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This thesis investigates the geometric and topological constraints placed on the
quotient space of a Fuchsian or Kleinian group by requiring that the group admits a funda-
mental domain which is simultaneously a Ford domain and a Dirichlet domain. In the case
of Fuchsian groups, a direct correspondence with reflection groups is proved, and this result
is used to first find explicitly the 23 non-cocompact arithmetic maximal hyperbolic reflec-
tion groups in Isom(H?), and subsequently to test whether these groups are all congruence.
In the case of Kleinian groups, similar results are shown, and some examples of reflection

groups are considered.
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Chapter 1

Introduction

The modular group (P)SL,(Z) is a well known example of a Fuchsian group acting
on the upper half-plane model for the hyperbolic plane H2. This action admits a triangular
1 V-3

fundamental domain P with vertices located at p = —5 + 5

, —p and co. This domain
arises out of two common constructions of fundamental domains for Fuchsian groups: it
is both a Ford domain and a Dirichlet domain for the action of PSLy(Z). One can also
view P as the union of the triangle T" with angles g, g and 0 located at ¢, p and oo
respectively with its reflection in the imaginary axis; thus, PSLs(Z) can be viewed as the

orientation-preserving index two subgroup of the group generated by reflections in the sides

of P.

In this thesis, it is shown that these facts are not unrelated: in fact, there is a
bijective correspondence between Fuchsian groups which admit such a fundamental domain

and discrete hyperbolic reflection groups, which follows from this result.

Theorem 3.0.1. A Fuchsian group I' admits a fundamental domain which is simultaneously
a Dirichlet domain and a Ford domain if and only if it is the orientation-preserving index

two subgroup of a reflection group I'yef.

This theorem gives a way of identifying reflection groups via their orientation-

preserving subgroups. In particular, given a specific fundamental domain with the stated



property, one obtains a specific polygon in H? which defines the reflection group. In this
thesis, this correspondence will be exploited in order to determine explicitly the polygons

defining certain reflection groups.

Discrete reflection groups of spherical, Euclidean and hyperbolic space have been
the subject of much study. In the present work, we will focus on finite covolume hyperbolic
reflection groups. It was shown by Prokhorov [36] (in the non-cocompact case) and Vinberg
[45] (in the cocompact case) that there are no finite covolume hyperbolic reflection groups

above a certain dimension (respectively, 996 and 30).

It is possible to specialize further, and consider only arithmetic reflection groups,
which necessarily have finite covolume. A program of work that includes Nikulin [29, 30, 31],
Long-Maclachlan-Reid [27], and Agol [1], recently resulted in the following theorem, shown

independently by Agol-Belolipetsky—Storm—Whyte [2] and Nikulin [33].

Theorem. There are finitely many arithmetic mazimal hyperbolic reflection groups.

This result is obtained from the bounds for the dimensions in which examples
may exist, combined with a bound on the possible number in each dimension. Given this
result, the question naturally arises of how many such groups exist. This has been partially
answered in dimension 2 by Nikulin [32] (and see also Allcock’s enumeration [3]), where
there are 122 defined over Q. To this end, Agol, Belolipetsky, Storm and Whyte (see also
Belolipetsky [7]) remark that the counting process could be made more effective under

certain hypotheses, and, with this in mind, posed the question:

Question. Is each arithmetic mazximal hyperbolic reflection group also congruence?



This thesis answers this question in the case of non-cocompact groups in dimension

two. More precisely, we prove:

Theorem 4.3.3. Of the 23 non-cocompact arithmetic mazimal reflection groups belonging

to Isom(H?), fifteen are congruence, and eight are not.

It is possible to consider all of the above in the case of dimension three, and Kleinian
groups. It will be shown that the analogue of Theorem 3.0.1 does not hold in full, and in
particular that a wider variety of Kleinian groups can admit such a fundamental domain.
However, it will be demonstrated that the techniques used to prove all of the above can still
be brought to bear to consider examples of non-cocompact arithmetic maximal reflection

groups belonging to Isom(H?). This will lead to the following.

Theorem 5.0.2. There exists an arithmetic mazimal reflection group in Isom(H?) which

s mot congruence.

