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Abstract

In this paper, we classify all of the five-sided three-dimensional hyperbolic polyhedra with one ideal
vertex, which have the shape of a triangular prism, and which give rise to a discrete reflection group. We
show how to find each such polyhedron in the upper half-space model by considering lines and circles in
the plane. Finally, we give matrix generators in PSL2(C) for the orientation-preserving subgroup of each
corresponding reflection group.

1 Introduction

A convex polyhedron in hyperbolic 3-space H3 generates a discrete group of isometries if the dihedral angles
at which its bounding planes meet are all integer submultiples of π – that is, each angle is of the form π/n
radians, for an integer n ≥ 2 – and if the dihedral angles satisfy some other combinatorial criteria. The set
of all such polyhedra is infinite, with some partial classifications completed. For example, the fewest sides
such a polyhedron may have is four, and the 32 hyperbolic tetrahedra were found by Lannér [6], Vinberg
[11], and Thurston [10]. The 825 smallest volume all-right-angled polyhedra have been found by Inoue [4].

For certain computations, it is helpful to know matrix generators in PSL2(C) for the orientation-
preserving index 2 subgroups of these reflection groups. Such generators were found for some of the tetrahe-
dral groups by Brunner, Lee, and Wielenberg [2], and the second author has shown how to find these for all
32 tetrahedra [5]. These matrix generators have recently been used, for example, by Hoffman [3] to study
knot complements which cover tetrahedral orbifolds, and by Şengün [9] to study growth in torsion homology
of subgroups of the tetrahedral groups.

In this paper, we perform the same calculations for one class of five-sided polyhedra, which when drawn
schematically resemble triangular prisms. The set of all such polyhedra is infinite, and for simplicity we
restrict our attention to such polyhedra which have one ideal vertex and five finite vertices. As such, all of
our examples are non-compact. We find that the set of all such polyhedra consists of twelve infinite families
where one of the dihedral angles can be chosen arbitrarily, and 78 other specific arrangements of dihedral
angles.

We note that the list of polyhedra considered in this paper overlaps with those considered by Kaplinskaja
[7], who studied finite volume simplicial prisms in H3, H4 and H5 which give rise to discrete reflection groups,
and listed their Coxeter graphs. Each of our prisms either appears there, or can be decomposed into two
polyhedra which do. As such, our classification is not new, although we do not believe that our polyhedra
have previously been listed in this way. The Coxeter graphs of these polyhedra do not immediately allow
one to produce isometries which generate the orientation-preserving subgroup, and in this paper we provide
a method for this.

The method used is the following. First, we use Andreev’s Theorem to set up the combinatorial rules
which the dihedral angles must satisfy, and we find all admissible arrangements of angles which satisfy these
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rules. Then, we reduce the problem of finding hyperbolic planes in the upper half-space H3 which meet at
these prescribed angles to a similar problem, involving finding lines and circles in the plane which meet at
the same angles. Finally, we use this geometric data to write down matrix generators for each group.

This paper is organized as follows. After some geometric preliminaries in Section 2, in Section 3 we
describe all of the possible arrangements of angles which are possible for our prisms, grouped by the possible
angles at the ideal vertex. We also outline a method to locate each prism precisely in H3. In Section 4
we describe a general method to find each prism and write down corresponding matrices which generate
the orientation-preserving subgroup of isometries of H3, and in Section 5 we summarize the possible angle
arrangements in tables.

Acknowledgments. We wish to thank Neil Hoffman for suggesting this project, and for help checking
the results, Charles Delman for his guidance and support, and Matthieu Jacquemet for helpful comments
on a previous version of this paper.

2 Geometric preliminaries

In this section, we recall some definitions and results about hyperbolic polyhedra. We will work in the upper
half-space model for H3, {(x, y, z) ∈ R3 | z > 0}, and we recall that in this model, geodesic lines are vertical
lines and semicircles which meet the plane {z = 0} perpendicularly, and geodesic planes are vertical planes
and hemispheres whose equators lie in the plane {z = 0}.

We first note that in order for a polyhedron to generate a discrete reflection group, all of its dihedral
angles must be integer submultiples of π radians, and the integer must be no less than 2. In this paper, we
will label a dihedral angle of π/n by the natural number n.

Definition 2.1. A triangle is Euclidean if its angles p, q, and r satisfy the equation
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Definition 2.2. A triangle is spherical if its angles p, q, and r satisfy the inequality

1

p
+

1

q
+

1

r
> 1.

Definition 2.3. A triangle is hyperbolic if its angles p, q, and r satisfy the inequality

1

p
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1

q
+

1

r
< 1.

With these definitions in mind, we will appeal to Andreev’s Theorem [1] for hyperbolic polyhedra, which
specifies exactly what conditions a combinatorial arrangement of dihedral angles must satisfy in order that
it give rise to a hyperbolic polyhedron. For the precise statement given below, we refer to Dunbar, Hubbard,
and Roeder [8].

