the two sets of cardinality k−kR. Use this to adjoin the edges
to complete a graph on the Red edges. Similarly for the Blue vertices. This determines a finite cover of X
because the local conditions hold.

Example. Let C be the subset of X̃ given in figure 1.6. Here k = 8, and there are kR = 3 red edges and

Figure 1.6: A compact subset C ⊂ X̃

kB = 4 blue edges. The set of vertices lacking an incoming red edge is {1, 3, 6, 7, 8}, and the set lacking
an outgoing red edge is {3, 4, 5, 6, 8}. We construct a bijection between them by pairing 3, 6 and 8 with
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themselves, and pairing 1 with 4, and 7 with 5. In the diagram, this means adding extra red edges with the
prescribed endpoints so that the “local picture” is recreated for red edges at each vertex.

Having done this, we now repeat the process for blue edges. The set lacking an incoming edge is {1, 2, 4, 7},
and the set lacking an outgoing edge is {1, 3, 6, 8}. We construct the appropriate bijection by pairing 1 with
itself, 2 with 3, 4 with 6, and 7 with 8. The resulting graph is shown in figure 1.7.

Figure 1.7: The set C, completed with respect to red and blue edges

Completing C with respect to red and blue edges gives a compact subset of X̃ with the correct local
picture at each vertex. This then defines a finite cover XC of X.

Remarks. 1. If G is RF, G has a positive solution to the word problem.

Let G = 〈X | R〉. The word problem asks whether there is an algorithm to decide whether a given word
w ∈ X represents the identity. If G is RF, we can distinguish g 6= 1 in G from the identity in some finite
quotient, so the word problem is equivalent to listing finite quotients.

2. If M is a closed manifold, one can ask: when does M admit degree 1 maps M → M that are not
homeomorphisms?

Definition. We say G is Hopfian if, whenever φ : G→ G is onto, then φ is an isomorphism.

Claim. If the finitely generated group G is RF, then G is Hopfian.

Proof. Assume φ : G→ G is onto and let K = ker φ. Because G is finitely generated, for all n ≥ 1, there are
only finitely many subgroups of index n in G. Call these subgroups H1, . . . ,Hkn . By the Correspondence
Theorem, φ−1(Hi) is a subgroup of index n. Moreover, the Correspondence Theorem implies that {φ−1(Hi) :
i = 1, . . . , kn} = {Hi : i = 1, . . . , kn} and K ⊂ φ−1(Hi) for i = 1, . . . , kn. Then K is contained in every
subgroup of finite index in G. Since G is RF, this intersection is trivial, so K is trivial.

Proposition 1.5. There exist finitely presented, non-residually finite groups.

Proof. Let B = 〈a, b | a−1b2a = b3〉. The task is to exhibit some w ∈ B (w 6= 1) so that the image of w is
trivial in all finite quotients of B. Let G be a finite quotient of B and α and β the images in G of a and b,
respectively. We need the following facts, which will be presented without proof:

F1. (Consequence of the relation) a−nb2
n

an = b3
n

F2. Let b1 = a−1ba and c = b−1
1 b−1b1b. Combinatorial group theory gives that c 6= 1 in B.

Claim (A). c is trivial in all finite quotients of B.
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Proof. Let α have order n in G. From F1, we see β2n

= β3n

, so β3n − β2n

= 1, so the order of β divides
3n − 2n. In particular, it is coprime to both 2 and 3. Then β is a power of β2. If β1 is the image of b1, then
β1 is a power of β2

1 .

Claim (B). β1 is a power of β3.

Proof. β2
1 = (α−1βα)2 = α−1β2α = β3.

Then the image of c is β−1
1 β−1β1β = β−3tβ−1ββ3t = 1.

Theorem 1.6. If G and H are RF, then G ∗H is RF.

Proof. Let 1 6= g ∈ G ∗ H. Then g has a normal form, i.e. it has a unique expression g = g1h1 · · · gnhn,
where gi ∈ G, hi ∈ H and, gi, hi 6= 1. (A similar argument will apply for the variations of this normal
form beginning and ending in G or H.) By the extension to RF, there exist homomorphisms φ : G → A,
ψ : H → B, where A and B are finite groups and ai = φ(gi) 6= 1, bi = ψ(hi) 6= 1 for i = 1, . . . , n. Then
there is a homomorphism θ : G ∗H → A ∗ B where θ(g) = a1b1 · · · anbn 6= 1. Then it suffices to prove the
following lemma:

Lemma 1.7. If A, B are finite groups, then A ∗B is RF.

Proof. We will show that A ∗ B is virtually free, i.e. A ∗ B contains a free group of finite index. Let
φ : A∗B → A×B be the canonical homomorphism. If K = ker φ and A and B are finite, then K is of finite
index in A ∗B.

Claim. K is free.

Proof. Use the Kurosh Subgroup Theorem: Suppose that G is the free product of G1 and G2 and H is a
subgroup of G. Then H is a free product of a free group together with subgroups conjugate into G1 and
subgroups conjugate into G2. Apply this to K: K = F ∗ (∗αAα) ∗ (∗βBβ), where Aα is conjugate into A
and Bβ is conjugate into B. Since Aα is conjugate into A, φ(Aα) is conjugate into φ(A) = A× 1, and since
Bβ is conjugate into B, φ(Bβ) is conjugate into φ(B) = 1 × B. Aα and Bβ map trivially, so Aα = 1 and
Bβ = 1. Then K is free.

Definition. G is linear if G admits a faithful representation into GLn(C) for some n.

Theorem 1.8. Finitely generated linear groups are RF.

Proof. Warm-up: GLn(Z).

Let 1 6= g ∈ GLn(Z). Then g− 1 6= 0. Let x be a non-zero entry of g− 1. Let p ∈ Z be a prime not dividing
x. We have a ring homomorphism Z → Z/pZ that defines φp : GLn(Z) → GLn(Z/pZ). Because Z/pZ is a
finite group, GLn(Z/pZ) is a finite field. By construction φp(g) 6= 1.

Now consider the general case: g ∈ GLn(C) (g 6= 1). Assume G = 〈g1, . . . , gn〉. Define R (⊆ C) to be the
ring generated over Z by 1, entries of gi, and entries of g−1

i . R is a finitely generated integral domain.
By Lemma 1.2, it suffices to prove RF for GLn(R). As before, g ∈ GLn(R) (g 6= 1), so g − 1 6= 0 and we

can find x, a non-zero entry of g− 1. The key algebraic lemma that allows us to extend the argument is the
following:

Lemma 1.9. Let R be a finitely generated integral domain. Then

1.
⋂

M maximal in R

M = (0)
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2. R/M is finite field for M a maximal ideal.

From the first part of the lemma, we can find M, a maximal ideal such that x 6∈ M and proceed as
before.

Examples. 1. If G is finite, then G is linear: Because G is finite, there is a one-to-one injection of G into
Sn for some n. Then use the permutation representation of Sn → GLn(C).

2. If G and H are linear, the G ×H is linear: If G ↪→ GLn(C) and H ↪→ GLm(C), then G ×H maps into
GLn+m(C) in the natural way.

3. (Harder) If G and H are linear, then G ∗H is linear.

Question. If M is compact 3-manifold, is π1M linear?

Theorem 1.10. Finitely generated free groups are linear.

Proof. Z is linear. If G is linear and H is a subgroup of G, then H is linear. Then it suffices to show G = F2

is linear. We will use the Ping Pong Lemma.

Theorem (Ping Pong Lemma). Let G act on a set X and G = 〈A,B〉, where |A| ≥ 3. Assume that there
exist subsets Y,Z ⊂ X such that

1. Y ∩ Z = ∅;

2. a(Y ) ⊂ Z for all 1 6= a ∈ A and b(Z) ⊂ Y for all 1 6= b ∈ B.

Then G ∼= A ∗B.

[Window on Ping Pong Lemma]

Proof. There is a natural epimorphism: f : A ∗ B → G. So we need to show that f is injective. We will do
this by showing kerf is trivial.

Let ai ∈ A and bj ∈ B. If g ∈ G \ {1}, then

g =


a1b1...an−1bn−1an (case 1)
a1b1...an−1bn−1anbn (case 2)
b1...bn−1an−1bn (case 3)
b1...bn−1an−1bnan (case 4)

 .

Case 1: a1b1...an−1bn−1an(Y ) ⊂ a1b1...an−1bn−1(Z).... ⊂ a1(Y ) ⊂ Z. Since Y ∩ Z = ∅, a1b1...an−1bn−1an
is non-trivial.

Case 2: Consider a1b1...an−1bn−1anbn. Since |A| ≥ 3, there is an a ∈ A\{1, a1}. Now, g = a−1a1b1...an−1bn−1anbna
fits into case 1. Thus, g is non-trivial and a1b1...an−1bn−1anbn is also non-trivial.

Case 3: This case follows from conjugation by a0 ∈ A\{1}. a0b1...anbna
−1
0 . We now have reduced the

problem to case 1.

Case 4: This case follows from considering (a1b1...an−1bn−1anbn)−1, which is non-trivial by case 2.

Now let α, β ∈ C, with |α|, |β| ≥ 2. Let A =

〈(
1 α
0 1

)〉
∼= Z and B =

〈(
1 0
β 1

)〉
∼= Z. Then we

have G = 〈A,B〉 ⊂ SL2(C). We view SL2(C) as acting on C2 by

(
a b
c d

)(
z
w

)
=

(
az + bw
cz + dw

)
. We let

Y = {(z, w) : |z| < |w|} and Z = {(z, w) : |z| > |w|}.
Clearly, Y ∩ Z = ∅. We check the second condition of the Ping Pong Lemma. Let λ ∈ C. Then(

1 λ
0 1

)(
z
w

)
=

(
z + λw
w

)
. If |λ| ≥ 2 and (z, w) ∈ Y , then |z + λw| > |w|, i.e. the image is in Z. Then

a(Y ) ⊂ Z for all 1 6= a ∈ A. The same argument shows b(Z) ⊂ Y for all 1 6= b ∈ B.
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Remark. Free groups are everywhere in linear groups. More precisely, let Γ be a finitely generated linear
group, then either Γ contains a free non-abelian group or Γ is virtually solvable. This is known as the Tits
Alternative.

Example. Linear groups with a view to geometry.

1. Euclidean manifolds

Let En = (Rn, dE). Then Isom(En) = {x g7→ Ax + b | A ∈ O(n), b ∈ Rn}. We can exhibit a linear map of
Isom(En). Here multiplication in Isom(En) is just composition:

x
g7→ Ax+ b

x
h7→ A′x+ b′

(g ◦ h)(x) = g(h(x))
= A(A′x+ b′) + b
= (AA′)x+ (Ab′ + b)

.

We can exhibit a linear representation of Isom(En):

g 7−→
[
A b
0 1

]
∈ GLn+1(R)

.
Hence, Isom(En) is linear.

[Window: this metric on Rn+1 restricts to a Euclidean metric]

Definition. M is called a Euclidean (or flat) manifold if M = En/Γ and Γ ⊂ Isom(En) acts freely and
discontinuously.

If Γ is finitely generated, then Γ is residually finite by Theorem 1.8.

Remarks. 1. It follows from Bieberbach’s Theorem 1 that if Mn is a closed flat manifold, then π1M has
Zn as a finite index subgroup.

2. It follows from Bieberbach’s Theorem 2 that for a fixed n, there are only finitely many closed, flat
n-manifolds distinct up to homeomorphism.

Question. Are there flat manifolds that are integral homology spheres?

2. Hyperbolic Manifolds

A Riemannian manifold M is hyperbolic if M = Hn/Γ where Γ ⊂ Isom(Hn) acts freely and discontinuously.
The upper half-space model for hyperbolic n-space is Hn = {(x1, ..., xn) ∈ Rn | xn > 0} with a metric defined
by

ds2 =
dx2

1 + dx2
2 + ...dx2

n

x2
n

=
“Euclidean metric”2

height2 .

Claim. Isom(Hn) is linear.

The proof is hard to show in the upper half-space model in high dimensions. However, it is relatively
easy to see in the hyperboloid model. First equip Rn+1 with an inner product 〈 , 〉 where

〈x, y〉 = x1y1 + · · ·+ xnyn − xn+1yn+1.

Let Hn = {x ∈ Rn+1 | 〈x, x〉 = −1, xn+1 > 0} be the “upper sheet” of the hyperboloid. We can define a
metric d on Hn by cosh(d(x, y)) = 〈x, y〉.

[See Window for proof that d is a metric]
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Definition. O0(n, 1) = {X ∈ GLn+1(R) | XTJX = J,X preserves sheets}, where

J =


1 0 . . . 0

0
. . . 0

...
... 0 1 0
0 . . . 0 −1

 .

By the definition, O0(n, 1) ⊂ Isom(Hn). In fact, O0(n, 1) = Isom(Hn).

[See Window for more details]
The upshot of the above is that if M is hyperbolic and π1M is finitely generated, then π1M is residually

finite.

Proposition 1.11. Let Σg be a closed orientable surface of genus g ≥ 1. Then π1Σg is linear (and hence
RF, by Theorem 1.8).

Proof. If g = 1, then π1Σg is abelian and is linear as shown before. It suffices to show the case where g = 2,
because all other Σg cover Σ2.

c

b

a

b

a

d

c

d

Figure 1.8: The identification of the octagon will be shown to be H2/Γ, where Γ is linear.

Topologically, Σ2 is an identification space of an octagon. To show that Σ2 is a hyperbolic manifold, we
need a faithful representation ρ : π1Σ2 → Isom(H2) with ρ(π1Σ2) acting freely and discontinuously. The
following steps achieve this:

1. Build a hyperbolic octagon;

2. Glue sides together by isometries of H2;

3. Insist that interior angles are π
4 . ( 8π

4 = 2π).

Geodesics in (the upper half-plane model for) H2 are straight lines and circles orthogonal to ∂H2 =
R ∪ {∞}. The octagon should be built from sides contained in such geodesics. (Note that we can always
find these isometries: given a pair C1, C2 of circles or lines as above there is a T ∈ PSL2(R) that sends C1

to C2.
Denoting the four pictured side-pairings by A,B,C,D ∈ PSL2(R), then 〈A,B,C,D〉 ⊂ Isom(H2), and

〈A,B,C,D〉 ∼= π1(Σ2).
Notice from Figure 1.9 that all eight vertices of the octagon are identified in the quotient. We thus

require a regular octagon with angles 2π
8 = π

4 . Thurston gives an elegant way to do this via uniformly
growing a small, almost Euclidean octagon to a larger octagon with arbitrarily small angles, and appealing
to the Intermediate Value Theorem. We will build the required octagon from smaller triangles.
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c

b

a

b

a

d

c

d

Figure 1.9: Here, we enforce a condition like the manifold condition, be we do it metrically.

π
4

π
8

π
8

π
4

π
8

π
8

π
4

π
8

π
8

π
4

Figure 1.10: The smallest triangle we need to make.

As seen in Figure 1.10, we have to construct a triangle in H2 with interior angles (π2 ,
π
8 ,

π
8 ). To construct

this triangle, let L be the vertical geodesic with endpoints at 0 and ∞ in the upper half-plane. Let C be
any geodesic meeting L orthogonally, so C lies on a circle centered at 0. Elementary analysis then gives a
circle C ′, centered on the real axis, which meets L and C such that the resulting triangle has interior angles
as required (Figure 1.11).

Thus π1Σ2 can be realized in PSL2(R), and hence is linear.

Having shown that surface groups are RF, we return to the proof of Theorem 1.1 for 3-manifolds. Let
M3 be a compact, (connected), orientable 3-manifold. Our next reduction will be that we will only have to
consider closed 3-manifolds.

Example. Let Hg = handlebody of genus g ≥ 1.
The boundary ∂Hg = Σg is the surface of genus g. If i : ∂Hg → Hg is the inclusion map, then i∗ is
not injective at the level of fundamental group. For example, if C is the given curve (Figure 1.12), then
i∗([C]) = 1.

For simplicity, we will only worry about embeddings of orientable surfaces.

Definition. Let Σ be a closed, orientable surface. Let M3 be a 3-manifold and let f : Σ ↪→ M be an
embedding.

1. If Σ 6= S2, then (the image of) Σ is incompressible if f∗ : π1Σ→ π1M is injective.

2. If Σ = S2, then (the image of) Σ is incompressible if Σ does not bound a 3-ball in M .
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L

π
8

C

π
8

C ′

Figure 1.11: C meets L at angle π
2 .

Figure 1.12: Hg.

Otherwise, Σ is compressible.

The above definition relies on the fundamental group. In fact, it is equivalent to the geometric definition
by the following theorems that connect the algebra to the topology.

Theorem (Loop Theorem, Papakyriakopoulos, 1956). Let M be an orientable 3-manifold. Let f : S ↪→M
be an embedding of a closed orientable surface. Then if kerf∗ 6= 1, there is an essential simple closed curve
on S that lies in kerf∗, i.e. there is a disk D ⊂M such that D ∩S = ∂D is essential simple closed curve on
S.

Recall that an essential curve γ on S is non-trivial in π1(S) and bounds an embedded disk in M .

Definition. M3 is irreducible if for every embedding f : S2 ↪→M , the image f(S) is compressible (that is,
every sphere in M bounds a ball).

Theorem (Alexander’s Theorem). R3 and S3 are irreducible.

Examples. 1. Let M1,M2 be closed, oriented 3-manifolds. Form the connect sum of M1 and M2, denoted
by M1#M2, as follows. Let Bi ⊂ Mi (i = 1, 2) be a 3-ball. Remove the interiors of the Bi. Form the
quotient space obtained by identifying ∂Bi = ∂B2

∼= S2 by a homeomorphism of S2 such that M1#M2

is orientable.

If M1,M2 6= S3, then the identification sphere is an incompressible S2 in M1#M2.

2. Let M3 = H3/Γ be closed and orientable. Then M is irreducible and every embedding T 2 ↪→ M of
the 2-torus into M compresses.
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M1
M2

S

Figure 1.13: The connect sum of two 3-manifolds

Proof. To prove the irreducibility, we will prove the following:

Claim. Suppose p : R3 →M is the universal cover. Then M is irreducible.

This statement is purely topological, so we may apply it to M = H3/Γ.

Proof. Assume that S ⊂ M is a 2-sphere. S lifts to R3 to give a collection of S2’s in R3 that are just
translates of each under the action of π1M . By Alexander’s theorem, all of these S2’s bound balls in R3.
Choose a particular lift, S̃ such that the ball B it bounds contains no other lifts of S. (We may do this
because Γ acts discontinuously action on R3).

Claim. S bounds p(B).

Proof. First check that p : B → p(B) is a covering map. Then since S̃ → S is injective, it follows that p is a
homeomorphism onto its image.

We now need to show that every T 2 ↪→M compresses. We shall show that Z⊕Z 6⊂ Γ. Let P = 〈α, β〉 ⊂ Γ
be a copy of Z⊕ Z. Recall Isom+(H3) = PSL2(C), with action is the natural extension of(

a b
c d

)
.z =

az + b

cz + d
.