This thesis is organized as follows. Chapter 2 collects various background material
and preliminaries which will be relevant. Chapter 3 is devoted to the proof of Theorem
3.0.1 above, and this theorem is applied to the non-cocompact arithmetic maximal reflec-
tion groups of Isom(H?) in Chapter 4, leading to Theorem 4.3.3. In Chapter 5, various
results pertaining to the above concepts in dimension three are stated and proved, including

Theorem 5.0.2.



Chapter 2

Background

In this chapter, we will review some preliminaries on hyperbolic geometry and

arithmetic reflection groups.

2.1 Hyperbolic Space

By n-dimensional hyperbolic space H™ we mean the unique simply-connected Rie-
mannian n-manifold with constant sectional curvature —1. We commonly study this space
by using standard models: the upper half-space, Poincaré ball, hyperboloid, and projective
or Klein models are perhaps most prevalent (see Ratcliffe [37], Chapter 4, for more). In the

following, we will predominantly use the upper half-space model.

2.1.1 The Upper Half-Space Model
Let U™ denote the subset of R™ of points whose nth coordinate is positive, that is,
U" :={(x1,...,2,) ER" | 2, > 0}.

We endow U™ with the metric

dz? + ...+ da?
x

ds? =

It is a standard fact that (U",ds) is isometric to H". The boundary JH" = R~ U {cc}

is homeomorphic to S"~! and will be referred to as the boundary sphere. This model is



conformal, and geodesic k-planes are vertical or the northern hemispheres of k-spheres S*

with their equators S*~! € R"~!. Such planes meet the boundary sphere at right angles.

A horizontal plane {(z1,...,2z,) € R" | x, = ¢} is called a horosphere based at co
(or, in dimension two, a horocycle based at oo). It is the boundary of the corresponding
horoball based at co. It is well known that on a horosphere or horocycle the hyperbolic

metric on H” restricts to a Euclidean metric on R?~1,

2.1.2 Isometries

We may generate the group of isometries Isom(H™) by reflections in geodesic (n—1)-
dimensional hyperplanes. Since these do not preserve orientation, the group Isom™ (H") of
orientation-preserving isometries is generated by products of pairs of reflections. In the case
of Isom™ (H?2), this group is the group of real linear fractional transformations, and can be

identified with PSLa(R) via the correspondence

(a b) az+b
<—— Z —

c d cz+d’

In the same way, we have that Isom™ (H?) = PSLy(C). In this case, we identify H3

with the set of Hamiltonian quaternions
{JZQ + x11 4+ x27 + 23k | xo,%1,T2,T3 € R,ZQ = j2 =k?= ijk = —1}

with z3 = 0 and 22 > 0. The action above extends to this setting, where by dividing
by (cz 4 d) is interpreted as multiplying by the quaternionic inverse. One checks that it

preserves the upper half-space and all distances.

Isometries belonging to PSLs(R) and PSLy(C) fall into three distinct categories,

based on their fixed points. These categories can be distinguished by the trace of the



matrix. Let v be a non-trivial element of PSLa(R) or of PSLy(C).

o If the action of 7 fixes a point of hyperbolic space, then  is called elliptic. In this

case, the trace is real and |trvy| < 2.

e If the action of « fixes no points of hyperbolic space and exactly one point of the

boundary sphere, then ~ is called parabolic. In this case, trv = 2.

e In all other cases, v fixes no points of hyperbolic space and two distinct points of the
boundary sphere. In this case, 7y is called hyperbolic. Here the trace, if real, satisfies
[try| > 2. If v € PSLy(C) we sometimes distinguish between elements with real trace

and those with non-zero imaginary part; the latter are sometimes called lozodromic.

2.2 Fuchsian Groups

A Fuchsian group T is a discrete subgroup of PSLy(R). The action of I' on H?
then admits a connected fundamental domain. If this has finite area with respect to the
hyperbolic metric, then we say I' has finite coarea. It is known [20] that such a group is

then also finitely presented, and admits a fundamental domain with finitely many sides.

For a given finitely generated Fuchsian group I', the signature (g;n1,...,ny;m; f) of
I" records the topology of the quotient space H? /T, where g is the genus, ¢ is the number of
cone points of orders ny, ..., n; respectively, m is the number of cusps, and f is the number

of infinite area funnels.