Theorem 2.1 (Andreev). If P is a compact, finite-sided hyperbolic polyhedron with dihedral angle αi at each
edge ei, then the following conditions hold:

1. For each i, αi > 0;
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2. If three edges ei, ej , ek meet at at a vertex, then αi + αj + αk > π;

3. If there exists a prismatic 3-circuit intersecting ei, ej and ek, then αi + αj + αk < π;

4. If there exists a prismatic 4-circuit intersecting ei, ej, ek and el, then αi + αj + αk + αl < 2π; and

5. For a quadrilateral face with edges enumerated successively e1, e2, e3 and e4, and e12, e23, e34, and
e41 are such that e12 is the third edge meeting at the vertex where e1 and e2 intersect (and similarly
for other eij, then

(a) α1 + α3 + α12 + α23 + α34 + α41 < 3π; and

(b) α2 + α4 + α12 + α23 + α34 + α41 < 3π.

The dihedral angle of intersection of two planes in the upper half-space model of H3 is the same as the
angle between the respective tangent planes at any point of intersection. Since these planes are either vertical
Euclidean planes or Euclidean spheres with center on the plane {z = 0}, if two planes intersect, they have a
common point on the plane {z = 0}. In this case, the respective tangent planes are both vertical Euclidean
planes, and so the dihedral angle is the angle the tangent planes make in the x-y plane.

With this in mind, we observe that the aim of finding five hyperbolic planes which intersect at prescribed
angles may be reduced to finding five lines and circles in the x-y plane which intersect at the same prescribed
angles. Since three of our planes intersect at an ideal vertex, we may place this ideal vertex at ∞, and
thereby assume that the three planes are vertical Euclidean planes. These will correspond to Euclidean lines
in the x-y plane. The remaining two sides will then correspond to circles in the x-y plane; since angles of
intersection are preserved by Euclidean similarities, we may take one of the circles to be the unit circle in
the x-y plane.

With these assumptions about our setup in place, when finding lines and circles which intersect at given
angles, we will appeal frequently to the following results.

Lemma 2.2. A line that intersects the unit circle at angle θ comes cos(θ) away from the origin at its closest
point.

Figure 1: The vertical line is x = cos (θ)
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Proof. After rotating if necessary, we may assume that the line is vertical, and further that it is of the form
x = a for a ≥ 0. The intersection points are then (a,

√
1− a2) and (a,−

√
1− a2); we focus on the former.

The angle θ is the angle at which the line x = a and the tangent line to the circle at this point intersect
(see Figure 1). Since the radius of the unit circle meets the tangent line at a right angle, the triangle with
vertices at (0, 0), (a, 0) and (a,

√
1− a2) has an angle of π

2 − θ at (a,
√

1− a2). This triangle has a right
angle at (a, 0), and so must have angle θ at (0, 0). Since the hypotenuse of the triangle is a radius of the
unit circle, it follows that a = cos (θ).

Lemma 2.3. If a circle with center (x0, y0) and radius r meets the line y = mx+ b at angle φ, and (x0, y0)
lies on or above the line (that is, y0 ≥ mx0 + b), then x0, y0 and r satisfy the equation

y0 −
r cos (φ)√
m2 + 1

= m

(
x0 +

mr cos (φ)√
m2 + 1

)
+ b.

Figure 2: The circle has center (x0, y0) and radius r

Proof. The vector 〈1,m〉 is parallel to the line, so the vector 〈m,−1〉 is perpendicular to the line. The unit
vector parallel to this is 〈

m√
m2 + 1

,
−1√
m2 + 1

.

〉
By trigonometry (see Figure 2), we see that the point which is distance r cos (φ) away from (x0, y0) in the
direction of this vector lies on the line. Therefore, plugging the x- and y-co-ordinates of the vector〈

x0 + r cos (φ)
m√

m2 + 1
, y0 − r cos (φ)

1√
m2 + 1

〉
into the formula y = mx+ b yields the required equation.

Lemma 2.4. If a circle with center (x, y) and radius r meets the unit circle at angle φ, then x, y, and r
satisfy the equation

x2 + y2 = 1 + r2 + 2 cos (φ)r.

Proof. This is an application of the Cosine Law to the triangle whose vertices are at (0, 0), (x, y), and one of

the points where the circles intersect (see Figure 3). This triangle has side lengths, 1, r and
√
x2 + y2. The
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angle opposite the latter side is π − φ because the angle between the respective tangent lines at this vertex
is φ, and the two angles between the tangent lines and their respective radii are both π/2. The equation
follows from the fact that cos (π − φ) = − cos (φ).

Figure 3: The circles meet at angle φ

3 Prisms

In this section, we will describe the dihedral angles of all hyperbolic triangular prisms with one ideal vertex,
and a way to construct each prism in the upper half-space model of H3.

Such a prism is specified by nine positive integers, which we will denote as a1 through a9, corresponding
to dihedral angles π/ai. We label the prism as in Figure 4.

Figure 4: The labels a1 through a9

We note that due to the reflectional symmetry of the prism, once we have treated one prism, we have
also treated the prism one obtains by exchanging the pairs a1 and a2, a4 and a6, and a7 and a8.