Non-trivial elements of PSL2(C) are characterized as follows:

1. γ is elliptic: there exists a fixed point inside H3. In this case, γ is conjugate in PSL2(C) to

(
λ 0
0 λ−1

)
,

where |λ| = 1.

2. γ is hyperbolic: there are two fixed points in the boundary of H3. In this case, γ is conjugate in

PSL2(C) to

(
λ 0
0 λ−1

)
, where |λ| 6= 1.

3. γ is parabolic: there is exactly one fixed point in the boundary of H3. In this case, γ is conjugate in

PSL2(C) to

(
1 1
0 1

)
.

First, note that since M is a manifold, Γ does not contain non-trivial elements of finite order. Neither
can it contain elliptic elements of infinite order, since they would cause Γ to not be discrete. Thus, α and β
are not elliptic.

Assume that α is hyperbolic. Conjugate Γ in PSL2(C) so that α =

(
λ 0
0 λ−1

)
. Then α has fixed points

{0,∞}. Let A be the geodesic in H3 from 0 to ∞. If β =

(
a b
c d

)
and [α, β] = 1, where [ , ] is the

commutator, then
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(
λ 0
0 λ−1

)(
a b
c d

)
=

(
λa λb
λ−1c λ−1d

)
and (

a b
c d

)(
λ 0
0 λ−1

)
=

(
λa λ−1b
λc λ−1d

)
.

We see λb = bλ−1 and λc = cλ−1, so either λ = λ−1 or c = b = 0. By assumption, λ 6= λ−1, and therefore
β fixes both 0 and ∞. P = 〈α, β〉 ⊂ Γ acts freely and discontinuously on H3, so P |A acts freely and
discontinuously on A. But this is a contradiction, as such a group is isomorphic to Z.

Now suppose that α, β are parabolic elements. Conjugate in PSL2(C) such that α =

(
1 1
0 1

)
and

β =

(
1 x
0 1

)
.

1
2

height t

p q

−12

Figure 1.14: The hyperbolic distance between p and q is 1
t .

Let p and q = α(p) be two points of equal height t identified by α. The hyperbolic distance between
p and q is 1

t (see Figure 1.14). As p and q move upwards toward ∞, the hyperbolic distance dH(p, q) = 1
t

goes to 0. But diameter is bounded in the Riemannian manifold M . So in M we see a sequences of closed
geodesics whose lengths converge to 0, which is illegal.

Example. Let K ⊂ S3 be a non-trivial knot. Denote by V = N(K) a tubular neighborhood of K, and by

N(K)

µ

Figure 1.15: A neighborhood of a non-trivial knot.

E(K) := S3 \ int(N(K)) the exterior of K. Note that E(K) is compact 3-manifold with torus boundary.

Claim. T = ∂V is incompressible in E(K).

13



Definition. A meridian µ of K is an essential simple closed curve on ∂V such that bounds a disk in V.

We want to (canonically) choose a second essential simple closed curve on ∂V such that 〈µ, λ〉 = π1T =
H1(T,Z). Furthermore, we ask that λ be such that the intersection number λ · µ = 1, and that λ is
homologically trivial in H1(E(K),Z). Recall from Mayer-Vietoris H1(T ) = H1(V )⊕H1(E(K)). We choose
λ to be a generator for H1(V ), trivial in H1(E(K)), and such that λ ⊂ ∂V is a simple closed curve homologous
to K in V. We call such a λ a (preferred) longitude for K.

Proof of Claim (T is incompressible). Assume that T is compressible. By The Loop Theorem, there is a
disk D ⊂ E(K) such that D ∩ T = ∂D = ` is an essential simple closed curve on T. Since ` is homotopically
trivial in E(K), ` is homologically trivial in E(K). Hence ` = λ (the preferred longitude). Now we have that
λ co-bounds an annulus with K, and ` bounds a disk. Hence, K bounds a disk. This contradicts K being
non-trivial.

Example. Let K1,K2 non-trivial knots, and E(K1), E(K2) their exteriors. Form a new manifold E(K1)∪T
E(K2) where T = T 2 ∼= ∂E(K1) ∼= ∂E(K2). By the above claim, T is an incompressible torus in M .
(These are examples of the classes of manifolds with fundamental groups that are not known to admit linear
representations.)

We now return to the proof of Theorem 1.1. It suffices to prove the theorem for closed 3-manifolds, as
illustrated by the following result.

Proposition 1.12. If all closed 3-manifolds are residually finite, then all 3-manifolds are residually finite.

Proof. Let ∂M 6= ∅. Assume ∂M consists of finitely many closed orientable surfaces. We may also suppose
that there are no S2 boundary components, because capping these off would leave these with 3-balls would
leave the fundamental group unchanged.

Case 1: All boundary components of M are incompressible.

MRML

Figure 1.16: The manifold DM

Let DM be the closed orientable 3-manifold formed by identifying the boundary components of MR and
ML in ML ∪MR (see Figure 1.16). The fundamental group π1DM is obtained from π1M by a sequence of
amalgamations and HNN extensions. Furthermore, π1(M) injects at each stage by the Seifert-van Kampen
theorem. Therefore if π1(DM ) is residually finite, then π1(M) is residually finite.

14



Case 2: Some boundary component Σ of M compresses.

By the Loop Theorem, there is an essential simple closed curve c ∈ Σ that bounds a disk in M . Hence, the
proof of the proposition is completed by the following lemma.

Lemma 1.13. Let M be as above. Then there exist 3-manifolds M1, ...,Mn such that π1(M) = π1(M1) ∗
π1(M2) ∗ ... ∗ π1(Mn) ∗ F , where the Mi have incompressible boundary, and F is free.

The proof of this is left to the reader (cf. HW)

M1 M2

Figure 1.17: Here Σ is compressible.

Hence, from Case 1 and before π1(M) is residually finite if each of the π1(Mi) are residually finite.

Definition. M is prime if whenever M = M1#M2, then at least one of the Mi
∼= S3.

Example. S2 × S1 is not irreducible (it has an incompressible S2) but is prime.

Example. (see hw 1) If M is closed, orientable, and prime but not irreducible then M ∼= S2 × S1.

Proof. (sketch) That M contains incompressible S2 and is prime implies that the incompressible S2, say
S, is nonseparating. We argue that M contains an S2 × S1 as a connect summand contradicting, M being
prime. To do this take a neighborhood S2 × I about S and drawing in an arc (see Figure 1.18). We can
show that this gives S2 × S1 as a summand.

Figure 1.18: M contains an incompressible, non-separating S2

15



Remark. If M is not prime, then π1M is a free product.

Theorem (Prime Decomposition Theorem (Kneser, Milnor)). Let M be a closed orientable 3-manifold.
Then M containts a collection of pairwise disjoint, incompressible S2’s such that decomposing M along the
spheres gives a collection of prime 3-manifolds (Kneser). This is unique up to the order of prime factors
(Milnor).

Remark. This collection may be empty.

Now, to prove Theorem 1.1, it is enough to assume M is closed, orientable and prime.

Theorem (Geometrization Conjecture (version 1)). Let M be as above. Then M contains a family T of
pairwise disjoint, incompressible tori such that the interior of any component of M \ T admits a “geometric
structure of finite volume” (or π1(cpt) is virtually abelian).

Figure 1.19: An example of a JSJ decomposition T

Examples. 1. M = H3/Γ (T = ∅), and M = S3/Γ (T = ∅).

2. Two nontrivial knot exteriors, say the figure 8 knot and the trefoil, glued along their torus boundary.

3. M = T 3 – cutting along a T 2 we get a T 2 × I.

Geometric Manifolds

Let Xn be a Riemannian manifold. Xn is called homogenous if Isom(Xn) acts transitively on X.

Definition. By an n-dimensional geometry we mean a connected, simply connected, homogenous Rieman-
nian manifold X such that X is unimodular (i.e. X has a quotient space of finite volume). We say that
the Riemannian manifold M admits a geometric structure modelled on X if M = X/Γ with Γ ⊂ Isom(X)
acting freely and discontinuously.

Example. (n = 2)

1. S2 is compact so itself has finite volume;

2. E2 has the group Z× Z acting discretely and discontinuously, with compact quotient;

3. H2 has the genus g surface Σg as a quotient, for g ≥ 2.

Example. (n = 3)

1. S3 is compact so itself has finite volume;
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2. E3 has Z3 acting discretely and discontinuously, with compact quotient the 3-torus T 3;

3. H3 has finite volume quotients, one is constructed below.

Example. (arbitrary n)

1. Sn is compact so itself has finite volume;

2. En is acted on by Zn with compact quotient the n-torus Tn;

3. Hn is a more difficult case, and was shown to have an n-dimensional geometry by work of Borel, who
showed these have cocompact lattices.

Example. To show H3 is a 3-dimensional geometry, use the Seifert-Weber dodecahedral space. Start with
a dodecahedron in H3 with all dihedral angles equal to 2π

5 (See Figure 1.20) and identify opposite faces with
a 3π

5 clockwise twist. The result is a closed hyperbolic 3-manifold.

Figure 1.20: A regular dodecahedron in H3

Examples. (Other 3-dimensional geometries)

1. S2 × R with the product metric. Isom(S2 × R) = Isom(S2) × Isom(R), so S2 × S1 is a finite volume
quotient of S2 × R by Z.

2. H2 × R with the product metric. In a similar way, Σg × S1 is a finite volume quotient, for g ≥ 2.

Example. NIL =


1 x z

0 1 y
0 0 1

∣∣∣∣∣ x, y, z ∈ R

.

This is a 3-dimensional Lie group: it is a closed subgroup of SL2(R). It is connected and simply con-
nected.To see this, we can identify NIL with R3 so that multiplication is preserved.

Since we have the multiplication rule1 x z
0 1 y
0 0 1

1 x′ z′

0 1 y′

0 0 1

 =

1 x+ x′ z + z′ + xy′

0 1 y + y′

0 0 1

 ,

we can define a multiplication in R3 by

(x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′)

and identify the element

1 x z
0 1 y
0 0 1

 ∈ NIL with (x, y, z) ∈ R3.
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NIL, being a Lie group, admits a Riemannian metric which is left invariant under NIL, i.e. there is a map
La : NIL→ NIL defined by La(y) = ay (see Scott’s article for explicit coordinates). Also, NIL ⊂ Isom(NIL).
Note that NIL acts transitively and freely on itself, since NIL is a group.

To show NIL is a 3-dimensional geometry, consider H =


1 x z

0 1 y
0 0 1

∣∣∣∣∣ x, y, z ∈ Z

 ⊂ NIL. H acts

freely on NIL. Since Z is a discrete subgroup of R, H is a discrete subgroup of NIL, and, since H is discrete,
H acts discontinuously on NIL.

Claim: NIL/H is a closed 3-manifold.

Proof. Let a =

1 1 0
0 1 0
0 0 1

 and b =

1 0 0
0 1 1
0 0 1

. Clearly 〈a, b〉 ⊂ H. We show that H = 〈a, b〉.

Let c = aba−1b−1 =

1 0 1
0 1 0
0 0 1

. It suffices to write g =

1 x z
0 1 y
0 0 1

 ∈ H in terms of a, b, c.

We have

an =

1 n 0
0 1 0
0 0 1

 , bm =

1 0 0
0 1 m
0 0 1

 , ck =

1 0 k
0 1 0
0 0 1


and so

anbmck =

1 n k + nm
0 1 m
0 0 1

 .

Given g we can solve the equations n = x, m = y, k = z − xy. Therefore H = 〈a, b〉.

We now seek to describe the quotient space NIL/H.

Remarks. 1. One checks that [a, c] = 1 and [b, c] = 1.

2. We have 〈b, c〉 ⊂ H, generating a copy of 〈b, c〉 ∼= Z ⊕ Z ⊂ H. Now a normalizes 〈b, c〉, because, since
aba−1b−1 = c, we have aba−1 = cb. Furthermore, [a, c] = 1, so we have 〈b, c〉CH. So H has a normal
subgroup isomorphic to Z⊕ Z.

3. Notice that 〈b, c〉 acts by unit translations:

(0, 1, 0) · (x, y, z) = (x, y + 1, z)

and
(0, 0, 1) · (x, y, z) = (x, y, z + 1).

4. Consider T 3 = R3/Λ with Λ = 〈A,B,C〉 where A,B,C are translations:

A : x 7→ x+

1
0
0

 , B : x 7→ x+

0
1
0

 , C : x 7→ x+

0
0
1

 .

Now 〈B,C〉 acts on the (y, z)-plane in the same way as NIL above. Consider R3/〈B,C〉 ∼= R×T 2 (see
Figure 1.21). Taking the quotient of R× T 2 by A identifies T 2 × {0} with T 2 × {1}, giving T 3.
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Figure 1.21: T 2 × R, before identification

To describe NIL/H, we first form the quotient R× T 2 by quotienting out by 〈b, c〉. This is the same as
in the above remark, because 〈b, c〉 acts on R3 in the same way as 〈B,C〉. To see how a acts, notice that

(1, 0, 0) · (x, y, z) = (x+ 1, y, z + y),

so (x, y, z) gets identified with (x+ 1, y, z+ y) by a, and T 2×{0} gets identified with T 2×{1} with a twist.
This shows NIL/H is a closed 3-manifold (so NIL has a 3-geometric structure), proving the Claim.

We can alternatively think of NIL/H in the following way: Let

T =

(
1 0
1 1

)
,

acting on R2 = (y, z) plane via T : (y, z) 7→ (y, y + z). The action of T preserves the standard Z-lattice, so
T descends to a homeomorphism ϕ : T 2 → T 2. To get a different description of the previous construction:,
take T 2 × I/ ∼ where (x, 0) ∼ (ϕ(x), 1).

We next describe another 3-dimensional geometry, SOL, whose construction bears some similarity to the
above.

Let A =

(
2 1
1 1

)
. As above, A descends to a self-homeomorphism of T 2. The eigenvalues of A are

λ =
3 +
√

5

2
:= et0

and

λ−1 =
3−
√

5

2
= e−t0 .

The corresponding eigenvectors are

v1 =

(
1+
√

3
2
1

)
, v2 =

( 1−
√

3
2

1

)
.

Powers of A act by expanding in v1 and by contracting in v2. Identifying {v1, v2} ↔ {e1, e2}, then A acts
by (x, y) 7→ (et0x, e−t0y).
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To describe SOL, we equip R3 with another multiplication,

(x, y, z)(z′, y′z′) = (x+ ezx′, y + e−zy′, z + z′),

and the metric ds2 = e2zdx2 + e−2zdy2 + dz2. Note that with this multiplication, we have another plane
preserved by a normal subgroup: R2 = {(x, y, 0)} C R3. Define a group of isometries as follows: B and C
will be the unit translations in the x and y directions respectively, and ψ : (x, y, z) 7→ (et0x, e−t0y, z + t0).
〈B,C〉 preserves the (x, y) × {0} plane. Form R3/〈B,C, ψ〉 = T 2 × I/ ∼ where (x, 0) ∼ (ψ(x), 1), and ψ is
the homeomorphism of T 2 which descends from the matrix A.

Remarks. 1. NIL ( Isom(NIL) and SOL ( Isom(SOL).

2. SOL and NIL are different topologically, since NIL has nontrivial center and SOL does not.

3. SOL and NIL are both semi-direct products of R2×R (or, non-isomorphic extensions of R2 by R). We
can picture NIL as an extension of R2 by R:

0 −→ R −→ NIL
φ−→ R2 −→ 0

where the first R ∼=


1 0 z

0 1 0
0 0 1

∣∣∣ z ∈ R

 is central, and φ is given by

φ

1 x z
0 1 y
0 0 1

 = (x, y).

In this sense, NIL is “just a twisted version of” the more natural extension

0 −→ R −→ E3 −→ R2 −→ 0.

The final 3-dimensional geometry we consider is a twisted version of H2 × R, denoted S̃L2. This arises
from the question of whetehr there is a a twisted version of H2 × R as NIL is for E2 × R. To define it,
first note that SL2(R) is a 3-dimensional, connected Lie group. It is not simply connected, as it contains a
maximal compact subgroup isomorphic to SO(2). We therefore pass to the universal cover of SL2(R); this

is S̃L2. It is a 3-dimensional Lie group, and S̃L2 with its left invariant metric is a geometry. It is possible to
construct examples modelled on this, though we do not do so at present.

The following theorem summarizes the 3-dimensional geometries.

Theorem (Thurston). There are exactly eight 3-dimensional geometries; they are:

S3,E3,H3,S2 × R,H2 × R,NIL, S̃L2,SOL.

Remark. These fall into four categories:
S3, E3, H3 all have constant curvature;
S2 × R and H2 × R are products;
NIL and S̃L2 are twisted products;
SOL is its own thing.

Remark. Isom(NIL) contains NIL of infinite index, because there is a circle action on NIL by isometries;
that is, there exists C ⊂ Isom(NIL) such that C acts like S1 on NIL (cf. Scott’s article). As before, this can
be described in terms of (x, y, z) co-ordinates:

((x, y), z) 7→ (ρθ(x, y), f(x, y, z, θ))

where ρθ is rotation by θ ∈ [0, 2π).
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Figure 1.22: Bundle projection p : E → B

Bundles

Definition. Let E,B be topological spaces and p : E → B be a continuous surjection. Then we say that p
is a bundle projection (see Figure 1.22) if there is a space F such that for each x ∈ B there is a neighborhood
U containing x and a homeomorphism ϕU : U × F → p−1(U) such that

p ◦ ϕU : U × F → U

is the projection onto the first factor (see Figure 1.23).

Figure 1.23: The map p ◦ ϕU is projection onto the first factor

In this situation, we call the data (E,B, F, p) a fiber bundle with base B, fiber F , and total space E. We
also say that E fibers over B and write

F → E
p−→ B.

Example. If E = B×F with p the projection to the first factor, then this is called the trivial fiber bundle.

Example. Let M be the Möbius band. Then M is a non-trivial fiber bundle with base S1 and fiber I = [0, 1]
(see Figure 1.24).
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Figure 1.24: The Möbius band is an I-bundle over S1

When F is a compact surface, we call E a surface bundle and when F is homeomorphic to S1, we call E
a circle bundle.

Observe that for 3-manifolds, surfaces bundles have base S1 and circle bundles have base a surface.

Example. Take Σ to be a compact surface. Then Σ× S1 is both a surface bundle and a circle bundle.

Example. Again, take Σ to be a compact surface and let φ : Σ → Σ be a homeomorphism. Then the
mapping torus

Mφ = Σ× I/(x, 0) ∼ (φ(x), 1)

is a surface bundle over S1. We call φ the monodromy of the bundle.

Definition. Let M be a compact 3-manifold. M is called a Seifert Fibered Space (SFS) is M is virtually a
circle bundle, i.e. M is finitely covered by a circle bundle.

Example. By the Bieberbach theorems, if M is a closed manifold modelled on the Euclidean geometry then
M is finitely covered by T 3 and hence a SFS.

Example. Recall that NIL is a central extension

0→ R→ NIL→ R2 → 0.

As we saw before, NIL/H is a circle bundle over T 2:

0→ Z→ NIL/H → Z2 → 0;

using the action of the central Z on R and the Z2 action on R2, this can be shown to give a circle bundle
structure on H\NIL.