2.2.1 Fundamental Domains

Given a finite-sided fundamental domain P for the Fuchsian group I', one can

recover a presentation for the group, and hence information about its signature, from it by



using the Poincaré Polyhedron Theorem. To apply it, we require the following information:
the number of sides m of P; the way in which the sides of P are paired; and the angle at
each vertex of P. Given this we divide the vertices of P into equivalence classes, where two
vertices are equivalent if they are identified by a side-pairing g; or sequence of side-pairings.
Each equivalence class is called a vertex cycle, and each vertex cycle gives rise to some word
W = gk ...g1 in the side-pairings with the property that, for some vertex v, w fixes v, and

27
the sum of the angles in the cycle is — for n,, € NU {o0}. A presentation for I" is then
N

'~ {(g1,...,9m | w™ =1 for each word w).
If n,, = 00, then the vertex is ideal, and this corresponds to a cusp.

2.2.2 Dirichlet Domains

Though there is no “canonical” choice of a fundamental domain for a given Fuchsian
group I, there are some standard methods to construct one. Given a point zy € H? not
fixed by the action of any non-trivial element of I', the Dirichlet domain for I' centered at

zp is defined to be
{z e H? | d(z,2) < d(z,a(z)) V1#a€el}.

It is an intersection of closed half-spaces. We generically expect the resulting domain to

change with the choice of zy [16].

One can give an alternative definition of Dirichlet domain [6]. Given the same
center zy and a non-trivial v € T', there is a unique decomposition v = 7271, where ;
denotes reflection in the geodesic L;, and we require that y2(z9) = 2o, or zg € La. Then

the assumption that v(z) # 2o means that zy ¢ L1, so we may define H, to be the half-



plane bounded by L; and containing zg. The Dirichlet domain is then the intersection of

all half-planes H.,.

2.2.3 Ford Domains

Suppose now that I' contains parabolic elements. The above allows us to define
a generalized Dirichlet domain by taking our center to be a parabolic fixed point on the
boundary OH?. We will typically conjugate I' in PSLy(RR) so that this center is placed at
oo in the upper half-plane. In this case, the reflections y; and - are well-defined when
~(00) # 00, and then the line L is called the isometric circle of v, which we will denote by
S,. However, the reflections are not uniquely determined for any parabolic isometry fixing
0o. To account for this, we define a Ford domain [18] to be the intersection of the region
exterior to all isometric circles with a fundamental domain for the action of the parabolic

subgroup stabilizing oo, I'ss < T'.

Given an isometry v = (z b) with ¢ # 0, the isometric circle S, can be read off

d

from the matrix representation: it has center —— and radius —

el
The following result is well known as Shimizu’s Lemma [43].
Theorem 2.2.1 (Shimizu). Suppose that a Fuchsian group contains the elements
11 a b
(o))
with ¢ £ 0. Then |c| > 1.

This result is proved by assuming that 0 < |¢| < 1 and exhibiting a sequence of

elements which converge to the identity, thereby violating discreteness. Note that Shimizu’s



Lemma shows that in any Fuchsian group containing A, the radius of an isometric circle

cannot exceed 1.

2.3 Kleinian Groups

The group of orientation-preserving isometries Isom™ (H?) of the upper half-space
model of H3 can be identified with PSLo(C). A Kleinian group is a discrete subgroup of
this isometry group. The definitions of Dirichlet domain and Ford domain carry over to this
situation. A necessary, but not sufficient, requirement for the Ford domain to be cofinite is

that I's, contain a copy of Z2.

If a Kleinian group I' is non-cocompact but of finite covolume, then the action of
I on the boundary sphere C U {oo} gives rise to at least one point which is fixed by two
non-conjugate (in I') parabolic isometries. Conjugating I' in PSLo(C) so that this point
is moved to oo, we see that the subgroup I', of elements of I' fixing oo is an orientation-
preserving discrete group of isometries of the Euclidean plane R2. If I'y, is torsion-free then
it is isomorphic to Z2, and corresponds to a torus boundary component of the quotient space
H?3 /T which contributes non-trivial rational homology. If 'y, has torsion then it corresponds
to a cusp which is properly covered by a torus; there are four possibilities for such a cusp: a
sphere with four cone points of order 2 S2(2,2,2,2); or three spheres with three cone points
S2(2,3,6), S%(2,4,4), and S%(3,3,3). Each of these four cusps corresponds to a spherical

boundary component of the quotient orbifold, which contributes no rational homology.