There are restrictions on the combinations of values taken by the labels ai which correspond to the
conditions given in Theorem 2.1. Specifically:
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• condition 1 of Theorem 2.1 means that all labels must be positive (i.e. not 0 or ∞; we assume this of
the ai);

• condition 2 states that at the five non-ideal vertices, the three edges incident to the vertex must have
the labels of a spherical triangle, and we add here that the three edges incident to the ideal vertex
must have the labels of a Euclidean triangle; and

• condition 3 states that labels a4, a5 and a6 must be the labels of a hyperbolic triangle.

We disregard the other two conditions: condition 4 does not apply because the prism has no prismatic 4-
circuits; and any labeling of the prism which meets the stated conditions will already meet condition 5. This
is because all dihedral angles in question are at most π/2, at most one of a4, a5 and a6 can be 2 (the others
must be larger) from condition 3, and at most one of a1 and a2 may be 2 from the ideal vertex condition.

The prisms fall into three categories, and we will handle each separately. These correspond to the angles
at the ideal vertex. These labels [a1, a2, a5] must be the labels of a Euclidean triangle, so they are either
[2, 3, 6], [2, 4, 4], or [3, 3, 3]. For each labeling, we will find three straight lines, and two circles, in the plane,
which meet at the prescribed angles.

The three possible arrangements are where p, q, and r of the Euclidean vertex are [2, 3, 6], [2, 4, 4], and
[3, 3, 3]. In each case, we will first describe all of the possible labelings, and then find equations for the
circles and lines in a few cases. All of the labelings we find are listed in Section 5.

3.1 [2, 3, 6] Cusp

Here a1, a2 and a5 take the values 2, 3 and 6. We first note that a5 6= 2. This is because whichever of a4 or
a6 labels an edge which meets the edge labeled 6 must take the value 2, and then a4, a5 and a6 are not the
labels of a hyperbolic triangle.

Let a5 = 3. Then, by symmetry, without loss of generality we suppose a1 = 2 and a2 = 6. Then
a3 = a6 = 2. Since a6 = 2 and a5 = 3, we must have a4 ≥ 7, and thus that a7 = a9 = 2. The remaining label
a8 may take the values 2, 3, 4 or 5. Each of these 4 cases gives us one infinite family of labelings, indexed by
n ≥ 7 which corresponds to the value of a4.

Now suppose a5 = 6, and without loss of generality a1 = 2 and a2 = 3. Since a5 = 6, we must have
a7 = a8 = 2. If a3 = 4 then we must have a6 = 2 and a4 ≤ 3, in which case a4, a5 and a6 are not the labels
of a hyperbolic triangle. A similar argument applies if a3 > 4. If a3 = 3, then we must have a6 = 2, and
then a4 must be 4 or 5. In each of these two cases, a9 may be 2 or 3.

Finally, if again a5 = 6, a1 = 2, a2 = 3, and a7 = a8 = 2, it remains to consider a3 = 2. If a6 = 2, then
a4 could be 4 or 5 – in each case a9 is either 2 or 3 – or a4 ≥ 6, in which case a9 = 2. If a6 = 3, then a4
could be 3, 4 or 5 – if a4 = 3, a9 is 2, 3, 4 or 5; if a4 is 4 or 5, a9 is 2 or 3 – or a4 ≥ 6, in which case a9 = 2.
If a6 = 4, then a4 could be 2, 3, 4 or 5 – in each case a9 is either 2 or 3 – or a4 ≥ 6, in which case a9 = 2. If
a6 = 5, then a4 could be 2, 3, 4 or 5 – in each case a9 is either 2 or 3 – or a4 ≥ 6, in which case a9 = 2.

Our first arrangement lets the Euclidean vertex have values of 2, 3, and 6. Let the planes that meet at
this vertex be perpendicular to the ground complex plane. Let a3 = 2, a4 = 7, a6 = 2, a7 = 2, a8 = 3, and
a9 = 2. This is shown in Figure 5. The values for all the edges were specifically chosen to satisfy definitions
2.1, 2.2, and 2.3. Using these definitions, we can examine different arrangements of the Euclidean vertex
with values of 2, 3, and 6.

Making the back quadrilateral face correspond to the unit circle, we choose the red face to correspond
to the line x = 0, which meets the unit circle at a right angle. By Lemma 2.2, the green face is the line
y = cos (π/7), which meets the red face at a right angle, and the unit circle at π/7. The blue face is the line
y =
√

3x, which meets the unit circle at a right angle and the red face at angle π/6 (see Figure 6).
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Figure 5: The left quadrilateral face is green; the right is blue; and the lower triangular face is red

Figure 6: Three lines and the unit circle

It remains to find the last circle, corresponding to the top triangular face of the prism. Suppose this
circle has center (x, y) and radius r. This circle intersects the unit circle at an angle of π/2. Using the
Pythagorean Theorem to find an equation, we have that the equation of this intersection is

1 + r2 = x2 + y2. (1)

Since this circle meets the green line at a right angle, we see that the center must be on the green line, and
hence that

y = cos (π/7). (2)

We need one more equation in x, y and r, and this comes from the fact that the last circle meets the blue
line at π/3. By Lemma 2.3,

y − r =
√

3x (3)

(see Figure 7).