Example. Let M = H3/Γ have finite volume. Then M is not a Seifert Fibered Space.

We now return to the proof of Theorem 1.1. In order to prove that all geometric manifold are residually
finite, we make use of the following theorem.

Theorem (Thurston/Perelman). Let M be an orientable, closed, geometric 3 manifold. Then one of the
following holds:

1. M has geometry modelled on S3 (i.e. π1M is finite);
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2. M has geometry modelled on H3;

3. M has geometry modelled on R3 and is finitely covered by T 3;

4. M has geometry modelled on S2 × R and is finitely covered by S2 × S1;

5. M is finitely covered by a circle bundle over Σg where g ≥ 1. In this case, M has geometry modelled

on either H2 × R, NIL, or S̃L2;

6. M has geometry modelled on SOL. Here, M is finitely covered by a torus bundle over S1 with hyperbolic
monodromy.

Perelman has proven the following theorem.

Theorem. If M is a closed, irreducible 3 manifold with infinite fundamental group and Z×Z * π1M , then
M is hyperbolic.

In the same spirit, we have the following theorem.

Theorem (Thurston). Let M be a compact 3-manifold with non-empty boundary consisting of incompressible
tori. Assume that Int M admits a geometric structure of finite volume, and that π1M is not virtually abelian.
Then M is either modelled on H3 or is virtually P × S1 for a punctured surface P .

Remark. By the classification theorem above, in order prove residual finiteness of geometric manifolds we
need to understand the fundamental groups of circle bundles. If E = Σg×S1 then we have π1E = π1Σg×π1S

1

and the obvious short exact sequence

1→ Z→ π1E → π1Σg → 1.

More generally, if E is any circle bundle over Σg (g ≥ 1) then we have the short exact squence

1→ Z→ π1E → π1Σg → 1.

with the presentation

π1E = 〈a1, b1, . . . , ag, bg, h | [ai, h] = [bi, h] = 1,
∏
i

[ai, bi] = he〉

where e is a positive integer.

Example. Taking g=e=1, the presentation becomes

〈a, b, h | [a, h] = [b, h] = 1, [a, b] = h〉.

This is the integral Heisenberg groups H seen previously.

Theorem 1.14. Suppose M is closed, orientable, and geometric. Then π1M is residually finite.

Proof. From before, manifolds modelled on S3,E3,H3, S2 × R, and H2 × R are residually finite. So by the
classification theorem above, it suffice to deal with the cases when (1) M is a circle bundle or (2) M is
modelled on SOL.

For (1), first suppose g = 1. Then

π1M = 〈a, b, h | [a, h] = [b, h] = 1, [a, b] = he〉

and we see that M is a finite cover of NIL/H. Hence, π1M is RF since H is linear. For g ≥ 2, set

Γ = π1M = 〈a1, b1, . . . , ag, bg, h | [ai, h] = [bi, h] = 1,
∏
i

[ai, bi] = he〉
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and observe that Γ/〈h〉 = π1Σg. If g ∈ Γ but g /∈ 〈h〉 then g projects non-trivially into π1Σg so, since surface
groups are RF, we can find a finite quotient of π1Σg, and hence Γ, not mapping g to the identity. To deal
with 〈h〉, we construct a homomorphism ϕ : Γ→ NIL with ϕ(h) 6= 1. Define ϕ by first setting

ϕ(a1) =

1 x 0
0 1 y
0 0 1

 , ϕ(b1) =

1 r 0
0 1 s
0 0 1

 , ϕ(ai) = ϕ(bi) = 1 for i ≥ 2.

Then we see that

ϕ([a1, b1]) =

1 0 sx− ry
0 1 0
0 0 1

 ,

so choosing r, s, x, y so that T = sx− ry 6= 0, ϕ can be defined by mapping h to the matrix1 0 T
e

0 1 0
0 0 1

 .

We have therefore constructed a well defined homomorphism ϕ : Γ → NIL with ϕ(h) 6= 1. Since ϕ(Γ) is a
finitely generated linear group, it is residually finite. This completes the proof when M is a circle bundle.

For (2), when M is a 3-manifold modelled on the SOL geometry, it suffices to consider a finite cover MA

that is a torus bundle over S1 with hyperbolic monodromy A ∈ SL2(Z). We have the split exact sequence

1→ F → π1MA → Z→ 1,

where F ∼= Z× Z is the fundamental group of the fiber torus. To prove residual finiteness, let g ∈ π1MA. If
g /∈ F then g projects nontrivially into Z and can therefore be mapped non-trivially into a finite quotient.
So we assume g ∈ F ∼= Z× Z and let n ∈ Z so that

g /∈ Hn = Ker(Z× Z→ Z/nZ× Z/nZ).

Since Hn is characteristic in F , it is normal in π1MA. Let G = Hn.〈t〉, where t projects to the generator
of π1S

1 ∼= Z in the above sequence. One then easily verifies that G is the required finite index subgroup of
π1MA that does not contain g, completing the proof.

Remark. We can also show that Isom(SOL) is linear. To see this, first observe that it is enough to show
that SOL is linear, as [Isom(SOL) : SOL] = 8. Since SOL was described as R3 with the multiplication

(a, b, c) ∗ (x, y, z) = (a+ e−cx, b+ ecy, c+ z)

we can associate to each (a, b, c) the affine transformation

ψ(a,b,c)(x, y, z) = (a, b, c) + (e−cx, ecy, z).

This provides an injective homomorphism from SOL to Aff(R3), which embeds into GL4(R) via the map

Ax+ b 7→
(
A b
0 1

)
.

We now return to the proof of Theorem 1.1. By Theorem 1.14, any closed manifold admitting a geometric
structure is residually finite so by the geometrization theorem (version 1) there is a system of incompressible
tori T such that each component of M |T is either hyperbolic, a Seifert fibered space, or has virtually abelian
fundamental group. Note that all of the components of the torus decomposition are residually finite by
previous work.

It remains to show that we can piece together these components to recover the manifold M while pre-
serving residual finiteness. We begin with a warm up that highlights the ideas of the proof.
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Figure 1.25: M contains an incompressible torus T

Example: Warm Up. Let M be a closed 3-manifold that contains a single incompressible torus T such
that M |T = M1 ∪T M2 with M1,M2 hyperbolic of finite volume (see Figure 1.25). Set π1T = P so that we
have the non-trivial splitting

π1M = π1M1 ∗P π1M2.

Let g ∈ π1M \ 1 and suppose that we can find homomorphisms

θ1 : π1M1 → A1,

θ2 : π1M2 → A2

with A1, A2 finite groups so that
θ1|P = θ2|P

(that is, for each α ∈ P , we have θ1(α) = θ2(α)). Then we set P = θ1(P ) = θ2(P ) and have the induced
homomorphism

θ : π1M → A1 ∗P A2.

Now, if we could arrange the homomorphism so that θ(g) 6= 1, then we can find a finite index subgroup of π1M
not containing g, therefore proving residual finiteness. To see this, observe that since finite amalgamations
of finite groups are virtually free, and hence residually finite, we can find a map ψ from A1 ∗P A2 to a finite
group that does not map θ(g) to the identity. Ker ψ ◦ θ then provides the required finite index subgroup of
π1M not containing g.

[See Window for proof that finite amalgamations of finite groups are virtually free]

To arrange this situation, we make use of the following two lemmas.

Lemma 1.15. Let M be an orientable, hyperbolic 3-manifold of finite volume with a single cusp. Let T be
the peripheral torus. If g ∈ π1M \ {1}, then for all but finitely many primes p there is a normal subgroup N
of finite index in π1M such that

N ∩ π1T = Hp

where Hp is the characteristic subgroup of π1M of index p2. Moreover, if g /∈ π1T then g /∈ N.π1T .

Proof. Let Γ = π1M and P ⊂ Γ be π1T . Conjugate Γ in PSL2(C) so that P fixes ∞, i.e.

P ⊂
{(

1 z
0 1

) ∣∣∣ z ∈ C
}
.

Now let g ∈ Γ \ P (the proof for g ∈ P is similar), and suppose

g =

(
a b
c d

)
.
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Observe that c 6= 0, since otherwise either g is parabolic and thus contained in P , or g is a hyperbolic element
of Γ sharing a fixed point with P , both of which provide contradictions. Choose a basis for P = 〈µ, λ〉, where
λ is contained the kernel of the map

H1(T,Z)→ H1(M,Z).

[Window: More on half lives half dies]

Let R ⊂ C be the ring generated over Z by the entries of the generators of Γ and their inverses. We state
the following lemma without proof.

Lemma 1.16. Let R ⊂ C be a finitely generated ring. Let a1, . . . , an be nonzero elements of R. Then for all
but finitely many primes p there exist ring homomorphisms ψp : R→ Fpn with ψp(ai) 6= 0 for i = 1, . . . , n.

[For proof, see Window]

From this above lemma, there exist infinitely many primes p and homomorphisms ψp : R→ Fpn with

ψp(m), ψp(l), ψp(c) 6= 0

where m and l are the (1, 2) entries of the matrices µ and λ respectively. For a fixed prime p, this map then
defines

ρ : Γ→ SL2(Fpn)

with ρ(m)and ρ(l) elements of order p and ρ(g) /∈ ρ(P ). This construction would prove the lemma if we
could ensure that

ρ(P ) ∼= Z/pZ× Z/pZ.

However, it is possible that ρ(P ) ∼= Z/pZ.To avoid this concern, consider the quotient homomorphism

Γ→ Γab/torsion = H.

Now let
θ : Γ→ H/Hp (∼= (Z/pZ)r)

with θ(P ) ∼= Z/pZ by construction. Taking

N = Ker(ρ× θ : Γ→ SL2(F)×H/Hp)

is then the required normal subgroup.

We can now finish the proof that π1M is residually finite for M as in our warm up example. Let
g ∈ π1M \ {1}. Then we write g in the reduced form

g = g1h1 . . . gnhn

where gi ∈ π1M1, hi ∈ π1M2 ,and gi, hi /∈ P for i > 1 (and, as we saw above, there are variations on where
this word begins and ends). If g ∈ P , then for all but finitely many primes p, we have g /∈ Hp. Hence the
first part of Lemma 1.15 provides finite index subgroups N1 C π1M1 and N2 C π1M2 with

N1 ∩ P = N2 ∩ P = Hp.

We then have θ(g) 6= 1 as required.
If instead g /∈ P , then write g in reduced form as above. By Lemma 1.15, there are finite index subgroups

N1 C π1M1 and N2 C π1M2 with
θ1 : π1M1 → A1 = π1M1/N1

θ2 : π1M2 → A2 = π1M2/N2
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so that θ1(gi) /∈ θ1(P ), θ2(hj) /∈ θ2(P ), and

N1 ∩ P = Hp = N2 ∩ P.

We now obtain the desired homomorphism

θ : π1M → A1 ∗P A2

with θ(g) 6= 1 by the final part of Lemma 1.15.

Remark. The key lemma, 1.15, holds for an arbitrary finite volume hyperbolic manifold with cusps.

Proof. Let Γ = π1M , where M has cusp tori T1, . . . , Tn with groups P1, . . . , Pn. Conjugate Γ such that

P1 =

〈(
1 m1

0 1

)
,

(
1 l1
0 1

)〉
= 〈µ1, λ1〉 .

Now there exist A2, . . . , An ∈ SL2(C) such that for each j = 2, . . . , n,

AjPjA
−1
j =

〈(
1 mj

0 1

)
,

(
1 lj
0 1

)〉
= 〈µj , λj〉 ,

where λj was constructed to be killed by the inclusion map of the boundary. Let R be the ring generated
over Z by the entries of generators of Γ and the entries of Aj , A

−1
j . The first part proceeds as before: let

g =

(
a b
c d

)
,

with c 6= 0. Take primes from Lemma 1.16 so that ψp(c), ψp(mj), ψp(lj) 6= 0. Now we must arrange the
following: fix P ∈ {P1, . . . , Pn}. If g ∈ π1M \ P , then g /∈ N · P . Repeat argument as needed.

We need to develop some group theory to handle the general case where the set of incompressible tori T is
non-empty. If we cut M along T (see Figures 1.26 and 1.27) then each piece is RF, by the above work.

Figure 1.26: M and T Figure 1.27: M cut along T

In order to show that the fundamental group of such an M is RF, we need to use the fundamental group of
a graph of groups (Serre, Bass, Dicks–Dunwoody).
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Gluing two tori of different components together is a free product amalgamation. Gluing two tori together
of the same component is an HNN-extension. More precisely, let G = π1N , T and T ′ two distinct boundary
components of the same piece. If P,Q ⊂ G, peripheral subgroups associated to T , T ′, then after gluing T to
T ′, we get:

G∗ = 〈G, t | tpt−1 = φ∗(p) ∀p ∈ P 〉,

where φ∗ : P → Q is an isomorphism.

Definition. A graph Y consists of two sets: V = V (Y ), vertices, and E = E(Y ), (oriented) edges, together
with maps E → V × V , e 7→ (o(e), t(e)) (the originating and terminating vertices of e), and E → E, e 7→ ē
(reversal of orientation) such that ¯̄e = e, ē 6= e, t(e) = o(ē), and o(e) = t(ē).

We usually think in terms of diagrams, for example

o(e)
• •

t(e)

{e, ē}
or • // •

e
.

All graphs will be assumed to be connected, oriented, and finite.

Definition. A graph of groups, G, based on a graph Y , consists of two families of groups {Gv | v ∈ V }
and {Ge : e ∈ E} such that Ge = Gē, and a family of group embeddings {fe} with fe : Ge ↪→ Gt(e),
fē : Gē ↪→ Go(e).

Example. Let Y be the graph

v1

• // •
v2e
.

Then there is one edge group Ge = Gē and we have two embeddings from Ge into Gv1
and Gv2

:

Gv1 Gv2

Ge

fē
aa

fe
==

.

Example. Let Y be the graph with one vertex and one edge.

•
��

v

e

Here we have two embeddings of the only edge group Ge = Gē into the only vertex group Gv.

Gv

Ge

fē

II

fe

UU

Definition. The Path Group, π(G), is:

π(G) :=

(
∗

v∈V
Gv

)
∗ F (E)/N

where F (E) is a free group with basis the elements of E, and N is the normal subgroup generated by the
relations efe(g)e−1 = fē(g) for all e ∈ E and g ∈ Ge, and e−1 = ē for all e ∈ E.
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Example. Take Gv = 1 ∀ v ∈ V . Then, since the maps fe are embeddings, we must have Ge = 1 ∀ e ∈ E.

Then π(G) = F , the free group on |E|2 generators.

Example. Suppose Ge = 1 ∀ e ∈ E. Then π(G) =
(
∗
v
Gv

)
∗ F , where again F is free on |E|2 generators.

To explain the use of the name “Path Group”, consider the following definition. A path γ in G of length
n from a vertex v to a vertex w is a sequence (g0, e1, g1, . . . , en, gn), where (e1, . . . , en) is an edge path in Y
and gi ∈ Gvi for i = 0, 1, . . . , n, where vi = t(ei), i = 1, 2, . . . , n.

Remark. A path γ determines a word γ = g0e1g1 . . . engn in π(G). We multiply paths by concatenation so
long as terminal vertex and original vertex the paths agree.

Example. Consider the following path in G: γ = (g0, e1, g1, e2, g2) with e2 = ē1. This determines γ =
g0e1g1ē1g2 = g0e1g1e

−1
1 g2 ∈ π(G). Now suppose g1 ∈ fe1(Ge1), i.e. g1 = fe1(h) for some h ∈ Ge1 . Then

γ = g0e1fe1(h)e−1
1 g2 = g0fē1(h)g2. Here g0 ∈ Gv0 , g2 ∈ Gv2 = Go(e1) = Gv0 , fē1(h) ∈ Gv0 . Therefore the

path of length 2 collapses to a path of length zero.

Definition. A path γ is a reduced path if n = 0 and g0 6= 1, or if n > 0 and gi /∈ fei(Gei) for each i such
that ei+1 = ēi.

Remark: Key Properties (Serre).
• If g ∈ π(G), g 6= 1, then g can be represented by a reduced path.
• If γ is a reduced path, then γ determines a non-trivial word in π(G).
• Gv ↪→ π(G) is injective.

[See Window for proofs]

Next we have two definitions of the fundamental group of a graph of groups.

Definition. Let v0 ∈ V be fixed. Then π1(G, v0) is the subgroup of π(G) where paths begin and end at v0.

Definition. Let T ⊂ Y be a maximal tree. Note that T is connected, and meets every vertex. Define
π1(G, T ) = π(G)/〈e = 1 ∀ t ∈ E(T )〉.

Exercise. (see Serre.) π(G) � π1(G, T ) surjects. This homomorphism, when restricted to π1(G, v0) gives
an isomorphism.

Now we have the tools to complete the proof of Theorem 1.1. At this point, M is closed, orientable,
irreducible, and the collection of tori T 6= ∅.

Let Γ = π1M . Suppose that M \ T has pieces {Nj}, where each Nj is either hyperbolic or a Seifert
fibered space (see Figure 1.28). Let {Tk} be the boundary tori. Associate to M a graph Y = YM , where
vertices V (Y ) correspond to the pieces {Nj}, and edges E(Y ) correspond to the edges between Nj and Nk
if ∂Nj and ∂Nk have a common boundary torus (and a loop based at Nj if two distinct boundary tori are
identified). Thus we have a bijecton between the tori of T and the edges of Y . This associates to M a graph
of groups G with vertices {Gv = π1Nj} and edges {Ge = π1Ti}, together with Ge = Gē and the maps fe, fē
as before.

Exercise. Show that Van Kampen’s Theorem implies that Γ ∼= π1(G).

We want to show Γ is residually finite. We have already shown all the Gv are residually finite. Now we
use the following lemma:
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Figure 1.28: The graph YM associated to M

Lemma 1.17. Let M be a compact, orientable 3-manifold which is either a Seifert fibered space or such that
IntM is hyperbolic of finite volume. Let T1, . . . , Tm be the torus boundary components of M . If g ∈ π1M\{1},
then for all but finitely many primes p, there exists a finite index normal subgroup N C π1M such that
N∩π1Ti = Hp, where Hp is the characteristic subgroup defined above. If T ∈ {T1, . . . , Tn} and g ∈ π1M\π1T ,
then g /∈ N · π1T .

Proof. We have already done the case when IntM is hyperbolic. Consider the case when M = P ×S1, where
P is a punctured surface. So π1M = π1P × Z. Let 〈h〉 generate Z, and ϕ be the projection

ϕ : π1M/〈h〉 → π1P.

Each boundary component of M has the form {puncture} × S1. Fix attention on one such T ⊂ ∂M . Then
π1(T ) = 〈α, h〉 ⊂ π1M (see Figure 1.29). Suppose that g ∈ π1M \ π1T . Then ϕ(g) = g′ ∈ π1P \ 〈α〉.

To prove the lemma, it suffices to show there exists a finite index normal subgroup N C π1P such that
N ∩ 〈α〉 has index p in 〈α〉, and g′ /∈ N · 〈α〉. Viewing π1P as a subgroup of SL2(R), we run through the
same argument as in the hyperbolic case.