2.4 Arithmetic Groups

There is a substantial literature on the theory of arithmetic subgroups of algebraic
groups, and in particular of the isometry groups of hyperbolic space H". For the purposes of
this thesis, only dimensions two and three will be discussed in detail, and so our groups will
belong to PSLy(R) and PSLy(C). Additionally, all arithmetic groups will be non-cocompact.
As such, in this section we introduce only those definitions and results that pertain to non-

cocompact arithmetic Fuchsian and Kleinian groups.

2.4.1 Arithmetic Fuchsian Groups

A non-cocompact Fuchsian group I' < PSLa(R) is called arithmetic if it is commen-
surable with the group PSLy(Z); that is, after possibly conjugating by some « € PSLy(R),
the intersection al'a~! NPSLy(Z) has finite index in both PSLy(Z) and al'a~!. Notice that

if I is arithmetic, it is necessarily of finite covolume.

Such a group is then called congruence if it contains some principal congruence

subgroup

F(N):P{Cj Z) GSLQ(Z)|aEdEl,bEczOmodN}.

If this is the case, then the group is said to have level N. Note that the group I'(N) is the

kernel of the natural projection
on : PSLa(Z) — PSLo(Z/NZ)

given by reducing each entry modulo N. As such, each principal congruence subgroup is

normal in PSLy(Z), and has finite index.

The following related groups are also frequently considered. Let I'o(N) denote the

10



preimage under ¢y of the group of upper-triangular matrices in PSLy(Z/NZ); i.e.,

To(N) :P{(i Z) € SLy(Z) | ¢ = 0 mod N}.

Note that we have the inclusion I'(V) < T'o(N). Since we will consider Ford domains in
what follows, it is useful to note that Ford domains for each group I'o(N) were found by

Lascurain Orive [26].

In contrast to other groups (such as (P)SL, (Z) for n > 3), it is known that not
every arithmetic group commensurable with PSLy(Z) is congruence. It is possible to invoke
a number of results in order to test a given group for congruence. In order to do so we

widen the definition of level to make sense for non-congruence groups.

Definition. A finite index subgroup G < PSLa(Z) has level N if it contains the normal

G-

in PSLy(Z), and N is minimal with this property. Equivalently, letting PSLy(Z) act on the

closure of the element

coset decomposition induced by G, one obtains a representation
v : PSLa(Z) — Sk

of PSLy(Z) into the symmetric group Sy on k letters, where k = [PSLy(Z) : G]. The level

of G is then defined to be the order of the element
1 1
(Zel 0 1
in Sk

Given this wider definition, the following theorem of Wohlfahrt [49] provides a test

for congruence.

11



Theorem 2.4.1 (Wohlfahrt). The group G is congruence if and only if it contains the

principal congruence subgroup T'(N), where N is the level of G.

Note that there is a simple formula to calculate the index [PSLy(Z) : T'(N)]; it is

N Dow(1-2) fornv>2
[PSLy(Z) : D(N)] = { 2 tleIN ) ’
6 for N = 2,

where p ranges over primes dividing N. We remark also that in this setting, Hsu [24] gives

an algorithm that one can run to test a group for congruence.

Remark. An alternative definition of a congruence subgroup is that a group is congru-
ence if it contains some PSLy(R)-conjugate al'(N)a~! of a principal congruence subgroup
I'(N). For groups commensurable with PSLa(Z), we must have that o € PGL2(Q), the
commensurator of PSLa(Z). The following lemma shows that in the present situation, this

is equivalent to the definition given above.

Lemma 2.4.2. Any PGL2(Q)-conjugate of I'(N) contains some principal congruence sub-

group T'(N").

Proof. We refer to Chapter III of Lang [25] for the outline of the argument. If o € GL2(Q),
then we may clear denominators if necessary to ensure that a € PGL2(Q) has integer entries.