These equations, subject to x > 0 and r > 0, are sufficient to determine x, y and r, and thus to determine
the location of the prism precisely. We find that as well as y = cos (π/7), that

x =
(

2
√

3 cos (π/7)−
√

6 sin (3π/14)− 2
)
/4 ≈ 0.4504
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Figure 7: The point (x, y − r) lies on the blue line

and
r =

(√
18 sin (3π/14)− 6− 2 cos (π/7)

)
/4 ≈ 0.1209.

Now that we have found the equations of the three lines and two circles which intersect at the prescribed
angles, the hyperbolic prism we seek is the region inside the triangle defined by the three straight lines, and
exterior to the two spheres whose equators are the given circles (see Figure 8).

Figure 8: The lines and circles define the hyperbolic planes bounding the prism

Changing the value of a4 edge from 7 to 8, the equation of the green line changes to y = cos(π/8) by
Lemma 2.2. And the same thing happens changing it to equal 9. This result shows that the line gets taller
as the value of that side increases. That edge can be left as a4 = m > 6.

Next, we examine another possible arrangement for the [2, 3, 6] prism. Rearranging the values of 2, 3,
and 6 at the cusp, we get the following image (see Figure 9).

This image is another specific possibility of the [2, 3, 6] Euclidean vertex. With this arrangement at the
cusp, we see that a7 = a8 = 2, because a5 = 6. By letting a4 equal 4 and a6 equal 2, that gives possibilities
for letting the a9 be either a 2 or 3, and a3 be either a 2 or 3. By plugging in those values, the definitions
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Figure 9: The 2, 3 and 6 at the Euclidean vertex can be rearranged

are satisfied.

We again choose that the back face correspond to the unit circle, and that the red face correspond to the
y-axis, x = 0. Since a4 equals a 4, the green face intersects the unit circle at π/4; since it meets the red face
at a right angle, then by Lemma 2.2, the green face corresponds to the line y = cos (π/4) =

√
2/2. The blue

face then corresponds to the line y = (
√

3/3)x.

We then find the equation of another circle, corresponding to the top triangular face, and intersecting
the unit circle. Since a7 = a8 = 2, this circle has center on the green and blue lines, which determines the
center (x, y) to be at the intersection of these lines. Specifically, y =

√
2/2 and x =

√
6/2. The tangent

lines of both circles at their intersections create an angle of π/3. Since the last circle is intersecting the unit
circle, the radius of the unit circle is 1, and the radius of the last circle is r. Using Lemma 2.4, we find that
the last equation is x2 + y2 = 1 + r2 + r. We find that r = (

√
5− 1)/2.

3.2 [2, 4, 4] Cusp

Next, we examine the arrangement that produces the [2, 4, 4] Euclidean vertex. First, we note that if a5 = 2,
then a1 = a2 = 4. Then a4 and a6 are both at most 3, and then a4, a5 and a6 are not the labels of a
hyperbolic triangle. Thus we must have a5 = 4, and without loss of generality we will assume a1 = 2 and
a4 = 4.

With these assumptions in place, we next note that a3 must be 2 or 3. Let us first treat the case a3 = 3.
In this case, we must have a6 = 2, and then a4 = 5, because it forms a hyperbolic triangle with 2 and 4 and a
spherical triangle with 2 and 3. The possible labels for (a7, a8, a9) are then (2, 2, 2), (2, 2, 3), (2, 3, 2), (2, 3, 3)
and (3, 2, 2).

Finally, suppose a1 = 2, a2 = 4, a3 = 2, and a5 = 4. Then a6 is either 2 or 3. If a6 = 2, then a4 ≥ 5. If
a4 = 5, then as above, the possible labels for (a7, a8, a9) are (2, 2, 2), (2, 2, 3), (2, 3, 2), (2, 3, 3) and (3, 2, 2). If
a4 ≥ 6, then a7 = a9 = 2, and a8 may be 2 or 3. If a6 = 3, then a4 ≥ 3. If a4 = 3, then the possible labels
for (a7, a8, a9) are (2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 2, 5), (2, 3, 2) and (3, 2, 2). If a4 = 4 or 5, then the possible
labels for (a7, a8, a9) are (2, 2, 2), (2, 2, 3), (2, 3, 2) and (3, 2, 2). If a4 ≥ 6, then a7 = a9 = 2, and a8 may be 2
or 3.

The first possibility of this arrangement we will work with is where a9 is 3, a8 is 2, a7 is 2, a5 is 4, the
a4 is m ≥ 5, a6 is 2. This a1 is 2, the a2 is 4, and a3 is 2 (see Figure 10).

With the bottom vertex being 2, 4, 4, we have a (90◦, 45◦, 45◦) triangle, with blue, red and green sides.
The back face of the prism meets green at an angle of π/5, and the back face meets the blue and red faces at
π/2. The back face corresponds to the unit circle. We choose the red face to correspond to the line x = 0.
By Lemma 2.2, the green face corresponds to the line y = cos (π/5). The blue line corresponds to the line
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Figure 10: A [2, 4, 4] cusp

y = x.