We now use this lemma to complete the proof of Theorem 1.1. Let g ∈ Γ \ {1}. Use Lemma 1.17 to
define a homomorphism θ̄ : Γ→ π1(G), where all the vertex groups and edge groups are finite.

Remark: Key Fact. Such a π1(G) is virtually free (Stallings, Swan, Serre). Therefore π1(G) is residually
finite, so if θ̄(g) 6= 1, then Γ is residually finite, and we are done. To achieve this goal, represent g by a
reduced path (using Γ ∼= π1(G)), g = (g0, e1, g1, . . . , en, gn), gi ∈ Gvi ∼= π1(Ni). Using Lemma 1.17, for each
gi there exists θi : Gvi → Gvi/Di, where Di is the normal subgroup given by the lemma. Furthermore, the
θi’s agree on any common edge group. This determines a new graph of groups Ḡ (where everything is finite).
Hence, by construction we can define θ̄ : Γ→ π1Ḡ, where θ̄(g) = (θ0(g0), e1, θ1(g1), . . . , en, θn(gn)).

By the remark above, to show that θ̄(g) 6= 1 it suffices to show:

Claim. θ̄(g) is reduced.

Proof. If n = 0, g = g0. Lemma 1.17 shows that θ̄(g) = θ0(g0) 6= 1. If n > 0, then there exists an i such that
θi(gi) ∈ θ(Gei), that is, gi ∈ Di ·Gei , a contradiction to Lemma 1.17. This completes the proof of Theorem
1.1.
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Figure 1.29: M = P × S1. Here π1T = 〈α, h〉 ⊂ π1M

Remarks. Let M be a closed, orientable irreducible 3-manifold with infinite π1. Assume that either M is
geometric, but not modelled on H3, or that T is nonempty. Then there exists a finite cover M1 → M with
first betti number b1(M1) > 0.

Proof. If M is geometric, then M is modelled on E3, NIL, S̃L2 , H2 × R, or SOL. Of these, E3 is covered
by the 3-torus T 3; NIL is covered by a T 2-bundle; H2 ×R and SOL are covered by S1-bundles over a closed
genus g surface Σg, g ≥ 2; and SOL is virtually a T 2-bundle. In each case, the listed finite cover M1 has
b1(M1) > 0. If T is nonempty, then the proof of Theorem 1.1 gives a surjection π1M � G, where G is
virtually free, so b1(M1) > 0.

Furthermore, for S̃L2, H2 ×R, we have finite covers with π1M1 � F2. This is also true when T 6= ∅. We
can arrange that πM � F2 using graphs Ḡ from the proof of Theorem 1.1 (this is Luecke’s Thesis).
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2 Topology of Finite Sheeted Covers

The standing assumption for this section will be to let M be a closed, connected, orientable, irreducible
3-manifold. Such a manifold M is called Haken if M contains an incompressible surface. By the assumption
that M is irreducible, it is assumed that such an incompressible surface has positive genus.

Haken manifolds come in two different flavors: vanilla and Belgian raspberry chocolate truffle. The former
consists of the cases when the incompressible surface Σ is separating, and the latter of the cases when Σ is
non-separating. When Σ is non-separating, then b1(M) > 0. This is an exercise in Poincaré duality. The
surface Σ represents a nontrivial class in H2(M ;Z), so there exists a nontrivial class in H1(M ;Z), which is
found by considering a 1-cycle in M which intersects Σ only once. By Poincaré duality

H2(M ;Z) = H1(M ;Z) = Hom(H1(M ;Z),Z).

In summary:

Lemma 2.1. For any n-manifold M and any submanifold Σ ⊂M of codimension 1, the class [Σ] ∈ Hn−1(M)
is trivial if and only if Σ separates M .

In dimension three, the converse to the above lemma also holds.

Proposition 2.2. Let M3 be as above (closed, connected, orientable, and irreducible) and assume b1(M) > 0.
Then M contains an incompressible non-separating surface.

Proof. Let ϕ : π1M → H1(M ;Z) � Z be an epimorphism. Then we can realize ϕ as follows (using the
asphericity of M): there exists a continuous map f : M → S1 with f∗ = ϕ. Let x0 be a generic regular
value of f such that f−1(x0) = F is an embedded orientable (possibly disconnected) surface in M . Since
ϕ is onto, there exists a simple closed curve γ ⊂ M such that ϕ([γ]) = z, where z is a generator of π1(S1).
Then by construction, the intersection number [γ] · [F ] = 1, so [γ] · [F0] = 1 for some component F0 ⊂ F .

If F0 is incompressible, then we are done. If it is compressible, then, using the Loop Theorem, we can
compress it along some embedded disk D ⊂ M with D ∩ F0 = ∂D to form F ′0. Then, for some component
F1 ⊂ F0 we still have [γ] · [F1] = 1.

Again, if F1 is incompressible, we are done. If it is not, then we can repeat this process, eventually
arriving at some Fk which is incompressible and non-separating with [γ] · [Fk] = 1.

Definition. For any 3-manifold M as above, the virtual first Betti number of M is given by

vb1(M) = sup{b1(X) : X →M is a finite sheeted covering of M}.

A group G is called large if it contains a subgroup H of finite index which surjects onto a free group.

With the above two terms in hand, we can now state what may be considered to be the biggest open
problem in 3-manifold topology.

Conjecture. (Main Open Problems in 3-manifold topology)

Let M be as above, and assume π1M is infinite. Then,

(A) M is virtually Haken;

(B) vb1(M) > 0;

(C) vb1(M) =∞;

(D) π1M is large.

Remarks. 1. By the work above, Conjecture (B) implies Conjecture (A). In fact,

(D) =⇒ (C) =⇒ (B) =⇒ (A).
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2. If M is modelled on E3, then vb1(M) = 3, since M is finitely covered by T 3.

3. If M is modelled on NIL, then vb1(M) = 2. If M is modelled on S2×R, or on SOL, then vb1(M) = 1.

4. If M is modelled on H2 × R, or on S̃L2, then π1M is large, since M is virtually a circle bundle over a
surface of genus g ≥ 2.

5. If M is hyperbolic, then the conjectures are open in general.

Theorem 2.3. Let M be as above, with |π1M | =∞. Assume that M is not hyperbolic. Then vb1(M) > 0,
and either

(i) M is modeled on E3, SOL, NIL, or S2 × R and vb1(M) ≤ 3; or

(ii) π1M is large.

Proof. By geometrization, if M is not hyperbolic, then either M is geometric and we are done by the remarks
above, or (recalling the notation used in the proof of Theorem 1.1) M contains a nonempty collection T of
irreducible tori. In that proof, we constructed (many) epimorphisms ϕ : π1M → π1(G), where G is a graph
of groups with all the vertex groups finite. As we saw in the proof (*** or in a window***), π1(G) is virtually
free, so vb1(M) > 0.

However, we have a problem if π1(G) is virtually Z. Recall that the vertex groups had the form PSL2(Fp)×
(H/Hp), where H was the free part of (π1M)ab. In the proof, the edge groups always had the form
Z/pZ × Z/pZ. The image of a peripheral subgroup of the fundamental group of a piece of M\T in PSL2(Z)
is Z/pZ, and the index of this subgroup is much bigger than 2. Also, the image of the edge groups in the
vertex groups was larger than 2.

With this in mind, one way to finish the proof is to apply the following theorem.

Theorem (Serre, Stallings). π1(G) is virtually Z if and only if either π1(G) contains a finite normal subgroup
N such that π1(G)/N ∼= Z or π1(G) ∼= A ∗C B, where [A : C] = [B : C] = 2.

Separability

Let G be a group. Given a subgroup H < G, G is called H-separable if for all g ∈ G\H there exists a
homomorphism ϕ : G → A, where A is a finite group and ϕ(g) 6∈ ϕ(H). A group G is called subgroup
separable or LERF (locally extended residually finite if G is H-separable for all finitely generated H < G. If
H is taken to be the trivial subgroup, this definition matches that of RF. The “locally extended” refers only
to finitely generated subgroups, as infinitely generated subgroups need not in general be separable.

In parallel with the reformulations equivalent to residual finiteness, we see that the condition of H-
separability is equivalent to the following two conditions:

(i) for all g ∈ G \H, there exists a finite index subgroup K < G such that H < K and g 6∈ K; and

(ii)
⋂

H<K<G

K = H, where [G : K] <∞.

Theorem 2.4. Let M be a compact 3-manifold, and let A < π1M be a maximal abelian subgroup. Then
π1M is A-separable.

Proof. Let Γ = π1M . Then, by Theorem 1.1, Γ is residually finite. Let {Ni} be a family of finite index
normal subgroups in Γ with

⋂
Ni = 1.

Claim.
⋂
ANi = A.
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This claim proves the theorem since
⋂
A<K<GK ⊂

⋂
ANi = A, where K < G is finite index. To prove the

claim, let g ∈
⋂
ANi and let a ∈ A. Consider gag−1a−1. Since g ∈ ANi for all i, g = xni with x ∈ A and

ni ∈ Ni. So
gag−1a−1 = (xni)a(xni)

−1a−1 = xnian
−1
i x−1a−1 = xnin

′
ix
−1,

since A is abelian and Ni is normal. It follows that gag−1a−1 ∈ Ni for all i, which implies that gag−1a−1 = 1.
Thus, g and a commute, and 〈g,A〉 is abelian. Since A was maximal abelian, g ∈ A, so

⋂
ANi = A.

A particular case of the above theorem occurs when A < π1M is the fundamental group of a peripheral
torus, i.e., T 2 ⊂ ∂M . The following proposition says that π1M is peripherally separable.

Proposition 2.5. Let M be a compact 3-manifold, and Σ ⊂ ∂M some incompressible surface of genus
g ≥ 1. Let Γ = π1M and H = π1Σ. Then Γ is H-separable.

This follows from Theorem 1.1 and the next lemma, since the double of M over Σ, which has G ∗H G as
its fundamental group, is residually finite.

Figure 2.1: M doubled along Σ

Lemma 2.6. Let G be a group and H < G a subgroup. If G∗H G is residually finite, then G is H-separable.

This proof is due to Long, upon whose gravestone it is rumored it will be written: “Long was a man of
involutions.”

Proof. Let Γ = G ∗H G. Note that Γ admits an involution τ : Γ→ Γ by “flipping” the left and right copies
of G. The fixed point set of τ is Fix(τ) = H (by the theory of amalgamated products). Let g ∈ G \H, so
τ(g) 6= g. Then gτ(g−1) 6=1 in Γ. Since Γ is residually finite, there exists a finite quotient of Γ, ϕ : Γ → A,
such that ϕ(gτ(g)−1) 6= 1 in A. Thus, ϕ(g) 6= ϕ(τ(g)).

Now define Φ : Γ → A × A by Φ(γ) = (ϕ(γ), ϕ(τ(γ))). Then Φ(H) = (ϕ(H), ϕ(H)), the diagonal, but
Φ(g) = (ϕ(g), ϕ(τ(g))) 6∈ Φ(H), so G is H-separable by the restriction of Φ to G.

Note that if a group G is LERF, then any subgroup H < G is also LERF. Additionally (but not so
trivially), groups containing LERF groups as finite index subgroups are LERF.

Lemma 2.7. Let K be a group, and G < K a finite index subgroup. If G is LERF, then so is K.

Proof. By the preceding remark, we may assume that G C K, since the core of G in K is finite index in
G and normal in K. Let p : K → K/G be the quotient map, let S ⊂ K be finitely generated, and pick
k ∈ K \ S. Let K1 = p−1(p(S)). If k 6∈ K1, we are done since K1 is finite index in K, so we assume k ∈ K1.

Then k = gs for some g ∈ G and s ∈ S with g 6∈ G∩S. Since S is finitely generated and G∩S has finite
index in S, we have that S ∩G is a finitely generated subgroup of G. Since G is LERF, there exists G2 < G
of finite index with g 6∈ G2. Let G3 =

⋂
s∈S sG2s

−1.
Note that S ∩G < G2 and S ∩GCS, so S ∩G < sG2s

−1 for all s ∈ S. Thus, S ∩G < G3. Since GCK,
sG2s

−1 < G of finite index for each s ∈ S. Therefore, G3 < G is finite index (see Figure 2.2).
Let K3 = 〈G3, S〉. Since S normalizes G3, K3 = G3 · S.
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Figure 2.2: The groups in the proof of Lemma 2.7

Claim. [K : K3] <∞.

To see that the claim is true, consider the second isomorphism theorem:

K3

G3

∼=
G3 · S
G3

∼=
S

G3 ∩ S
.

Since S/S ∩G is finite, [K : G3] <∞, so [K : K3] <∞.
Since S < K3, we are done if k 6∈ K3. If k ∈ K3, then gs ∈ K3, so gs ∈ K3, hence g ∈ K3 since S < K3.

But g = g0s0 for some g0 ∈ G3 and s0 ∈ S, so s0 ∈ G, hence s0 ∈ G ∩ S. Since G ∩ S < G3, this implies
that s0 ∈ G3, so g ∈ G3, which is a contradiction.

Next, we note that LERF is more powerful than residually finite.

Definition. For any groups G and A, we say that A is involved in G if there exists a finite index subgroup
H < G such that H surjects onto A.

Lemma 2.8. Let G be LERF, and assume that F2 < G. Then all finite groups are involved in G.

Proof. Let A be a finite group, let the subgroup H of G be free, and suppose ϕ : H � A is a surjection.
Denote by K the Kernel of ϕ. We assume the following result, which is left to the reader.

Exercise. There exists a finite index subgroup G1 < G such that G1 ∩H = K.

G

G1 G3

H
ϕ // // A

G2

K = Ker ϕ
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Let G2 =
⋂
h∈H

hG1h
−1. From the exercise, we have that K < G1, and we see that hKh−1 = K, so

K < G2 with [G : G2] < ∞. Consider G3 = 〈G2, H〉 = G2 · H. Then, again by the second isomorphism
theorem,

G3

G2

∼=
G2 ·H
H

∼=
H

H ∩G2

∼=
H

K
∼= A.

We now examine a class of groups which are not LERF. Mennicke and Bass–Milnor–Serre showed that
SLn(Z) has the congruence subgroup property, i.e., any finite index subgroup Γ < SLn(Z) contains a principal
congruence subgroup Γ(m) = Ker(SLn(Z)→ SLn(Z/mZ)).

Theorem 2.9. For n ≥ 3, SLn(Z) is not LERF.

Proof. By the above lemma, and the observation that SLn(Z) contains a copy of F2, it suffices to show that
not all finite groups are involved in SLn(Z) for n ≥ 3. Suppose that SLn(Z) is LERF. Then every finite group
is involved in it, so a subgroup ΓG surjects onto G for all finite groups G. Since SLn(Z) has the congruence
subgroup property, K = Ker θ contains Γ(m) for some m.

SLn(Z)

f.i.

ΓG
θ // // G

Ker θ

Γ(m)

We next employ the fact that for a prime p and a fixed n, if Al is a quotient of a subgroup of SLn(Fp),
then N ≥ (2l− 6)/3. So we can choose G = Al, for a very large l. If m = p, then we are done. If not, there
there is a little more to be said.

If m = pm1
1 · · · pmr

r , then

SLn(Z/mZ) =

n∏
i=1

SLn(Z/prii Z).

We next see that the kernel of the map SLn(Z/prii Z) → SLn(Z/piZ) is a p-group, hence nilpotent. The
remaining steps are left as an exercise.

We now return to 3-manifolds. Scott proved that the fundamental group of a Seifert-fibered space is
LERF and that if M is modelled on SOL, then π1M is LERF. These two facts together show that non-
hyperbolic geometric manifolds are LERF. However, there do exists non-compact 3-manifolds that are not
LERF.

Example. Let M = Mϕ be a punctured torus bundle over the circle (see Figure 2.3) with monodromy

ϕ =

(
1 1
0 1

)
. Then π1Mϕ is not LERF. Every known 3-manifold that is not LERF is related in some fashion

to this example (Burns, Karrass–Solitar).

Conjecture. If M is hyperbolic and π1M is finitely generated, then π1M is LERF.
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Figure 2.3: The punctured torus bundle over the circle with monodromy ϕ

Now, let X be a “reasonable topological space,” suited for the theory of universal covering spaces, so
that π1X = G acts properly discontinuously on the universal cover X̃. Let H < G. Then G is H-separable
if and only if for all compact subsets C ⊂ X̃/H, there exists a finite sheeted cover XC of X such that C
projects homeomorphically into XC (see Figure 2.4).

Figure 2.4: C projects homeomorphically to the finite-sheeted cover XC

The proof of this is an exercise to be included in the notes.

Corollary 2.10. Let M be a closed, orientable, irreducible 3-manifold, and suppose that f : Σg #M is the
topological inclusion of a genus g ≥ 1 surface into M with f∗ : π1Σg → π1M injective. Let Γ = π1M and
F = f∗(π1Σg). If Γ is F -separable, then M is virtually Haken.

Proof. We can use Scott’s topological reformulation of subgroup separability to pass to a finite cover N of
M which corresponds to F . By the Scott Core Theorem, there exists a compact submanifold C ⊂ N such
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that i∗ : π1C → π1N (or π1Σg) is an isomorphism. Therefore, there exists a finite cover MC →M such that
C projects homeomorphically (see Figure 2.5). Thus, MC contains an embedded incompressible surface.

Figure 2.5: C projects homeomorphically to the finite-sheeted cover MC

Remarks. 1. Given Geometrization, the above is of most interest when M is hyperbolic.

2. Recent work of Kahn-Markovic implies that surface subgroups f : Σg≥1 #M exist for M hyperbolic.
Thus, at present the task is to separate these surface groups.

Example. Let M = Mϕ be a surface bundle over S1, and F the fiber group. Then Γ = π1(Mϕ) is F -
separable.

Proof. From the bundle we see the short exact sequence

1 −→ F −→ Γ −→ Z −→ 1,

where Γ = 〈F, t | relations〉. So given γ ∈ Γ \ F , we have γ = tnf . Consider the maps

Γ
ϕ−→ Z ϕm−−→ Z/mZ.

We can compose ϕ with some ϕm so that ϕmϕ(γ) 6= 1.

Totally geodesic surfaces

Definition. Let M = H3/Γ closed, orientable. Assume that f : Σ # M is as above. Then Σ (or f(Σ)) is
totally geodesic if the preimage of Σ in H3 consists of genuine hyperbolic planes, i.e., consists of planes and
hemispheres in H3 with the restriction of the hyperbolic metric (See Figure 2.6).

Equivalently, since PSL2(C) acts transitively on the set of circles/straight lines in Ĉ, Σ is totally geodesic
if and only if F is Fuchsian (i.e., conjugate to a discrete subgroup of PSL2(R)).

Let Γ ⊃ F (as above) and F Fuchsian. F preserves a circle (or straight line) in C, say C . Consider
H = HC = Stab(C ,Γ) = {γ ∈ Γ : γC = C }.
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Figure 2.6: The preimage of Σ consists of totally geodesic planes in H3

Example. PSL2(Z) ⊂ PSL2(Z[i]), and Stab(R) ⊂ PSL2(Z[i]) includes

δ =

(
i 0
0 −i

)
,

which acts on C via z 7→ −z. Thus δ flips components of C \ R.

The stabilizer group H could contain elements that act by reversing orientation on the hyperbolic plane
H, and so H could be a discrete group of isometries with H/H a (totally geodesic) non-orientable surface.

Theorem 2.11 (Long). In the notation above

(1) Γ is H-separable;

(2) M is virtually Haken.

Proof. Assume (1) holds. If H corresponds to a Fuchsian group, then we can apply Corollary 2.10 to get
virtually Haken. If H is not Fuchsian, by the topological reformulation of H-separability, there exists a finite
cover N −→ M for which N contains an embedded, totally geodesic, non-orientable surface. By HW3 Q5,
M is virtually Haken.

To prove (1), conjugate Γ so that F leaves invariant R ∪ {∞} (i.e., F < PSL2(R)). Similarly, H leaves
invariant this R ∪ {∞}. Let γ ∈ Γ \H and let c denote complex conjugation. Consider the matrix γ − c(γ);
since γ /∈ PSL2(R), there is some entry which is not 0. Let x be such an entry and R be the ring generated
by 1, the entries of generators of Γ and their conjugates. As before, there exists a maximal ideal M such
that x /∈M. Let

π : Γ −→ PSL2(R/M).

Define
Φ : Γ −→ PSL2(R/M)× PSL2(R/M)

by Φ(δ) = (π(δ), π(c(δ)). Note that Φ(H) = (π(H), π(H)), but Φ(γ) 6= Φ(H), by choice of M.

Theorem 2.12. Let M be a closed, orientable, irreducible 3-manifold and f : Σ#M which is π1-injective.
Let π1M = Γ and F = f∗(π1Σ). Suppose that Σ is not a virtual fiber; that is, there exists no finite cover
N −→M such that Σ is a fiber of N . If Γ is F -separable, then Γ is large.
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Proof. Since Γ is F -separable, there exists a finite cover N −→M for which F lifts to an embedding f̃ (see
below). Thus, N is Haken.

N

��
Σ
. �

f̃
>>

f
// M

Let Γ1 = π1N . We have two cases:
Case 1: Σ is separating, i.e., Γ1 = A ∗F B (see Figure 2.7).

Figure 2.7: Σ separates N

Claim. [A : F ], [B : F ] cannot both be 2.

Proof. If [A : F ] = [B : F ] = 2, then F is normal in both A and B, and so F CΓ1. Moreover, A/F ∼= B/F ∼=
Z/2Z. We then have

ϕ : Γ1 −→ Z/2Z ∗ Z/2Z

with Kerϕ = F (by HW 3). Hence there exists Γ2 < Γ1 such that Γ2 � Z with kernel F .

[Window: Stallings’ work implies that Σ is a fiber in a fibration over S1]

This is contrary to the hypothesis. Therefore at least one of [A : F ], [B : F ] ≥ 3.

Claim. Assume [A : F ] ≥ 3. Then there exist a1, a2 ∈ A\F (not necessarily distinct) such that a1a2 ∈ A\F .

Proof. Uses elementary group theory. Suppose for the sake of contradiction that aa′ ∈ F ∀ a, a′ ∈ A \F . Fix
a coset decomposition

A = F ∪ a1F ∪ a2F ∪ · · · ∪ arF ∪ · · · ,

choose aj and consider a−1
j aiF . Then a−1

j aiF = F implies that ajF = aiF , and then A = F ∪ ajF ,
contradicting [A : F ] ≥ 3.

Now, Γ being F -separable implies that Γ1 is F -separable and so we can find ϕ : Γ −→ G, for a finite group
G. Using the second claim above, there exist a1, a2 ∈ A\F such that ϕ(a1) /∈ ϕ(F ), ϕ(a2) /∈ ϕ(F ), ϕ(a1a2) /∈
ϕ(F ), and for some b ∈ B \ F , ϕ(b) /∈ ϕ(F ). Now let A = ϕ(A), B = ϕ(B), F = ϕ(F ). Hence we obtain
ϕ : Γ1 −→ A ∗F B. To get largeness one needs to check that [A : F ] ≥ 3.

Claim. [A : F ] ≥ 3.

Proof. If [A : F ] = 2 then A = F ∪ a1F , a1 = ϕ(a1). Then ϕ(a1a2) = a1a2 /∈ ϕ(F ) = F . Therefore
a1a2 ∈ a1F , which implies a2 ∈ F , a contradiction.
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Figure 2.8: Σ does not separate N

Case 2: Σ is non-separating (see Figure 2.8).

Let W denote N cut open along Σ, and notice that F < A = π1(W ) < π1(N) = Γ1. Since Σ is not a
fiber, W 6= Σ× I, and so A 6= F . Since Γ is F -separable, Γ1 is F -separable, and so if a ∈ A \ F we can find
ϕ : Γ1 −→ G, for some finite group G, such that ϕ(a) /∈ ϕ(F ).

Γ1
ϕ // G

∆ = Ker ϕ

/

A // ϕ(A)

A ∩∆

/

F // ϕ(F )

6=

F ∩∆

/

Let ∆ = Kerϕ and consider the finite cover M∆ −→ N corresponding to ∆. This induces a covering
W∆ −→W (see Figure 2.9).

Since ϕ(A) 6= ϕ(F ), the number of components in the preimage of Σ in W∆ is greater than 1. Now
construct a cover M∆ from copies of W∆ (see Figure 2.10).

Then if S1, S2 are two components of the preimage of Σ, then M∆ \ (S1 ∪ S2) is connected. We may
therefore apply HW3 Q1 to reach the desired conclusion.

Remark. Case 1 can be reduced to Case 2 by similar argument. One can construct a cover of N for which
b1 > 0.

Note that Γ being F -separable (for F a surface group) implies that F is contained in infenitely many
subgroups of finite index in Γ.
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Figure 2.9: The cover W∆

Figure 2.10: The cover M∆ of W∆

Theorem 2.13 (Jaco). Let M be a closed, orientable, irreducible 3-manifold. Let f : Σg≥1 −→ M be
π1-injective with F = f∗(π1(Σg)) < Γ = π1(M). Assume F is contained in infinitely many subgroups of Γ
of finite index. Then M is virtually Haken.

Proof.

Corollary 2.14. Let M = H3/Γ be closed and orientable. Let f : Σg −→ M be π1-injective and F =
f∗(π1(Σg)). Suppose that for some prime p, the rank rk(H1(M ;Fp)) ≥ 2g + 2. Then M is virtually Haken.

Proof. Let S be the set of subgroups ∆ < Γ satisfying

(1) [Γ : ∆] <∞;

(2) rk(H1(∆;Fp)) = rk(H1(H3/∆;Fp)) ≥ 2g + 2;

(3) F < ∆.

If we can show S is infinite, then Theorem 2.13 applies. Note that S 6= ∅ because Γ ∈ S. To show that S is
infinite, we will show that if ∆ ∈ S, then there exists D $ ∆ of finite index with D ∈ S.

Definition. Let G be a finitely generated group. The mod p lower central series of G is defined as follows:
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G0 = G;

G1 = [G,G] ·Gp;

Gi+1 = [G,Gi] ·Gpi .

We have G/G1
∼= H1(G;Fp), and Gi/Gi+1 is an elementary abelian p-group.

Now let ∆ ∈ S and consider D = F ·∆. We have [∆ : D] <∞. Note that

ϕ : ∆ −→ ∆/∆1
∼= (Z/pZ)r,

for some r ≥ 2g + 2. Now ϕ(F ) does not surject, and so D = ϕ−1ϕ(F ) is a proper subgroup of finite index.
We are done if D satisfies the following condition on H1.

Claim. rk(H1(D;Fp)) ≥ 4g + 1 (> 2g + 2).

Lemma 2.15.

(1) Let Γ be a finitely generated group and E < Γ be generated by n elements. Then

rk(H1(E.Γ1;Fp)) ≥ rk(Γ1/Γ2)− n(n− 1)

2
;

(2) Let M be as in Corollary 2.14. Let r = rk(H1(Γ;Fp)) = rk(H1(M ;Fp)). Then

rk(Γ1/Γ2) ≥ 1

2
r(r − 1).

We apply these inequalities to D = F.∆1.

(1) implies

rk(H1(D;Fp)) ≥ rk(∆1/∆2)− 1

2
2g(2g − 1);

(2) implies

rk(H1(D;Fp)) ≥
1

2
(2g + 2)(2g + 11)− 1

2
2g(2g − 1) = 4g + 1.

This proves the Claim, and hence Corollary 2.14.

We next aim to show:

Theorem 2.16. There exist closed, orientable (resp. finite volume, orientable) hyperbolic 3-manifolds H3/Γ
for which Γ is LERF.

Notation and Terminology:

By a Kleinian group, we mean a discrete subgroup of PSL2(C).

Let Γ be a Kleinian group. Denote by ΛΓ ⊂ Ĉ the limit set of Γ; that is, ΛΓ is the collection of
accumulation points of Γ-orbits in H3. Let x ∈ H3 be any point, consider those y = lim γix, for γi ∈ Γ.
This is also the closure of set of fixed points of elements of infinite order in Γ. See Homework 3 for
properties of ΛΓ.

The set ΩΓ = Ĉ \ ΛΓ is called the domain of discontinuity of Γ. It may be that ΩΓ = ∅.

Define C(ΛΓ) to be the convex hull of Λ in H3∪ Ĉ = H3; that is, C(ΛΓ) is the intersection of all convex
subsets of H3 that contain Λ. In a slight abuse of notation, we also think of C(ΛΓ) ⊂ H3. From Lemma
2.17 below, C(ΛΓ) is Γ-invariant, and thus we may form C(ΛΓ)/Γ ⊂ H3/Γ, which is called the convex
core.
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Lemma 2.17. The convex hull of Λ, C(ΛΓ), is Γ-invariant.

Proof. If S ⊂ H3 is convex, then γ(S) is convex (γ ∈ Γ). Hence if ΛΓ ⊂ S, ΛΓ = γΛΓ ⊂ γ(S).

Examples. 1. Given a Fuchsian group Γ < PSL2(R) ⊂ PSL2(C) with H2/Γ closed, then ΛΓ = R∪ {∞},
and C(ΛΓ) = H2, the x-z plane (see Figure 2.11). In this case, H2/Γ = C(ΛΓ)/Γ is a surface inside
H3/Γ.

Figure 2.11: Γ < PSL2(R) acts on the x-z plane H2 ⊂ H3

2. Let F C Γ = π1M
3 and F be a fiber group. Then we have ΛF = Ĉ, C(ΛF ) = H3, and C(ΛF )/F =

H3/F .

Definition. A Kleinian group Γ < PSL2(C) is called geometrically finite if for all ε > 0,

Vol (Nε (C(ΛΓ)/Γ)) <∞

where Nε denotes the regular ε-neighborhood. Otherwise, Γ is called geometrically infinite.

Figure 2.12: The convex core C(ΛΓ)/Γ ⊂ H3Γ

Definition. Let Γ < Isom(H3). The group Γ is called GFERF if Γ is H-separable for all geometrically finite
subgroups H < Γ.

Remark. Since geometrical finiteness is preserved by subgroups and supergroups of finite index, the same
is true of GFERF.
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Theorem 2.18. Let P ⊂ H3 be a polyhedron in H3 of finite volume, all of whose dihedral angles are π
2 . Let

G(P ) be the group generated by reflections in the faces of P . Then G(P ) is GFERF.

Corollary 2.19. If Γ < G(P ) of finite index, then Γ is GFERF.

Example. Löbell manifolds, L(n) for n ≥ 5. Consider a polyhedron with two n-gon faces and 2n pentagonal
faces arranged as follows (see Figure 2.13).

Figure 2.13: The Löbell polyhedron L(8) with Hamiltonian cycle

Consider the group G(P ) generated by reflections in this polyhedron. The index 2 orientation-preserving
subgroup corresponds to a 2-fold cover which is a link in S3 labeled by 2’s; the double cover of this is a link
complement.

Exercise. Let Γ be RF, H < Γ a finite subgroup. Then Γ is H-separable.

Idea of Proof of 2.18: Let Γ = G(P ), where P is compact, and H < Γ some geometrically finite subgroup.
Let X be a compact subset of C(ΛH)/H. There exists a compact X1 ⊂ C(ΛH) such that the image of
X1 under the natural projection p (see Figure 2.14) is X in C(ΛH)/H. Furthermore, let F be the set of
hyperplanes in H3 that arise as Γ-images of the hyperplanes spanned by the faces of P .

Figure 2.14: X1 projects to X

Take Y to be the intersection of all closed half-spaces that contain C(ΛH) in their interior and such that
their bounding hyperplane lies in F . We see that Y is convex, and note Y is H-invariant (this is because
if U is half-space that contributes to Y , then with U ⊃ C(ΛH), hU ⊃ hC(ΛH) = C(ΛH)). Now set K(Y )
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to be the group generated by reflections in faces of Y . The group K(Y ) is discrete, and Y is a fundamental
polyhedron for its action. Note that H normalizes K(Y ). Let K1 = 〈K(Y ), H〉 = K(Y ).H. Consider
H3/K1 = Y /H, which yields:

Claim. Y /H is compact (resp. finite volume).

Warm-up Case for Theorem 2.18

We will consider an all-right pentagon, P , with edges {e1, . . . , e5} in H2. Let Γ = G(P ), H be a finitely
generated subgroup of Γ, C = C(ΛH), and X ⊂ H2/H be compact. Note that C/H is compact (as H
contains no parabolic isometries, because P is compact), so Nε(C/H) is compact. Thus there exists t > 0
such that every point of X is within t of Nε(C/H). Now set C+ to be the 10t neighborhood of C in H2.
Note C+ is still convex and H-invariant (for x ∈ C+, d(hx,C) = d(hx, hC) = d(x,C) ≤ 10t for h ∈ H).
Moreover, C+ projects into H2/H to give a larger compact set containing X.

Figure 2.15: The compact set X ⊂ H2/H

Now, following the Idea of Proof of 2.18, set F to be the set of hyperplanes (geodesic lines) in H2 that arise
as Γ-images of the hyperplanes spanned by the edges ei of P , and Y to be the intersection of all closed
half-spaces that contain C+ in their interior and with boundary in F . We get

Claim. Y /H is compact; that is, Y /H involves finitely many P -tiles.

Remarks. First, note that Y is the smallest convex union of pentagons that contains C+ is its interior;
furthermore, if there exists a hyperplane W ∈ F such that W separates a P -tile from C+, then this P -tile
cannot lie in Y (faces of such meet C+) (see Figure 2.16). The idea is that P -tiles sufficiently far from C+

do not lie in Y .

Second, with K1 = 〈K(Y ), H〉, where K(Y ) is group generated by reflections in Y , we have H2/K1 = Y /H.
Thus the claim implies [Γ : K1] <∞, yielding the required result.

Example. Consider H cyclic, P ∗ a P -tile far from C+ (How far? See Lemma 2.20, below), let a be the
closest point of P ∗ to C+, p a point of C+ closest to a, γ the geodesic between a and p, Wp be the support
plane to C+ at p, and Wa ∈ F be the plane containing a (see Figure 2.17). Then Wp and Wa are geodesics
meeting γ at right angles and Wp ∩Wa = ∅; thus we have separated P ∗ from C+ using an element of F .
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Figure 2.16: The plane W separates C+ from a P -tile

Figure 2.17: C+ is separated from P ∗

Remark. Consider what is different in E2; with G the group generated by unit translations in the coordinate
axes, and the cyclic group H < G generated by h(x, y) = (x + 1, y), what is the smallest convex union of
unit squares covering a line?

Lemma 2.20. Let L be a line in H2 and x ∈ H2 \L. Then there exists a constant K such that for x ∈ H2 \L
where d(x, L) > K, the angle α = α(x, L) (that is, the angle subtended by L at x) satisfies α < π/4.

Proof. From hyperbolic geometry (see Beardon’s book), cosh(d(x, y)) sin(α/2) = 1, where y ∈ L such that
the geodesic from x to y is orthogonal to L. Now solve for K.

With the Example and Lemma 2.20 in mind, back to an arbitrary finitely generated H.
For x0 ∈ P and γ ∈ Γ, if γ is such that P ∗ = γP , then set x∗ = γx0; we refer to these x∗’s as basepoints

for the P -tiles. For every support plane Wp for C+, there is a K so that α(x,Wp) < π/4 when d(x,Wp) > K
and x ∈ H2 \Wp, so set T = r +K, where r = sup {d(x0, z) : z ∈ ∂P}.

Claim. No P -tile with a basepoint outside NT (C+) lies in Y .

Proof. Suppose this is not the case, so assume P ∗ is a tile whose basepoint lies outside NT (C+) and con-
tributes to Y . Since P ∗ meet C+, there is some plane F1 ∈ F which contains a face of P ∗ that meets C+.
Let F be a hyperplane in F containing a face of P ∗ that meets F1 in a vertex a. We have d(x∗, C+) > T ,
by assumption. Since d(x∗, a) ≤ r, d(a,C+) > K. Now let p be the point on C+ closest to a, and Wp be
the supporting hyperplane containing p (see Figure 2.19).
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Figure 2.18: α is the angle subtended by L at x

F ∩Wp = ∅. Note: With d(a, p′) ≥ K for p′ ∈ Wp, the angle subtended by Wp at a is less than π/4.
However, angle of F1 and F at a is π/2. So F cannot intersect Wp.

Figure 2.19: F does not intersect Wp

We now turn to the 3-dimensional hyperbolic space H3 as stated in the theorem.

Proof of 2.18. If P is a compact polyhedron, we will see that the argument proceeds as before. If H ⊂ G(P )
is geometrically finite, we again construct an H-invariant set C+. The key claim is that if Y is the tiling
hull, then Y /H consists of finitely many tiles.

Firstly, let P be compact, i.e. all vertices lie in the interior of H3. If P ∗ is a distant tile, let a∗ be a point
of P ∗ closest to C+. Then let p be a point of C+ closest to a∗. If a∗ lies in the interior of a face, then the
picture we have is as above: there is a plane separating P ∗ from C+. However, it could be that a∗ lies in a
lower-dimensional face. In this case, since all dihedral angles are equal to π

2 , the geodesic γ must make an
angle close to π

2 with one of the faces. Then the process worls as above.
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Now suppose P contains an ideal vertex. Set Γ = G(P ), and let H < Γ be geometrically finite. Now H
may or may not have parabolic elements; if not, then the convex core is compact, and we proceed as before;
if so, then C(H3/H) is more complicated.

Consider the groups Stabp(H) = {h ∈ H | h(p) = p} for a given parabolic fixed point p. If all these
groups are virtually isomorphic to Z × Z, then it is not difficult to see that only finitely many tiles are
involved in the construction. Since Stabp(H) is of maximal rank, we have [Stabp(Γ) : Stabp(H)] is finite.
Arrange p to be at∞ in the upper half-space model for H3. Then P and some finite number of copies covers
that part of C(ΛH)/H. This, combined with the previous argument, implies the finiteness required.

Finally, more is required to deal with the case that for some p, Stabp(H) is virtually isomorphic to Z,
although one can show that this can be reduced to the previous case.