Finally, the top face meets blue and green at angle π/2, and the unit circle at angle π/3. Meeting blue
and green at π/2 means the center of the last circle is on both blue and green lines. Their intersection point
is (x, y) = (cos (π/5), cos (π/5)). Meeting the unit circle at π/3 means that, by Lemma 2.4, we have

x2 + y2 = 12 + r2 − 2 cos

(
2π

3

)
r

and so
x2 + y2 = 1 + r2 + r.

Here we find r = ( 4
√

5− 1)/2.

As we saw, with the [2, 4, 4] cusp the edges a7, a8 and a9 are always labeled 2, 3 or 4, and they cannot all
be labeled 3. We now describe what happens to the equations defining x, y and r when these labels change,
noting that the red, blue and green faces, as well as the unit circle, are unaffected by these changes.

If we change a9 to be 2, keeping a7 and a8 as 2. This means that the top face intersects the back face at
π/2. The intersection between the last circle and the unit circle creates an angle of 90◦. We still have that
x = y = cos (π/5), and the third equation becomes x2 + y2 = 1 + r2.

If a9 is kept as a 2, and we change a8 to 3, then because the new circle meets the green line at right
angles, we still have y = cos (π/5). Also, since a9 = 2, the new circle meets the unit circle at right angles,
and so x2 + y2 = 1 + r2. By Lemma 2.3, the final equation in this case is

y = x+
r
√

2

2
.

The next arrangement we consider has a7, a8, and a9 equal to 2, the vertical edges as m ≥ 5, 4, and 2,
and the bottom edges as a1 = 2, a2 = 4, and a3 = 3. This change shifts the red face from intersecting the
unit circle at x = 0 to x = −1/2. The green line will be y = cos (π/a4), and the blue will be y = x. Since
a7 = a8 = 2, the center of the second circle is at the intersection of the blue and green lines. Letting a9 be
2 results in the final equation of the last circle being 1 + r2 = x2 + y2.

Lastly, keeping a3 as 3 (so the red line is still x = −1/2), we change a6 to 3. By Lemma 2.2, this shifts the
blue line downward from y = x to y = x−

√
2/2. The equations defining x, y and r here are y = cos (π/a4),

y = x−
√

2/2 and x2 + y2 = 1 + r2.
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3.3 [3, 3, 3] Cusp

The last possible arrangement we will examine is where the Euclidean vertex has values of [3, 3, 3]. In
studying labelings here, we note that this labeling at the Euclidean vertex is symmetric, and thus we will
discard some labelings as being symmetric to other labelings already listed.

We first note that if a3 > 2, then a4 = a6 = 2 and we do not have a hyperbolic triangle. So a3 = 2.
Then by spherical triangles, a4 and a6 must both be one of 2, 3, 4 or 5, but neither can be 2 because of
the hyperbolic triangle, and also they cannot both be 3. Because of symmetry considerations, we suppose
without loss of generality that a4 ≤ a6.

• If a4 = 3 and a6 = 4, then (a7, a8, a9) can be (2, 2, 2), (2, 2, 3), (2, 3, 2), (3, 2, 2), (4, 2, 2) or (5, 2, 2);

• If a4 = 3 and a6 = 5, then (a7, a8, a9) can be (2, 2, 2), (2, 2, 3), (2, 3, 2), (3, 2, 2), (4, 2, 2) or (5, 2, 2);

• If a4 = 4 and a6 = 4, then (a7, a8, a9) can be (2, 2, 2), (2, 2, 3) or (2, 3, 2) (we discard (3, 2, 2) as it is
symmetric to (2, 3, 2));

• If a4 = 4 and a6 = 5, then (a7, a8, a9) can be (2, 2, 2), (2, 2, 3), (2, 3, 2) or (3, 2, 2);

• If a4 = 5 and a6 = 5, then (a7, a8, a9) can be (2, 2, 2), (2, 2, 3) or (2, 3, 2) (we discard (3, 2, 2) as it is
symmetric to (2, 3, 2)).

The first arrangement we examine is with a6 equal to 4, a4 = 3, and a7, a8, and a9 equal to 2. As before,
we will let the back side of the prism be the unit circle. Since all of the admissible labelings here have a3 = 2,
we will fix the red line to be x = 0.

Since the blue side meets the back side at π/4, the blue line intersects the unit circle at π/4. The green
side meets the back side at π/3, and the red side meets the back side at π/2. This means that the red side
creates a line that passes through the center of the unit circle at angle 90◦. The red, green, and blue lines
create an equilateral triangle since their sides meet each other at π/3.

If we shift the green line so that is passes through the center of the unit circle, we can find the slope
of the blue line. Since this line creates an angle of 60◦, in the fourth quadrant, there is a remaining 30◦ in
order to make a right angle. Thus the slope of the blue line is

tan
(π

6

)
=

sin(π/6)

cos(π/6)
=
−1/2√

3/2
= −
√

3

3
.