We have shown that there exist hyperbolic 3-manifolds which are GFERF. However, Theorem 2.16
claimed that there exist examples which are LERF. That is, as well as geometrically finite subgroups, we
need to seperate finitely generated geometrically infinite subgroups. The key point here is that if Γ is of
finite covolume and H < Γ is finitely generated and geometrically infinite, then H ∼= π1F for a surface F
of finite type, and F is virtually a fiber or a fibration over S1. (This uses the solution to the Tameness
Conjecture, and work of Canary. The Tameness Conjecture roughly states that the ends of H3/H are tame;
i.e. they are topologically F × [0,∞) for a closed surface F .)

Given this background, the idea runs as follows. Firstly, work of Bonahon shows that if the cocompact
subgroup H < Γ is a surface group, then H3/H is tame. Thurston showed that there exists a sequence of
“nice” (pleated) surfaces that exit the two ends. Thurston also showed that the space of pleated surfaces

Figure 2.20: Σ1 and Σ2 descend to surfaces homotopic to Σ

is compact, and one can find two surfaces Σ1 and Σ2 in H3/H which are far apart in H3/H and close (i.e.
homotopic) in M (see Figure 2.20), i.e. there exists a covering translation t ∈ π1M taking Σ1 to Σ2. It then
follows that 〈H, t〉 is a bundle with fiber F , and π1F ∼= H.

As a consequence of the above, in order to prove that if M3 is hyperbolic, and either closed or of finite
volume, then π1M

3 is LERF, it suffices to prove it is GFERF.

Remarks. 1. The “all-right technology” outlined above works in some higher dimensions to prove the
existence of lattices that are GFERF. Are these always LERF?

2. The same technology proves that the Bianchi groups PSL2(Od) are GFERF, where Od ⊂ Q(
√
−d) is

the ring of integers. To prove this, it is shown that for each d, there exists a finite index subgroup
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Γd < PSL2(Od) such that Γd can be embedded in G(P ), where P ⊂ H6 is a totally geodesic ideal
polyhedron.

The all-right technology also shows the following.

Corollary 2.21. Let P ⊂ H3 be a finite volume polyhedron, all of whose dihedral angles are π
2 . Let H < G(P )

be geometrically finite. Then H is a virtual retract, i.e. there exists a finite index subgroup ΓH < G(P ) such
that the following diagram commutes.

ΓH // // H

H

id

>>

Proof. As in the proofs of 2.16 and 2.18, given H, we build a group K = ΓH =
〈
K(Y ), H

〉
= K(Y ).H, where

K(Y ) is the group generated by reflections in the faces of Y . Importantly, we have that Y is a fundamental
polyhedron for the action of K(Y ), and by the second isomorphism theorem,

ΓH

K(Y )
∼=

H

K(Y ) ∩H
.

The claim is that K(Y )∩H = 1. The K(Y )-images of Y tessellate H3, but Y contains C(ΛH) in its interior,
and this is H-invariant.

We conclude the discussion of Theorem 2.18 by making some comments on the proof in the case where
P has an ideal vertex. Let W = {x∗ : x∗ is a basepoint of a P -tile in Y }. We have the following:

Claim. If H is geometrically finite, then the number of orbits of W under H is finite.

Proof. Recall that there exists a constant T > 0 such that W ⊂ NT (C+). If we assume there are infinitely
many orbits, what does this assumption mean?

To obtain an answer, observe that an alternative equivalent reformulation of geometrical finiteness (GF)
is that C(ΛH)/H decomposes as a union of a compact manifold and a finite disjoint union of cusp neighbor-
hoods. These cusp neighborhoods are projections of horoballs Bη(p) for p a parabolic fixed point. Moreover,
η can be chosen so that Bη(p) ∩Bη(q) = ∅ if p 6= q and so that Bη(p) ∩ gBη(p) 6= ∅ implies g ∈ StabpH.

Now we can say that the above assumption means the following. We can subsequence the x∗ to get a
sequence x∗nk

with the property that “x∗nk
→ p” for some parabolic fixed point p, where x∗nk

→ p means there
exists εm > 0 with x∗nk

∈ Bεm(p) for all but a finite number of x∗nk
(see Figure 2.21). Let Pnk

= γnk
(P ) be

the P -tiles associated to x∗nk
.

Figure 2.21: The subsequence xnk
goes to p

Exercise. There exists a face Fnk
of Pnk

such that Fnk
does not contain p, i.e. if τnk

is the reflection in
Fnk

then τnk
(p) 6= p.
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Figure 2.22: d is the distance from x∗nk
to the horosphere ∂Bεm(∞)

We normalize so that p =∞, and fix εm. Then for sufficiently large k, the horoball Bεm(∞) meets every
face of Pnk

. We can measure the distance d from x∗nk
to ∂Bεm(∞) (see Figure 2.22). As x∗nk

→ p, then
d → ∞. Let r be the supremum of the distances to the faces of P . If d � 0 then we exceed r, so we meet
every face. Consequently τnk

, the reflection in Fnk
, takes some points of Bεm(∞) ⊂ Bη(∞) to points in

Bη(∞), but τnk
/∈ StabpH, so we reached a contradiction.

Recall the following property of LERF: Suppose Γ is LERF and H < Γ is finitely generated. Let A be
a finite group. The LERF condition implies that there exists ΓH < Γ of finite index and a homomorphism
Θ : ΓH → A such that Θ|H = θ:

Γ

ΓH
Θ

  
H

θ // // A

Definition. We say a group Γ has the local extension property for a class of subgroups C if for any H ∈ C
and θ : H � A, for A finite, there exists a finite index subgroup ΓH < Γ with ΓH ⊃ H and a surjective map
Θ : ΓH � A with Θ|H = θ. If H < Γ, let A = {K < Γ : K is of finite index, H ⊂ K}. We introduce the
notation

H∗ =
⋂
K∈A

K

Theorem 2.22. Let M = H3/Γ be a closed, orientable, hyperbolic 3-manifold. Suppose that Γ has the
local extension property for geometrically finite subgroups H and homomorphisms H → Z/2Z. Then any
geometrically finite subgroup H is almost separable (i.e. [H∗ : H] < ∞]). In particular, if H is a surface
group, then M is virtually Haken.

Proof. We begin with the following:

Claim (1). There exists an infinite cyclic subgroup C of Γ such that 〈H,C〉 ∼= H∗C and H∗C is geometrically
finite.
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Given Claim 1 and the hypothesis, we have

H ∗ C //

θ

""
C // Z/2Z.

Clearly H ⊂ Ker θ, and θ extends to Θ : V → Z/2Z, where [Γ : V ] <∞ and Θ|H∗C = θ, and so H < Ker Θ.
Therefore H is engulfed in a proper subgroup of finite index in Γ.

Claim (2). If Γ has the engulfing property for all geometrically finite subgroups, then [H∗ : H] <∞ for all
geometrically finite subgroups.

This will prove Theorem 2.22. To prove Claim 2, it suffices to prove

Claim (2′). ΛH∗ = ΛH .

Given this Claim, we have C(ΛH∗) = C(ΛH) and we get a covering map from Nε(C(ΛH)/H) (of finite
volume by hypothesis) to Nε(C(ΛH)/H∗). Hence the index is finite.

Proof of Claims 1 and 2′. Let γ ∈ PSL2(C) be hyperbolic with fixed points ∂γ = {a+, a−}. Let U± be open
neighborhoods of a± with U+ ∩ U− = ∅. Say (U+, U−) is absorbing for γ if

(a) for any p ∈ S2
∞\U−, γ(p) ∈ U+;

(b) for any p ∈ S2
∞\U+, γ−1(p) ∈ U−.

Figure 2.23: a+ is the attracting fixed point of γ; a− is the repelling fixed point

Note that for any disjoint U+, U− as above, they will be absorbing for γk for some large k. Since H < Γ
is geometrically finite, ΛH ( S2

∞.

Exercise. There exists γ ∈ Γ such that ∂γ does not lie on ΛH .

Exercise.
〈
H, γk

〉
= H ∗

〈
γk
〉

for large k.

The following theorem finishes the proof of Claim 2′.

Theorem 2.23. Let M = H3/Γ be as in Theorem 2.22. Suppose that Γ has the engulfing property for all
geometrically finite subgroups. Then for all finitely generated subgroups H, ΛH∗ = ΛH .

Definition. We say A < Γ is engulfed if there exists K < Γ of (non-trivial) finite index, such that A ⊂ K.

Proof. Let H < Γ be finitely generated. If ΛH = S2
∞ then ΛH∗ = S2

∞, so we can assume that H is
geometrically finite. Assume that ΛH ( ΛH∗ . Let Γ be generated by {γ1, . . . , γn}. As before, we can find
β1, . . . , βn ∈ H∗ such that:

1. the fixed points ∂βi lie in ΛH∗ \ ΛH ;
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Figure 2.24: The Ui and Vi are neighborhoods of the feet of the axes Aβi

2. ∂βi 6= ∂γj for any i, j, and ∂βi ∈ S2
∞ \ ΛH = ΩH , the domain of discontinuity.

Let C ⊂ ΩH be a compact set such that ∂βi lies in the interior of C. Since H acts discontinuously on ΩH ,
there exist only a finite number of elements h1, . . . , hm ∈ H such that hiC ∩ C 6= ∅. By residual finiteness,
there exists N /H of finite index such that hi /∈ N for i = 1, . . . ,m.

Exercise. There exists t ∈ N (independent of the elements) such that if g ∈ H∗, gt ∈ N∗.

Thus, by powering, we can assume that βi ∈ N∗. Let Ui, Vi be disjoint open neighborhoods of ∂βi such
that:

1. Ui, Vi ⊂ Int(C);

2. Ui ∪ Vi is disjoint from Ut ∪ Vt for 1 ≤ i 6= t ≤ n;

3. γiUi ∪ γiVi is disjoint from Ui ∪ Vi (see Figure 2.24).

By powering the (Ui, Vi) can be made absorbing for βi.

Claim (1). Let ϕi = βiγiβi. Then (Ui, Vi) is absorbing for ϕi

Proof of Claim 1. Let p ∈ S2 \ Vi. Then ϕi(p) = βiγiβi(p) ∈ βiγi(Ui). By (3), γiUi is disjoint from Vi.
Applying βi, we get ϕi(p) ∈ Ui, hence the absorbing property for βi.

The key point that finishes the proof of Theorem 2.23 is the following:

Claim (2). Let A = 〈N,ϕ1, . . . , ϕn〉. Let X = U1 ∪ V1 ∪ . . . ∪ Un ∪ Vn.Then ΛA = (S2 \ C) ∪X ( S2
∞.

Given this, we can apply the engulfing hypothesis to A, so there exists K < Γ of finite index such that
K ⊃ A. Hence K ⊃ N . The fact that [Γ : K] <∞ implies that K ⊃ N∗; but then from β1, . . . , βn ∈ N∗, it
follows that γ1, . . . , γn ∈ K. Consequently, K = Γ. This contradiction finishes the proof of the theorem.

Proof of Claim 2. The limit set ΛA is determined by orbits of points z ∈ S2
∞. We will consider the orbit

of a point p ∈ C \ X under the action of A. If w is a non-trivial word in A, then w = n1f1 · · ·ntft where
ni ∈ N and fi ∈ 〈ϕ1, . . . , ϕn〉 with ni, fi 6= 1 apart from possibly n1 and ft. Assume ft 6= 1. By the
absorbing property for ϕi’s we see that points in S2

∞ \ X are moved into U1 ∪ V1 ∪ . . . ∪ Un ∪ Vn. Hence
ft(p) ∈ U1∪V1∪ . . .∪Un∪Vn ⊂ C and ntft(p) ∈ nt(C), which is disjoint from C. By the above, ft−1ntft(p)
is moved back into U1 ∪ V1 ∪ . . . ∪ Un ∪ Vn. Continuing in this fashion, we can conclude that the image of a
point is moved out of C or into U1 ∪ . . . ∪ Un, i.e. only accumulation points lie in X.

Exercise. Run this argument for negatively curved (resp. quasi-convex) groups.
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Another application of extensions:

Theorem 2.24. Let Γ be a group. Then Γ is RF if and only if for all cyclic subgroups C < Γ there is at
least one nontrivial extension of C → Z/kZ to a finite index subgroup of Γ.

Proof. Assuming the extension property, let g ∈ Γ \ {1}. Then 〈g〉 is a cyclic subgroup. Then there exists

ϕ : 〈g〉 → 〈g〉 /
〈
gk
〉

that extends to V
ϕ→ Z/kZ, [Γ : V ] <∞. Then Ker ϕ has finite index in Γ and g /∈ kerϕ.

For the converse, let C = 〈g〉 , g 6= 1. Since Γ is RF, there exists a normal subgroup of finite index N in
Γ such that g /∈ N . Consider N · 〈g〉. We have

N.〈g〉
N

∼=
〈g〉
〈gk〉

∼= Z/kZ

for some k > 1. Then 〈g〉 → 〈g〉 /
〈
gk
〉

is the requiring map extending upwards.

We next mention an application of Jaco’s result (Theorem 2.13).

Let Q = H3/Γ be a closed orientable hyperbolic 3-orbifold, i.e. Γ contains non-trivial elements of finite
order. Finite subgroups of PSL2(C) are well understood. These are:

• Cyclic;

• Dihedral;

• A4, S4, A5.

H3/Γ is topologically a 3-manifold, but the geometry has singular points. Let |Q| be the underlying 3-
manifold.

Example. The exterior of a knot K in S3 can be used as the basis for constructing a 3-orbifold. Instead
of considering the 3-manifold which is the complement S3 \K, let K be the locus of singular points for the
orbifold Q. We specify the cone angle along K by labelling K with an integer m which represents an angle
of 2π

m along K (see Figure 2.25).

Figure 2.25: The orbifold with cone angle 2π
m along the figure-eight knot

In general, we can take as our singular locus a trivalent graph, as long as the labels at a vertex respect
some rules which reflect the limited list of finite subgroups of PSL2(C) (see Figure 2.26).

Fact: Let N denote the normal closure in Γ of the elliptic elements. Then π1(|Q|) = Γ/N .

Theorem 2.25. Let Q be as above, and assume that π1(|Q|) is infinite. Suppose that Q contains an essential
2-orbifold Σ with |Σ| ∼= S2 or T 2. If M is a 3-manifold commensurable with Q, then M is virtually Haken.

In this setting, saying Σ ⊂ Q is an essential 2-orbifold means that there exists F ⊂ Γ with F ∼= F0, where
F0 is a Fuchsian group with H2/F0

∼= Σ.
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Figure 2.26: An orbifold with singular locus a trivalent graph

Proof. Let the orbifold group of Σ, F ⊂ Γ, be as above. Let ϕ : Γ→ Γ/N ∼= π1(|Q|) where N is the normal
closure of the elliptic elements. Note that π1(|Q|) is infinite and RF.

Case 1: |Σ| = S2.

In this case, F is generated by elliptic elements. Hence ϕ(F ) = 1. If Γ0 < Γ is torsion free and of finite
index, then F0 = F ∩ Γ0 is a surface group of genus g ≥ 2. Moreover, ϕ(F0) = 1. By RF, F0 is contained in
infinitely many subgroups of finite index. Hence H3/Γ0 and M are virtually Haken.

Case 2: |Σ| = T 2.

In this case, ϕ(F ) is abelian.
(Window) Finitely generated abelian subgroups of π1(M3) are 1,Z,Z⊕Z,Z/nZ,Z⊕(Z/2Z) and Z3. [See

Hempel’s 3-manifolds]
In our case, π1(|Q|) cannot be Z3 and Z ⊕ (Z/2Z) is ruled out by orientability. The key observation is

that abelian subgroups are separable, and so we can run the argument in case 1.
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3 Non-Compact, Finite Volume, Hyperbolic 3-Manifolds

In this section M = H3/Γ will be a non-compact, finite volume, orientable hyperbolic 3-manifold. In an
abuse of notation, M will denote both the compact manifold with boundary and also its interior. Previously,
we have see that “half lives, half dies” gives us a lower bound on b1(M) when M has boundary. Namely, we
know that b1(∂M)/2 ≤ b1(M). This immediately tells us that b1(M) > 0, and we can prove even more.

Figure 3.1: H3/Γ has finitely many finite volume cusps

Theorem 3.1. Let M be as above, then vb1(M) =∞.

Proof. The idea of the proof is to find finite covers, Mn, of M where the number of boundary components
becomes arbitrarily large. Henceforth, we will denote the number of boundary component of Mn by |∂Mn|.
In order to complete the proof we will need the following lemma

Lemma 3.2. Let M be as above, then M has a finite cover N where |∂N | ≥ 3.

We prove Lemma 3.2 below. Using Lemma 3.2, we can assume that |∂M | ≥ 3. Let P ⊂ ∂M be a
boundary component and let ∂−M = ∂M \ P . Consider the inclusion ι : ∂−M → M , which induces
ι∗ : H1(∂−M)→ H1(M).

Exercise. If we let K = Ker ι∗, then “half lives, half dies” gives us that rkQ(K) ≥ b1(∂M)
2 − b1(P ).

Thus we see that K has rank at least 1, and so we let α be a non-trivial, primitive element of K. The
cycle α gives rise to an embedded, non-separating surface S ⊂ M such that [∂S] = α. The surface S also
has the property that it is disjoint from P . The intersection pairing with S gives a surjection from π1(M)
to Z, and reducing mod n gives us a family of maps ϕn : π1(M)→ Z/nZ.

π1M //

ϕn

!!
Z // Z/nZ

Let Mn be the cover of M corresponding to the kernel of ϕn. Since P is disjoint from S we see that P lifts
to all of these covers and that |∂Mn| ≥ n. Applying “half lives, half dies” completes the proof.

Proof of Lemma 3.2. Let T be a boundary component of M , let x ∈ Γ \ π1T be a hyperbolic element, and
let m ∈ π1T \ 1. Since xk has the same fixed point set as x for k 6= 0 and the fixed point set of x is disjoint
from the fixed point set of π1T , we know that xk /∈ π1T for any k 6= 0. Next, let y = [x2,m], and observe
that by the previous comment on fixed points that y 6= 1. By residual finiteness we know that there exists a

56



Figure 3.2: The surface S ⊂M is embedded and non-separating, with [∂S] = α

surjection ϕ : Γ� G where |G| <∞ and ϕ(y) 6= 1. The proof will be completed by showing that the cover
corresponding to the kernel of ϕ has at least three boundary components.

Let Mϕ be the aforementioned cover and suppose for contradiction that |∂Mϕ| ≤ 2, then by covering
space theory we know that |G : ϕ(π1T )| ≤ 2. By index considerations we know that ϕ(x2) = ϕ(x)2 is
contained in ϕ(π1T ). Since ϕ(π1T ) is abelian we have that ϕ(y) = ϕ([x2,m]) = [ϕ(x2), ϕ(m)] = 1, which is
a contradiction.

Now that we know that vb1(m) =∞, a natural question is whether it also has large fundamental group.
In the presence of boundary the answer is yes.

Theorem 3.3. Let M be as above. Then π1M is large.

Proof. Start by replacing M by a finite cover with at least 3 boundary components, which we will still call
M . Let Mn be the cyclic n-fold cover of M given in the proof of Theorem 3.1 and let S0, S1, . . . Sn−1 be
the lifts of S to Mn. Let Fn = S0 ∪ S[n/2], and observe that since the topology of Fn is independent of n
that b1(Fn) is bounded independent of n. Next, let A1

n and A2
n be the compact 3-manifolds components

of Mn \ Fn. Since the number of boundary components becomes arbitrarily large we see that as n → ∞,
b1(Ajn)→∞ for j = 1, 2.

Next, let ∂0(Ajn) = ∂(Ajn) \ Fn. Let ι∗ : H1(∂0(Ajn)) → H1(Ajn) be the map induced by inclusion and
let K = Kerι∗. Another application of “half lives, half dies” combined with the previous comments about
the growth of betti numbers allows us to construct non-separating embedded surfaces, W 1

n and W 2
n , in A1

n

and A2
n respectively, that are disjoint from Fn (see Figure 3.3). Finally, since the union of W 1

n and W 2
n are

non-separating we can apply homework 3.1 to get a retraction to a wedge of circles and conclude that π1(M)
is large.

Remark. The statement of HW3 Q1 has the hypothesis incompressible, but in the context of the above
proof, it suffices to be properly embedded.

Remark. Cooper–Long–Reid use the ideas above to show the following.

Theorem. If M is as above, then there exists a closed surface Σ of genus g ≥ 2 and a map f : Σ#M such
that f∗ : π1Σ→ π1M is injective.
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Figure 3.3: The surfaces S0 and S[ n2 ] together separate Mn

The proof follows the plan outlined in the proof above, but instead of finite cyclic covers, it takes the
infinite cyclic cover (see Figure 3.4).

Here X = M \ N(S), MΣ =
⋃∞
−∞Xi where each piece Xi is homeomorphic to X. Denote by Yn the

union
⋃n
i=1Xi of n pieces. We construct a closed surface Gn ⊂ Yn by joining two preimages of S by annuli,

as shown in Figure 3.4. The idea now is that when one tries to compress away Gn in MS , one finds that,
for sufficiently large n, the torus preimages of P preclude this.

Let Σ be the image of Gn under the projection map. We note that the representation ρ : π1Σ→ PSL2C
carries an accidental parabolic element (see Figure 3.5). This is a typical feature of such constructions, as
the following theorem demonstrates.

Theorem (Menasco). Let L ⊂ S3 be an alternating, hyperbolic link. Then any closed embedded incompress-
ible surface carries an accidental parabolic that maps to a meridian.

Exercise. (for knot theorists) Find a surface in 817 with an accidental parabolic.

If M is a finite volume, hyperbolic 3-manifold and Σ ⊂ M is a π1-injective surface of genus at least 2,
then one of two things can happen:

1. Σ has accidental parabolics;

2. The image of π1(Σ) in π1(M) is quasi-fuchsian (its limit set is a Jordan curve).

This dichotomy prompts the following conjecture by Menasco and Reid:

Conjecture. (Menasco–Reid) LetK ⊂ S3 be hyperbolic, then S3\K does not contain any closed, embedded,
totally geodesic surfaces.

Here is a slightly stronger version.

Conjecture. There exist knots K such that S3 \ K contains a separating, totally geodesic, embedded
surface.
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Figure 3.4: The surface Gn is two copies of S connected by annuli

There do, however, exist non-separating totally geodesic surfaces, which we construct as follows.

Example. We will construct totally geodesic Seifert surfaces of some knots by using rigid sub 2-orbifolds.
Let p, q, r be positive integers with p ≤ q ≤ r (it is possible that r = ∞), and let ∆(p, q, r) be the group
generated by reflections in the faces of a hyperbolic triangle with angles 2π

p ,
2π
q ,

2π
r (if r = ∞ then the

triangle will have an ideal vertex). Next, let Γ be the index 2 subgroup of orientation preserving elements of
∆(p, q, r). The group Γ(p, q, r) has a presentation given by 〈a, b | ap = bq = (ab)r = 1〉 (when r =∞ the third
relation is omitted). If we insist that the quotient has finite coarea then the triangle group ∆(p, q,∞) can
be represented in PSL2(C) in one way up to conjugation. By conjugating we can choose our representation
ρ such that

a 7→
(
λ 1
0 λ−1

)
, b 7→

(
µ 0
s µ−1

)
,

where λ + λ−1 = 2 cos( 2π
p ) and µ + µ−1 = 2 cos( 2π

q ). In order for this representation to be discrete,

Figure 3.5: The required surface Σ is the projection of Gn
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faithful, and finite coarea we need ab to be parabolic (i.e. tr2ρ(ab) = 4). A simple computation shows that
tr(ab) = λµ + s + λ−1µ−1. Since there are only finitely many primitive pth and qth roots of unity, we see
that only finitely many (in fact only one) s can solve tr2ρ(ab) = 4. The goal is now to build 3-orbifolds with
rigid sub 2-orbifolds that are covered by S3 \K. For more details see [Neumann–Reid] in Math Annalen.

Exercise. If Γ ⊂ SL2(C) and tr(γ) ∈ R for each γ ∈ Γ then Γ is conjugate into either SL2(R) or SU2(C).
Hence, ∆(p, q, r) is always Fuchsian.

One way to look at the above examples is to find or construct 3-orbifolds with rigid sub-2-orbifolds and
which cover knot complements S3 \K.

Figure 3.6: The curve J is the boundary of a disk D which meets C in two points

Let Q denote the orbifold with base space S3 and singular locus as shown in Figure 3.6. Let D be the
disk bounded by the curve J . Then D meets the unknotted component C in two points. We label both
C and J with an integer p ≥ 3, giving a (p, p,∞) sub-orbifold of Q. Taking the p-fold cover of Q which
unbranches C gives the pretzel knot given in Figure 3.7; here the disk D lifts to the pictured Seifert surface.

Figure 3.7: D lifts to a Seifert surface

When we have both p ≥ 3 and n ≥ 3, these knots are hyperbolic. Hence, the respective surfaces are
totally geodesic.

Previously, we have seen that if X has at least three boundary components then we could find a non-
separating surface, S, that connected two of the boundary components and missed a third. Furthermore,
we used S to construct cyclic covers Xn, dual to S, that contained a pair of surfaces whose union was non-
separating, which in turn proved that π1(X) was large. These ideas can be used in certain cases to prove
that certain closed 3-orbifolds are large.
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Let X be M \L, where L is a link with at least 3 components and let Q be the orbifold with underlying
space M and singular locus L with labels n where n is a positive integer. There exists a surjection ψ :
π1(X) � πorb1 (Q) given by killing the subgroup normally generated by the nth powers of the meridians of
L. Additionally, since X ⊂ Q we can extend each of the Xn to a Qn so that Qn is an n-fold cyclic cover
of Q. For large values of n we have seen that we can find a map π1(Xn) � Z ∗ Z. There is also a natural
map from Z ∗ Z to Z/nZ ∗ Z/nZ given by killing the normal closure of the generators of each factor. Call
the composition of these two maps ϕn. When n ≥ 3, Z/nZ ∗ Z/nZ is large, and so if we could find ϕ̃n such
that ϕ̃n ◦ ψ = ϕn then we would have shown that Q is large.

π1Xn
//

ϕn

&&

ψ ++

Z ∗ Z // Z/nZ ∗ Z/nZ

πorb1 Qn ψ̃

CC

Exercise. Let µ1, µ2, . . . , µk be the meridians of X and verify that 〈〈µn1 , µn2 , . . . , µnk 〉〉 ≤ Ker ϕn. Show why
this implies that ϕ̃n exists.

Using this argument we have the following applications.

Theorem 3.4. Let Q = H3/Γ be an orbifold with singular locus a link L ⊂ M with at least 3 components,
and each meridian of L has order n in Γ. Then for large n, Γ is large.

Theorem 3.5. Let K be a hyperbolic knot and m ≥ 2 be an integer. Then for all sufficiently large n, the
mn-fold cyclic branched cover of S3 branched over K is large.

Definition. Given a knot complement M = S3 \K and an integer k ∈ N, the k-fold cyclic branched cover
of M is obtained as follows: let µ be a meridian of K. Consider the k-fold cyclic cover Mk corresponding to
the group

〈
µk
〉
. Then perform Dehn filling on the meridian µk of Mk.

Before starting the proof of Theorem 3.5 we will discuss covers of S3 branched over knots. One way to
define such a cover is to start by taking n-fold cyclic cover of S3\K. By performing (1, 0) Dehn filling on
the boundary, we get the n-fold cover of S3 branched over K.

Alternatively, We can let Q be the orbifold with base space S3 and singular locus K labelled with n.
There is a unique normal subgroup, H, of πorb1 (Q) such that πorb1 (Q)/H ∼= Z/nZ. The cover corresponding
to this subgroup is the n-fold cover of S3 branched over K.

Proof of Theorem 3.5. The proof will rely on the following consequence of the Orbifold Theorem.

Theorem. The k-fold cover of S3 branched over a hyperbolic knot, K, is hyperbolic when k ≥ 3 unless K
is the figure eight knot, in which case k must be at least 4. Furthermore, when k = 3, the 3-fold cover of S3

branched over the figure eight knot is Euclidean.

Given the previous result Theorem 3.5 follows from the following.

Proposition 3.6. Let M be a compact, orientable manifold, K ⊂ M be a knot, and let m be a positive
integer. Let Q(K,m) be the orbifold with base space M and singular locus K labelled with m. If there exists
ϕ : πorb1 (Q(K,m)) � H where |H| < ∞ such that |H : ϕ(〈[K]〉)| ≥ 3m, then for all sufficiently large n,
πorb1 (Q(K,mn)) is large.

The following Lemma tells us that under certain circumstances we can guarantee the existence of such
homomorphisms.

Lemma 3.7. If Γ is Kleinian and of finite covolume or a 3-dimensional Euclidean orbifold group, then a
homomorphism as in Proposition 3.6 always exists.
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Proof of Proposition 3.6. First note that Ker ϕ determines a finite cover Q̃ of Q(K,m). The hypothesis on

the index gives that the preimage L ⊂ Q̃ of K has at least 3 components. We further note that there exists
a cover Q(K,mn)→ Q(K,m), branched over K, from which we get a corresponding cover Q̃n → Q̃.

Q̃

��

Q̃noo

finite

��
Q(K,m) Q(K,mn)oo

Now notice that the singular locus of Q̃ has label q ≥ 1, and so Theorem 3.4 yields that if nis taken to be
sufficiently large, then πorb

1 (Q̃n) is large. Hence, πorb
1 (Q(K,mn)) is large for such n.

Proof of Lemma 3.7. We start with the case that Q = H3/Γ for a finite covolume Kleinian group Γ. We will
prove the following claim.

Claim. Given any g ∈ Γ \ {1}, and integer N ≥ 1, there exists a map ϕ : Γ→ G, with |G| <∞, such that
[G : 〈ϕ(g)〉] ≥ N .

We make use of the following theorem. Recall that a field k is called a number field if [k : Q] <∞.

Theorem 3.8. The group Γ < PSL2(C) can be conjugated into PSL2(k), where k is a number field.

We defer the proof, and use this result to prove Lemma 3.7. We assume we have conjugated Γ to lie
inside PSL2(k). Let Rk denote the ring of algebraic integer in k. Recall [Window] that every ideal I ⊂ Rk
can be expressed as a product I = Pa1

1 . . .Pass , where Pi ⊂ R is a prime ideal, and ai ∈ N. Consider an

arbitrary element

(
a b
c d

)
∈ Γ. One of the entries could have some non-trivial denominator x, i.e. there

exists a prime ideal P of Rk such that P|〈x〉. We can find a finite collection S of prime ideals of Rk such
that Γ < PSL2(Rk[S]), where Rk[S] denotes the ring with those ideals in S inverted. Now the prime ideals
of Rk which do not belong to S define prime ideals of Rk[S]. For P /∈ S, we can define the natural reduction
map

PSL2(Rk[S])
ϕp−→ PSL2(Rk[S]/P) ∼= PSL2(Fp).

By density theory for prime in number fields, there exist infinitely many prime ideals P ⊂ Rk such that
Rk/P ∼= Fp. Such P are called split primes. Hence, we have infinitely many reduction homomorphisms
ϕp : Γ → PSL2(Fp), where we assume p 6= 2. Then 〈ϕp(g)〉 is a cyclic subgroup of PSL2(Fp). Note

that |PSL2(Fp)| =
p(p2 − 1)

2
. Furthermore, the structure theory for subgroups of PSL2(Fp) says that, if

H < PSL2(Fp), then:

1. H is cyclic of order p, or cyclic of order n dividing
p± 1

2
;

2. H is dihedral of order 2n, with n as above;

3. H is a semi-direct product of a cyclic group of order p and cyclic group of order
p− 1

2
; or

4. H ∼= A4, S4, A5.

In case 1, 〈ϕp(g)〉 has index at least
p2 − 1

2
. So, choosing p so that this index is at least N , we would be

done.

Claim. ϕp surjects for infinitely many prime ideals P.
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Proof of Claim. Suppose ϕp does not surject for the prime ideal P. Γ is not solvable, so let us choose
α ∈ Γ \ {1} lying very deep in the solvability series for Γ. Suppose also that ϕp(g), ϕp(α) 6= 1 under
reduction via P. Since homomorphisms preserve solvability series, and ϕp(α) 6= 1, we see that ϕp(Γ) cannot
be any group in 1, 2, or 3 above, or be isomorphic to A4 or S4. Hence, we can assume that ϕ(Γ) ∼= A5. But
then, since Γ is finite generated, infinitely many kernels Ker ϕp coincide. Thus there exist elements of Γ that
are trivial under infinitely many reduction homomorphisms. This is a contradiction, since every ideal has
finitely many prime divisors.

We now turn to the general Kleinian group case. Suppose Γ is a non-elementary, finitely generated
Kleinian group, with Q = H3/Γ. If Γ < PSL2(k) for a number field k, we may argue as above. If not,
Γ could be geometrically infinite; in this case, Thurston’s Hyperbolization Theorem gives a Kleinian group
Γ′ ∼= Γ such that Γ′ is geometrically finite. Then Deformation theory (using circle packings, cf. Brooks)
produces a finite covolume Kleinian group ∆ and a subgroup Γ′′ < ∆ such that Γ′′ ∼= Γ′ ∼= Γ.

Proof of Theorem 3.8. We will abuse notation and work in SL2(k). It suffices to prove the theorem for Γ
torsion-free: if Γ has torsion, it has a torsion-free subgroup of finite index, so each γ ∈ Γ has the property
that γN ∈ PSL2(k) for some N , so the entries of γ are algebraic. We think of Γ embedded inside SL2(C).
Let the representation variety of Γ be

Hom(Γ,SL2(C)) = {ρ | ρ : Γ→ SL2(C) is a homomorphism}.

Fix a generating set Γ = 〈γ1, . . . , γn〉. Then, for each i, write

ρ(γi) = Ai =

(
ai bi
ci di

)
,

where each entry belongs to C, and aidi− bici = 1. Let R1 = . . . = Rm = 1 denote the relations of Γ. Evalu-
ating Rj(A1, . . . , An) = I, for each j = 1, . . . ,m, determines polynomial equations in the entries ai, bi, ci, di;
that is, Hom(Γ,SL2(C)) is an algebraic set. Conjugate Γ and consider the subset of representatives where

• A1 fixes 0 and ∞, so b1 = c1 = 0, and A1 =

(
a1 0
0 d1

)
;

• A2 fixes 1, so A2 =

(
a2 b2
c2 d2

)
with a2 + b2 = c2 + d2.

In addition, the manifold H3/Γ may have cusps C1, . . . , Ct which determine conjugacy classes of parabolic
subgroups 〈ui, vi〉 ∼= Z⊕Z. To deal with this, we insist the representations satisfy tr2(ui)−4 = 0, tr2(vi)−4 =
0, and uivi = viui. Let V (Γ) be this subset of Hom(Γ,SL2(C)) (or, more precisely, the component of V (Γ)
containing the identity). Note that at present, everything is defined over Q.

Claim. dim(V (Γ)) = 0.

Exercise. if V is an algebraic variety, define over a number field k, and dim(V ) = 0, then V is a point, and
its coordinates are algebraic numbers.

Proof of Claim. We use rigidity. Suppose that dim(V (Γ)) > 0. Local rigidity (Weil, Garland) tells us that
for ρ ∈ V (Γ) sufficiently close to the identity, ρ is an isomorphism and ρ(Γ) has finite covolume. Now,
by Mostow rigidity, we know that ρ(Γ) is conjugate to Γ; that is, there exists a g ∈ Isom(H3) such that
gρ(Γ)g−1 = Γ. Then the fixed-point normalization which we imposed on A1 and A2 gives only finitely many
possibilities.

We can use the above conjugation of Γ into some PSL2(k) to get an invariant of H3/Γ.
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Definition. Define the trace field Q(tr Γ) of Γ to be the extension Q(tr γ | γ ∈ Γ).

The above discussion shows that Q(tr Γ) is a number field, and by Mostow rigidity, it is an invariant of
Γ, and hence of the manifold H3/Γ. Note that Q(tr Γ) 6⊂ R, since the quotient has finite volume.

Question. Which number fields k (6⊂ R) arise as Q(tr Γ) for Γ Kleinian of finite covolume?

Conjecture. Every such number field k does arise in this way.

Example 1. Let K be the figure-eight knot. Then S3 \K = H3/Γ, where Γ ⊂ PSL2(Z[ω]) is generated by

Γ =

〈(
1 1
0 1

)
,

(
1 0
ω 1

)〉
,

and ω2+ω+1 = 0. Here Z[ω] ⊆ Q(
√
−3) is the ring of integers, and so in this case we have Q(tr Γ) = Q(

√
−3).

Example 2. Let d be a square-free positive integer and let Od be the ring of integers in Q(
√
−d). Then the

Bianchi groups PSL2(Od) are all Kleinian groups of finite covolume, with trace fields Q(
√
−d).

Example 3. Let MW be the Weeks manifold, described as the Dehn filling of the Whitehead link given
in Figure 3.8. This is known to be the smallest volume hyperbolic 3-manifold (with volume approximately
0.9427 . . .). We have H1(MW ) ∼= Z/5Z⊕ Z/5Z.

Figure 3.8: The Weeks manifold MW

Let ρ : π1MW → PSL2(C) be a faithful discrete representation. It is possible to show (for example via
SnapPea) that

π1MW =
〈
a, b | a2b2a2b−1ab−1, a2b2a−1ba−1b2

〉
.

Consider an arbitrary representation ρ : π1MW → SL2(C) where we conjugate so that

ρ(a) =

(
x 1
0 x−1

)
, ρ(b) =

(
y 0
r y−1

)
.

We are only interested in such representations that are irreducible. Taking the first relation and evaluating

on ρ(a), ρ(b), we find that assuming r 6= 0, then r = x2−x+y2−xy2

xy . Now, taking this value for r and reworking

the first relation gives p(x, y) = 0 where

p(x, y) = 1 + x2 + y2 − xy2 + x2y2 + y4 + x2y4.