The slope −
√

3/3 corresponds to the vector 〈1,−
√

3/3〉. To find a vector orthogonal to this vector, we
flip one value and negate the other value. We get the vector 〈1,

√
3〉. The unit vector is 〈1/2,

√
3/2〉. Using

Lemma 2.2, we multiply the unit vector by cos(π/3) to get the point (1/4,
√

3/4). Plugging in the slope and
this point into the point-slope formula, we get y = (−

√
3/3)x+

√
3/3.

The slope of the blue line is
√

3/3. The vector corresponding to this slope is 〈1,−
√

3〉 and the unit vector
is 〈1/2,−

√
3/2〉. We multiply the unit vector by cos(π/4) to find the point (

√
2/4,−

√
6/4). Plugging this

point and the slope into the point-slope formula, we get y = (
√

3/3)x−
√

6/3.

Since a7, a8, and a9 equal 2, that means the last circle intersects the unit circle at right angles. This
also means that the center of this last circle lies on the intersection of the green and blue lines. Since the
last circle intersects the unit circle at right angles, we use the Pythagorean Theorem to find that the last
equation is 1 + r2 = x2 + y2.

The next possibility is a6 equal to 5. The only thing that changes is that the blue line has shifted from
the center of the unit circle a distance of cos(π/5). We multiply the unit vector by cos(π/5) and plug in the
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new point into the point-slope formula to get y = (
√

3/3)x − (2
√

3 cos(π/5))/3. The equations for the blue
line and the last circle are the same. Here is a list of the equations of the following arrangements where we
adjust the values of a4 and a6.

Values of a4, a5 and a6: Left to Right Green Line Blue Line

3, 3, 4 y = −
√
3
3 x+

√
3
3 y =

√
3
3 x−

√
6
3

3, 3, 5 y = −
√
3
3 x+

√
3
3 y =

√
3
3 x−

2
√
3

3 cos(π5 )

4, 3, 4 y = −
√
3
3 x+

√
6
3 y =

√
3
3 x−

√
6
3

4, 3, 5 y = −
√
3
3 x+

√
6
3 y =

√
3
3 x−

2
√
3

3 cos(π5 )

5, 3, 5 y = −
√
3
3 x+ 2

√
3

3 cos(π5 ) y =
√
3
3 x−

2
√
3

3 cos(π5 )

As long as a7 = a8 = a9 = 2, the third equation defining the last circle that intersects the unit circle
does not change for all of these specific arrangements. Thus, for all of these arrangements, the equation of
the last circle is 1 + r2 = x2 + y2.

Next, we examine what happens when we change a9 to 3, noting that none of the arrangements for a
[3, 3, 3] cusp have a9 anything other than 2 or 3. The equations for the green and blue lines remain the same
as in the list above. The last circle intersects the unit circle at π/3 instead of π/2. Since a7 and a8 remain
a 2, we have that the center of the last circle is on the intersection of the green and blue lines. We use the
Law of Cosines (see Lemma 2.4) to find that the equation of the last circle for the arrangements listed above
is x2 + y2 = 1 + r2 + r.

Next we study the results we get when we change either a7 to 3 or 4, or a8 to 3. The equations of the
green and blue lines listed above stay the same. The center (x, y) and radius r of the last circle intersecting
the unit circle changes. As a8 changes, the corresponding equation changes according to Lemma 2.3. Setting
φ = π/a8, and noting that in all cases the green line has slope m =

√
3/3, with y-intercept b changing, this

equation becomes

y − r cos (π/a8)√
1
3 + 1

=

√
3

3

x+
(
√

3/3)r cos (π/a8)√
1
3 + 1

+ b

or

y =

√
3

3
x+

2
√

3

3
r cos (π/a8) + b.

Since a8 may only takes the values 2 and 3, if it is not 2 then it must be 3, when this equation becomes

y =

√
3

3
x+

√
3

3
r + b.

By using an analysis like that in the proof of Lemma 2.3, we obtain a similar formula for how the
equation corresponding to the green line changes as a7 changes. If the green line is y = −(

√
3/3)x+ b, then

our equation is

y = −
√

3

3
x− 2

√
3

3
r cos (π/a7) + b.

Thus, we have completed all the calculations for all the possible arrangements of a [3, 3, 3] prism.

4 Matrices

In this section, we describe a general method which produces lines and circles which intersect at the prescribed
angles, which produces the same results described in the previous section. We then show how to take this
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geometric data of the lines and circles and use it to produce matrix generators in PSL2(C) for the orientation-
preserving subgroup of the group generated by reflections in the faces of the corresponding prism. Each group
will be generated by four matrices, where each matrix acts by pairing two faces of the polyhedron one obtains
by doubling the prism across one face.

4.1 The case a3 = 2

As above, we suppose that the back quadrilateral face lies on the unit sphere, or equivalently that one of
the two circles is the unit circle. We further suppose that the red face lies above the imaginary axis, or
equivalently that one of the straight lines is x = 0; this corresponds to asking that a3 = 2. Lastly, we assume
that the polyhedron lies to the right of the imaginary axis as we view it from above; in other words, we
assume that it lies in the region of H3 with x ≥ 0.