64



Now take the second relation and evaluate at ρ(a), ρ(b) (with r as above). We get that (x−y)(−1 +xy) = 0,
from which we conclude that either x = y or x = 1

y . Setting x = y gives a polynomial for x and we get that

p(x) = x6 + 2x4 − x3 + 2x2 + 1. Now, setting z = x+ x−1, the trace of ρ(a), then z satisfies z3 − z − 1 = 0.
One also finds that r = 2 − z. Note that the real root of z3 − z − 1 = 0, which is approximately 1.32,
is inadmissible. We invoke the key fact that for two-generator groups, Q(tr Γ) = Q(tr a, tr b, tr ab); that
is, every trace tr γ is a polynomial in tr a, tr b and tr ab with coefficients in Z. Using this, we find that
Q(tr ΓW ) = Q(z) for z a complex root of z3 − z − 1.

Example 4. Recall from earlier the Seifert-Weber dodecahedral space H3/ΓS . In this case, it turns out

that Q(tr ΓS) = Q
(√
−1− 2

√
5
)

.

Before we proceed, we note that one way of producing orbifolds with more complicated trace fields is as
follows. Each Bianchi group PSL2(Od) contains the modular group PSL2(Z). Thus we see the inclusion

M = H2/PSL2(Z)# H3/PSL2(Od) = Qd.

By the LERF property, and passage to a finite-sheeted cover Q′d if necessary, we can suppose that the
modular surface M is embedded and non-separating in Q′d. Then if d 6= d′, cutting along M in Q′d and
Q′d′ results in two orbifolds with boundary components M which can be identified (see Figure 3.9). If the

Figure 3.9: The construction of new orbifolds out of Bianchi orbifolds

resulting space is X = H3/Γ, then one can show that Q(tr Γ) = Q(
√
−d,
√
−d′).

We now return to the discussion of surfaces contained in hyperbolic 3-manifolds.

Theorem 3.9. There are closed hyperbolic 3-manifolds without totally geodesic surfaces.

Proof. We aim to show that the Weeks manifold MW above has no such surface. In fact, we will demonstrate
that ΓW has no purely hyperbolic elements. Let MW = H3/ΓW and assume for the sake of contradiction
that γ ∈ ΓW is purely hyperbolic; that is, tr γ ∈ R and |tr γ| > 2. We know from Example 3 above that
tr γ ∈ Q(tr ΓW ) = k = Q(z). It follows that tr γ ∈ k ∩ R = Q. In fact we can say more: it turns out that
tr γ ∈ Rk ∩ Q = Z. Recall that above we had three irreducible representations of ΓW corresponding to the
three roots of z3 − z − 1, namely ρ0, ρ0, and ρR, where ρR denotes the real representation.

Exercise. Show that the image ImρR ⊆ SU(2).

These representations are all faithful Galois conjugates of ρ0. We have that Imρ0 ⊂ M2(k(x)). We
therefore ask what tr ρR(δ) looks like for some δ ∈ ΓW . Since ImρR ⊂ SU(2), it follows that |tr ρR(δ)| ≤ 2
for every δ ∈ ΓW . If σ : k → R is the real embedding of k, then σ(tr δ) = tr ρR(δ) for each δ ∈ Γ. So, for γ
as above, we have |σ(tr γ)| = |id(tr γ)| = |tr γ| > 2, a contradiction.
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We now turn our attention to the same question in the non-compact case. We are particularly interested in
manifolds with torus boundary, and when surfaces survive under the operation of Dehn surgery on boundary
tori.

Let M = H3/Γ be cusped and of finite volume. Let f : S # M with S a closed, orientable surface of
genus g ≥ 2 and f∗ being π1-injective. Then f∗(π1S) ⊂ Γ is geometrically finite in Γ, so f∗(π1S) either

• has accidental parabolics; or

• is quasi-Fuchsian.

Surfaces falling into the second of these cases have good survival properties under Dehn surgery, as the
following sample result demonstrates.

Theorem 3.10. Let M be as above, with one cusp, and S # M totally geodesic. Then for all but finitely
many Dehn surgeries α, S remains incompressible in M(α).

Proof. Choose a horospherical cusp torus T such that S ⊆M \T . The key point is the 2π-Theorem [Window]
of Gromov–Thurston.

Figure 3.10: f∗(π1S) acts on the plane H ⊂ H3

Theorem (2π-Theorem, Gromov–Thurston). Let M and T be as above, and let α ⊂ T be an essential simple
closed curve. If the length `T (α) > 2π, then M(α) admits a metric of negative curvature.

The incompressibility of S in M(α) is guaranteed by the construction of this negatively curved metric.
The metric on M(α) (see Figure 3.11) is the hyperbolic metric on M together with a choice of negative
curved metric on V so that the result is negatively curved.

Exercise. (1) The preimages of S are hemispheres with centers in C (rather than vertical planes);

(2) There exists an upper bound on the radius of these hemispheres.

In order to optimize the number of surgeries we will exclude, we seek to push the horosphere H based
at ∞ as low as possible without intersecting other preimages. Recall that the length of the slope β in the

horosphere of height t is `E(β)
t (see Figure 3.12).

Remark. We can replace the assumption thatM has one cusp with multiple cusps, with the same conclusion:
the surface S survives except possibly in a finite number of surgeries.

Many examples of this will come from the Bianchi orbifolds H3/PSL2(Od), where d is a square-free
positive integer, and Od is the ring of integers of the quadratic imaginary number field Q(

√
−d).
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Figure 3.11: The curve α ⊂ ∂M− is identified with the meridian of the solid torus V

Figure 3.12: The length of the curve β varies with the height of the horosphere t

Theorem 3.11. The Bianchi groups PSL2(Od) (resp. orbifolds H3/PSL2(Od)) contain “many” cocompact
Fuchsian subgroups (resp. closed totally geodesic sub-2-orbifolds).

Corollary 3.12. If Γ < PSL2(Od) is torsion-free and of finite index, then H3/Γ contains “many” closed
totally geodesic surfaces.

Example. Let K be the figure-eight knot. Then S3 \K covers an orbifold Q3 = H3/PSL2(O3). We further
see that S3 \K = H3/Γ, where

Γ =

〈(
1 1
0 1

)
,

(
1 0
ω 1

)〉
and ω2 +ω+ 1 = 0. Here the first generator a =

(
1 1
0 1

)
represents the meridian of the torus boundary, and

l =

(
1 2

√
−3

0 1

)
represents the corresponding longitude. We may construct cocompact Fuchsian subgroups

of PSL2(O3) as follows. Let CD = {z ∈ C | |z|2 = D}.
We will see later that

Stab(+)(C2,PSL2(O3)) = {γ ∈ PSL2(O3) | γC2 = C2 and γ preserves the components of C \ C2}

is a cocompact Fuchsian group. Hence, Γ ∩ Stab+(C2,PSL2(O3)) is a surface subgroup of Γ. One checks

directly that if T ∈ PSL2(O3), then TC2 = C, a circle in Ĉ which has equation

a|z|2 +Bz +Bz + c = 0
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where a, c ∈ Z and B ∈ O3. This circle has radius
√

2
|a| , from which we see that the heights of the hemispheres

are bounded above by
√

2. In order to examine surgery slopes, we push a horosphere based at ∞ down to a

height
√

2 + ε, where ε > 0. Here, the length of a surgery curve β is
`E(β)√
2 + ε

. By the 2π Theorem, we seek

those curves such that
`E(β)2

(
√

2 + ε)2
≥ 4π2.

Let β = aplq =

(
1 p+ 2q

√
−3

0 1

)
. Then this inequality becomes

p2 + 12q2

(
√

2 + ε)2
≥ 4π2 (*)

If we set ε = 1
10 , we find that (*) holds when |q| = 1 and |p| > 8, when |q| = 2 and |p| > 6, and for any p

when |q| ≥ 3.

These facts are summarized in the following result:

Corollary 3.13. For the figure-eight knot K, (S3 \ K)(pq ) contains a π1-injective surface, except possibly
when

±p
q
∈
{

1

0
,

0

1
,

1

1
,

2

1
,

3

1
,

4

1
,

5

1
,

6

1
,

7

1
,

8

1
,

1

2
,

3

2
,

5

2

}
.

Remark. Of these exceptional surgery slopes, it is known that:

• 0
1 gives back S3;

• 0
1 and 4

1 are Haken;

• 1
1 , 2

1 and 3
1 are Seifert Fiber Spaces; and

• the remainder are hyperbolic. In this case, one can check (for example by using computer algebra
programs) that these contain surface subgroups.

Example. Let W denote the Whitehead link in S3. It is known that S3 \W covers the orbifold Q1, with
degree 12. We also see that 1

n -Dehn surgery on the unknot component produces the twist knot with n full
twists. As in the case of the figure-eight knot, we find that Stab(C3,PSL2(O1)) is a cocompact Fuchsian
subgroup. Thus, for sufficiently large n, the complement of the twist knot with n full twists contains a
π1-injective surface.

Remark. We have the following theorem regarding the two examples discussed above.

Theorem. The figure-eight knot K and the Whitehead link W are universal; i.e. every closed, orientable
3-manifold is a branched cover of S3 branched over K or W .

That is, given any 3-manifold M , there exists a link L ⊂ M such that M \ L is a branched cover of Q1

or Q3. This theorem looks useful, but has not as yet been used in a productive way.

We now return to the proofs of the above results.

Proof of 3.11. We first require some number-theoretic constructions. Let d and D be positive integers, with
d square-free. Define A = A(d,D) to be the quaternion algebra (4-dimensional central simple algebra) over
Q with basis {1, i, j, ij} and where multiplication is defined by

i2 = −d, j2 = D, ij = −ji.

68



If x ∈ A is given by x = x0 + x1i+ x2j + x3ij, we define x = x0 − x1i− x2j − x3ij to be the conjugate of x
in A. We have two standard homomorphisms A→ Q given by

tr(x) = x+ x = 2x0; (trace)

n(x) = xx = x2
0 + dx2

1 −Dx2
2 − dDx2

3. (norm form)

Next, letting M2(R) denote the set of 2-by-2 matrices with entries in R, we define ρ : A→M2(Q(
√
−d)) by

ρ(x0 + x1i+ x2j + x3ij) =

(
x0 + x1

√
−d D(x2 + x3

√
−d)

x2 − x3

√
−d x0 − x1

√
−d

)
.

Since each xi ∈ Q, and by simplicity, we see ρ(A) ∼= M2(Q(
√
−d)). Next, define the order O = Z[1, i, j, ij] ⊂

A to be the subset of A with integer co-ordinates. It follows that ρ(O) ⊂M2(Od). Further, we let

O1 = {x ∈ O | n(x) = 1}

and observe that since ρ preserves the respective norms on A and M2, we have that ρ(O1) ⊂ SL2(Od).
Hence, ρ(O1) is discrete. Furthermore, we see that because ρ also preserves traces, the traces of elements of
ρ(O1) are rational integers. This leads us to conclude that ρ(O1) is a Fuchsian group.

Claim (1). For infinitely many choices of D, ρ(O1) is a cocompact Fuchsian group.

Note that “infinitely many” can be made more precise: the requirement is that D be such that n(x) = 0
if and only if x = 0. One consequence of assuming this is that D is not a perfect square; for simplicity, we
will henceforth assume that D is square-free.

Proof of Claim (1). We define a conjugate representation σ : A → M2(R) of ρ as follows: for x ∈ A, let gx
be given by

gx = σ(x0 + x1i+ x2j + x3ij) =

(
x0 + x1

√
D x2 + x3

√
D

−d(x2 − x3

√
D) x0 − x1

√
D

)
.

We seek to show that H3/σ(O1) is closed. By the above discussion, it suffices to show that σ(O1)\SL2(R)
is compact.

More precisely, we seek to prove that for every g ∈ SL2(R), there exists x ∈ O1 such that gxg ∈ K, where
K is a fixed compact set. We first show the following claim.

Claim (2). For a given g ∈ SL2(R), there exists x ∈ O, with x 6= 0, such that gxg ∈ K for a fixed compact set
of matrices K. Moreover, K has the form K = ∪Dm, where Dm is a compact set of matrices of determinant
m, and the union is taken over finitely many integers m.

We first assume Claim (2) and thereby prove Claim (1). Define an equivalence relation ∼ on O by setting
x ∼ y if and only if x−1y ∈ O1.

Key Fact: The elements of O of fixed norm lie in finitely many equivalence classes.

Given this fact, the argument proceeds as follows. Let g ∈ SL2(R), and let 0 6= x ∈ O be an element
given by Claim (2) such that gxg ∈ K. Let m = n(x) 6= 0. Now choose xi as in the Fact, so xix ∈ O1.
Consider

gx−1
i x g = gx−1

i
gx g ∈ gx−1

i
K,

where K is a fixed compact set. Now we note that there are finitely many equivalence classes, and we are
done.
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Proof of Claim (2). Note that for g ∈ SL2(R), and x ∈ O, we have that det(gxg) = m 6= 0. Let g =

(
α β
γ δ

)
and consider

gxg =

(
x0 + x1

√
D x2 + x3

√
D

−d(x2 − x3

√
D) x0 − x1

√
D

)(
α β
γ δ

)
=

(
αx0 + αx1

√
D + γx2 + γx3

√
D βx0 + βx1

√
D + δx2 + δx3

√
D

−αd(x2 − x3

√
D) + γx0 − γx1

√
D −βd(x2 − x3

√
D) + δx0 − δx1

√
D

)
=

(
l11 l12

l21 l22

)
.

Recall that here each xi ∈ Z, and d and D are fixed integers. The four entries lij are linear forms in these
variables which determine a lattice in R4. Also recall that a lattice L ⊂ Rn consists of points (x1, x2, . . . , xn) ∈
Rn such that xi =

∑n
j=1 xijnj , where the nj ∈ Z vary and the xij ∈ R are fixed. If A denotes the associated

n-by-n matrix, then the volume of L is then vol(L) = |det(A)|. In the case at hand, we have that the volume
of the lattice is ∆ = 4dD.

Now let c11, c12, c21 and c22 be positive constants such that
∏
cij = ∆ and |dij | ≤ cij . This determines

a parallelepiped P ⊂ R4 which is closed, convex, and symmetric about 0. We have that vol(P ) = 24∆. We
now need Minkowski’s Lemma.

Theorem (Minkowski’s Lemma). Let L ⊂ Rn be a lattice, and assume M = vol(L) 6= 0. Suppose that P
is a closed, convex subset of Rn, symmetric about 0, whose volume is vol(P ) ≥ 2nM . Then there exists a
non-zero point of L which lies in P .

We apply this to the present situation, and find x0, x1, x2 and x3 ∈ Z such that gxg ∈ P . Notice that, by
compactness of P , if g ∈ P , then |det(g)| < N for some sufficiently large N ; moreover, this N is universal,
i.e. if det(gx) = m, then det(gxg) < N . Thus m < N . From this observation, it follows that we may take

Dm = {g ∈ P | det(g) = m}

for those m with |m| < N . Each Dm is compact, and gxg ∈
⋃
|m|<N Dm as required. This completes the

proof of Claim (2), and hence of Theorem 3.11.

Example. Recall the example of the figure-eight knot complement S3 \K. It was claimed that the set of
elements which stabilize the circle centered at the origin and of radius

√
2 formed a cocompact Fuchsian

subgroup of π1(S3 \K). Let A =

(
−3, 2

Q

)
, with norm form n(x) = x2

0 + 3x2
1 − 2x2

2 − 6x2
3. We verify that

this quaternion algebra meets the hypotheses of the above results.
Suppose that there exists x ∈ A \ {0} such that n(x) = 0; that is, suppose there exist rational numbers

a0, a1, a2, a3 ∈ Q such that
a2

0 + 3a2
1 − 2a2

2 − 6a2
3 = 0.

By clearing denominators, we may assume that in fact each ai ∈ Z. If we reduce the equation modulo 3, it
becomes

a2
0 − 2a2

2 ≡ 0 (mod 3).

A non-zero solution to this would imply the existence of an x with the property that x2 ≡ 2 (mod 3), a
contradiction. Notice that if a0 = a2 = 0, then we have the same situation with a1 and a3. Thus we see that
in A, n(x) = 0 if and only if x = 0.

Example. In the case of the Whitehead link complement, where the circle chosen had radius
√

3, the

quaternion algebra has symbol

(
−1, 3

Q

)
. Here, a similar argument to the above works to check that n(x) = 0

if and only if x = 0. In this way, we find “many” examples of cocompact Fuchsian subgroups corresponding
to quaternion algebras where n(x) = 0 if and only if x = 0.
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We now remark that this method can also be used to produce finite coarea Fuchsian subgroups of the
Bianchi groups. Suppose a circle C ⊂ C is defined by a|z|2 + Bz + Bz + C = 0, with a, c ∈ Z, a 6= 0, and
B ∈ Od. Then FC = Stab(C,PSL2(Od)) determines a finite coarea Fuchsian group.

To see this, recall that we have seen that FD = Stab(CD,PSL2(Od)) is a finite coarea Fuchsian group,

where CD has center the origin and radius
√
D. Let T =

(
a B
0 1

)
∈ PGL2(Q(

√
−d)). One checks that

TC = CD, and hence that
T−1 Stab(CD,PSL2(C))T = Stab(C,PSL2(C)).

With this in mind, we seek to relate T−1 FD T with FC . We first note that the groups T−1 PSL2(Od)T and
PSL2(Od) are commensurable. To see this, let A = 〈a〉 ⊂ Z be the cyclic subgroup of Z generated by a, and
a1, a2, a3, a4 ∈ A such that (

1 + a1 a2

a3 1 + a4

)
∈ Γ(a) < PSL2(Z)

is an element of the principal congruence subgroup of level a. We then find(
1
a −Ba
0 1

)(
1 + a1 a2

a3 1 + a4

)(
a B
0 1

)
=

(
1+a1

a − Ba3

a
a2

a −
B
a (1 + a4)

a3 1 + a4

)(
a B
0 1

)
=

(
1 + a1 −Ba3

1
a (B +Ba1 −B

2
a3 + a2 −B −Ba4)

aa3 a3B + 1 + a4

)

=

(
1 + a1 −Ba3

1
a (Ba1 −B

2
a3 + a2 −Ba4)

aa3 a3B + 1 + a4

)
∈ PSL2(Od)

as a divides each of the ai. We now have the following diagram.

PSL2(Od)
f.i.

T−1 PSL2(Od)T
f.i.

G T−1 FD T

f.i.

FC FD G ∩ T−1 FD T

We remark that FC ⊃ G ∩ T−1 FD T , from which we see that FC is cocompact / of finite coarea.
We close by noting that Margulis characterized arithmetic lattices Γ < PSL2(C) by using the notion of

the commensurator

Comm(Γ) =
{
g ∈ PSL2(C) | gΓg−1 is commensurable with Γ

}
.

This characterization is that Γ is arithmetic if and only if Comm(Γ) is dense in PSL2(C) (with respect to
the topology induced from C4), and that Γ is non-arithmetic if and only if [Comm(Γ) : Γ] <∞. In practice,
one can also use the fact that Comm(Γ) contains the normalizer N(PSL2(C),Γ) of Γ in PSL2(C).
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