By considering Figure 1 and applying Lemma 2.2, we see that the blue line has equation

y = cot

(
π

a2

)
x− cos (π/a6)

sin (π/a2)

and, by similar reasoning, the green line has equation

y = − cot

(
π

a1

)
x+

cos (π/a4)

sin (π/a1)
.

The final face is on a circle with center (x, y) and radius r, which meets the blue line at angle π/a8. By
Lemma 2.3 we have one equation

y − r cos (π/a8)√
cot2 (π/a2) + 1

= cot (π/a2)

(
x+

r cot (π/a2) cos (π/a8)√
cot2 (π/a2) + 1

)
− cos (π/a6)

sin (π/a2)
,

which simplifies to

y − r cos (π/a8) sin (π/a2) = cot (π/a2) (x+ r cos (π/a2) cos (π/a8))− cos (π/a6)

sin (π/a2)
. (4)

By applying Lemma 2.3, with appropriate modifications, to the green line, we also have the equation

y + r sin (π/a1) cos (π/a7) = − cot (π/a1) (x+ r cos (π/a1) cos (π/a7)) +
cos (π/a4)

sin (π/a1)
. (5)

Finally, the two circles intersecting at angle π/a9 yields, via the Cosine Law and Lemma 2.4, the equation

x2 + y2 = 12 + r2 − 2(1)(r) cos

(
π − π

a9

)
or

x2 + y2 = 12 + r2 + 2r cos

(
π

a9

)
. (6)

Equations 4, 5 and 6 together define x, y and r and determine the final circle required.

With all of this work in mind, we require seven quantities to write down the matrices we seek. These
quantities are y1 = cos (π/a4)/ sin (π/a1) and y2 = − cos (π/a6)/ sin (π/a2), the y-intercepts of the green
and blue line; the angles θ1 = π/a1 and θ2 = π/a2 of the ideal triangle at these points; and the center (x, y)
and radius r of the second circle. Given these quantities, the matrices are

M1 =

(
0 −1
1 0

)
,
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which pairs two sides which both lie on the unit sphere;

M2 =

(
e−iθ1 y1i(e

iθ1 − e−iθ1)
0 eiθ1

)
,

which rotates counter-clockwise by angle 2θ1 about (0, y1);

M3 =

(
eiθ2 y2i(e

−iθ2 − eiθ2)
0 e−iθ2

)
,

which rotates clockwise by angle 2θ2 about (0, y2); and

M4 =

(
1
r (−x+ yi) 1

r (x2 + y2)− r
1
r

1
r (−x− yi)

)
,

which sends the second circle to its reflection in the imaginary axis. These matrices satisfy the relations

Ma1
2 = 1, Ma2

3 = 1, Ma3
1 = M2

1 = 1, (M−12 M1)a4 = 1, (M−13 M2)a5 = 1,

(M−13 M1)a6 = 1, (M−14 M2)a7 = 1, (M−14 M3)a8 = 1, (M−14 M1)a9 = 1.

4.2 The case a3 = 3

In the event that a3 6= 2, then we saw that a3 = 3. In this event, we keep the back face as corresponding
to the unit circle, and move the red line to x = −1/2 so that it intersects the unit circle at angle π/3.
The equations of the green and blue lines will be the same as the case a3 = 2, and the second circle will
be defined by the same three equations 4, 5 and 6. As in the previous case, we define θ1 = π/a1 and
θ2 = π/a2, and let (x, y) and r be the center and radius of the second circle. In place of y1 and y2 we define
z1 = −1/2+(cos (π/a4)/ sin (π/a1)+cot (π/a1)/2)i and z2 = −1/2+(cos (π/a6)/ sin (π/a2)−cot (π/a2)/2)i,
the points where the green and blue lines meet the red line x = −1/2. Our matrices are then

M1 =

(
−1 −1
1 0

)
,

which pairs two sides which lie on the unit sphere and the unit sphere centered at (−1, 0);

M2 =

(
e−iθ1 z1(eiθ1 − e−iθ1)

0 eiθ1

)
,

which rotates counter-clockwise by angle 2θ1 about z1;

M3 =

(
eiθ2 z2(e−iθ2 − eiθ2)
0 e−iθ2

)
,

which rotates clockwise by angle 2θ2 about z2; and

M4 =

(
1
r (−(x+ 1) + yi) 1

r (−(x+ 1) + yi)(−x− yi)− r
1
r

1
r (−x− yi)

)
,

which sends the second circle to its reflection in the line x = −1/2. These matrices satisfy the relations

Ma1
2 = 1, Ma2

3 = 1, Ma3
1 = M3

1 = 1, (M−12 M1)a4 = 1, (M−13 M2)a5 = 1,

(M−13 M1)a6 = 1, (M−14 M2)a7 = 1, (M−14 M3)a8 = 1, (M−14 M1)a9 = 1.
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5 Results

In this section, we list all of the possible labeling of the prism which were described in Section 3.

5.1 [2, 3, 6] cusp

5.1.1 a3 = 3

a1 a2 a3 a4 a5 a6 a7 a8 a9

2 3 3 4 6 2 2 2 2
2 3 3 4 6 2 2 2 3
2 3 3 5 6 2 2 2 2
2 3 3 5 6 2 2 2 3

5.1.2 a3 = 2

a1 a2 a3 a4 a5 a6 a7 a8 a9

2 6 2 n ≥ 7 3 2 2 2 2
2 6 2 n ≥ 7 3 2 2 3 2
2 6 2 n ≥ 7 3 2 2 4 2
2 6 2 n ≥ 7 3 2 2 5 2
2 3 2 4 6 2 2 2 2
2 3 2 4 6 2 2 2 3
2 3 2 5 6 2 2 2 2
2 3 2 5 6 2 2 2 3
2 3 2 n ≥ 6 6 2 2 2 2
2 3 2 3 6 3 2 2 2
2 3 2 3 6 3 2 2 3
2 3 2 3 6 3 2 2 4
2 3 2 3 6 3 2 2 5
2 3 2 4 6 3 2 2 2
2 3 2 4 6 3 2 2 3
2 3 2 5 6 3 2 2 2
2 3 2 5 6 3 2 2 3
2 3 2 n ≥ 6 6 3 2 2 2

a1 a2 a3 a4 a5 a6 a7 a8 a9

2 3 2 2 6 4 2 2 2
2 3 2 2 6 4 2 2 3
2 3 2 3 6 4 2 2 2
2 3 2 3 6 4 2 2 3
2 3 2 4 6 4 2 2 2
2 3 2 4 6 4 2 2 3
2 3 2 5 6 4 2 2 2
2 3 2 5 6 4 2 2 3
2 3 2 n ≥ 6 6 4 2 2 2
2 3 2 2 6 5 2 2 2
2 3 2 2 6 5 2 2 3
2 3 2 3 6 5 2 2 2
2 3 2 3 6 5 2 2 3
2 3 2 4 6 5 2 2 2
2 3 2 4 6 5 2 2 3
2 3 2 5 6 5 2 2 2
2 3 2 5 6 5 2 2 3
2 3 2 n ≥ 6 6 5 2 2 2

5.2 [2, 4, 4] cusp

5.2.1 a3 = 3

a1 a2 a3 a4 a5 a6 a7 a8 a9

2 4 3 5 4 2 2 2 2
2 4 3 5 4 2 2 2 3
2 4 3 5 4 2 2 3 2
2 4 3 5 4 2 2 3 3
2 4 3 5 4 2 3 2 2
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5.2.2 a3 = 2

a1 a2 a3 a4 a5 a6 a7 a8 a9

2 4 2 5 4 2 2 2 2
2 4 2 5 4 2 2 2 3
2 4 2 5 4 2 2 3 2
2 4 2 5 4 2 2 3 3
2 4 2 5 4 2 3 2 2
2 4 2 n ≥ 6 4 2 2 2 2
2 4 2 n ≥ 6 4 2 2 3 2
2 4 2 3 4 3 2 2 2
2 4 2 3 4 3 2 2 3
2 4 2 3 4 3 2 2 4
2 4 2 3 4 3 2 2 5
2 4 2 3 4 3 2 3 2

a1 a2 a3 a4 a5 a6 a7 a8 a9

2 4 2 3 4 3 3 2 2
2 4 2 4 4 3 2 2 2
2 4 2 4 4 3 2 2 3
2 4 2 4 4 3 2 3 2
2 4 2 4 4 3 3 2 2
2 4 2 5 4 3 2 2 2
2 4 2 5 4 3 2 2 3
2 4 2 5 4 3 2 3 2
2 4 2 5 4 3 3 2 2
2 4 2 n ≥ 6 4 3 2 2 2
2 4 2 n ≥ 6 4 3 2 3 2

5.3 [3, 3, 3] cusp

a1 a2 a3 a4 a5 a6 a7 a8 a9

3 3 2 3 3 4 2 2 2
3 3 2 3 3 4 2 2 3
3 3 2 3 3 4 2 3 2
3 3 2 3 3 4 3 2 2
3 3 2 3 3 4 4 2 2
3 3 2 3 3 4 5 2 2
3 3 2 3 3 5 2 2 2
3 3 2 3 3 5 2 2 3
3 3 2 3 3 5 2 3 2
3 3 2 3 3 5 3 2 2
3 3 2 3 3 5 4 2 2

a1 a2 a3 a4 a5 a6 a7 a8 a9

3 3 2 3 3 5 5 2 2
3 3 2 4 3 4 2 2 2
3 3 2 4 3 4 2 2 3
3 3 2 4 3 4 2 3 2
3 3 2 4 3 5 2 2 2
3 3 2 4 3 5 2 2 3
3 3 2 4 3 5 2 3 2
3 3 2 4 3 5 3 2 2
3 3 2 5 3 5 2 2 2
3 3 2 5 3 5 2 2 3
3 3 2 5 3 5 2 3 2
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