We set the determinant det o« = D € Z. If we write

=)
z w
and let A € T(DN), so we have that each entry of A — I is 0 mod DN, then it can be

checked that each entry of
1 [z aDN bDN wo =
Do l= = Y Y
A= TDa™" = D <z w) <cDN dDN) <—z x)

12



is 0 mod N. As such, we have that «Aa~! € T'(N), and hence al'(DN)a~! C T'(N). From

this it follows that the inverse conjugation a'T'(N)a contains T'(DN), as required. O

It will be useful to understand the maximal groups in which arithmetic groups can
be contained. Define I' to be a mazimal arithmetic group if it is not properly contained
in another (arithmetic) Fuchsian group. It is known by Borel [8] that there are infinitely
many maximal arithmetic Fuchsian groups in the commensurability class of PSLy(Z); these
groups have the form N(T'g(n)), where N denotes the normalizer in PSLy(R), and n is a
square-free integer. It is due to Ogg [34] that only finitely many of these maximal groups are
of genus zero. The elements of N(I'g(n)) are well understood by work of Helling ([22, 23]);

they are of the form
b
a\/q ——=
cn Vi

— d
Vi va
ben

where a,b,c,d € Z, ¢ > 1 is an integer dividing n, and adg — — = 1.
q

There are deep relations between the number theory of an arithmetic Fuchsian
group and its action on the hyperbolic plane (and therefore the geometry of the quotient
space). For example, if A\; denotes the first non-zero eigenvalue of the discrete spectrum of
the Laplacian operator, then it is known [44] that the purely arithmetic condition of being
congruence implies that

M
On the other hand, Buser and Sarnak constructed examples of congruence Fuchsian groups

with index two subgroups having A; arbitrarily small [11].

The value of \; is often difficult to calculate explicitly. As such, it is useful to

13



estimate it via Cheeger’s isoperimetric constant. This is defined for a finite area surface M

as

. Length(S)
P(M) = inf min(Area(A), Area(B))

where S is a union of geodesic segments which separates M into two connected components

A and B. We have the following bounds, due respectively to Cheeger [14] and Buser [12]:

% < Ai(M) < 2h(M) + 10h*(M).

2.4.2 Arithmetic Kleinian Groups

The construction of arithmetic Kleinian groups is analogous to that of Fuchsian
groups. Let d be a square-free integer, k = Q(v/—d) be a number field, and Oy be the ring

of integers of k. Then the corresponding analogue of PSLy(Z) is the Bianchi group

PSLy(04) = {(‘; Z) | a,b,¢,d, € Og,ad — bc = 1}.

A non-cocompact Kleinian group I' < PSLy(C) is called arithmetic if it is commensurable
with some Bianchi group PSLs(Oy). It is known that the Bianchi groups have finite covol-
ume, and so again we find that non-cocompact arithmetic Kleinian groups must have finite

covolume.

An arithmetic Kleinian group T is called congruence if it contains some principal

congruence subgroup

F([):P{(CCL Z) eSLQ((’)d)|a5d51,bzc50modl},

where I < Oy is an ideal. These groups are again normal and of finite index. We similarly

define the related groups

To(I)=P { (‘; Z) € SLy(04) | ¢ = 0 mod I} .

14



As in the case of PSLy(Z), there exist non-congruence arithmetic groups commen-

surable with the Bianchi groups. We extend the notion of level thus (see Petersen [35]):

Definition. Suppose that we are given a fixed Bianchi group PSLy(04) and a finite index
subgroup G < PSL2(Qy4). Then G has Z-level N if G contains the normal closure of the

group generated by matrices of the form

{(6 V)1acod

in PSLy(0y), and N is the minimal positive integer with this property. We say that G has

Og-level I (for an ideal I < Oy) if I is maximal with the property that the normal closure

6 %)

of the group generated by

for all y € I, is contained in G.

We have the following extension of Wohlfahrt’s Theorem (Theorem 2.4.1) which
appears in Petersen [35]. We also note that Scarth’s thesis proves it for a wider class of

groups ([42], Corollary 5.2.3).

Theorem 2.4.3. Given an imaginary quadratic number field Q(v/—d) of class number one
and a finite index subgroup G < PSLo(Qy), then G is congruence if and only if it contains

the principal congruence subgroup T'(I), where I is the Og-level of G.

As in the Fuchsian case, we are able to compute a representation

©wa - PSLQ(Od) — Sh,

where h = [PSLy(OQy) : G, and the orders of the images ¢c(A) and pg(B). Although this

15



does not necessarily give the Og4-level of G, it is enough to tell us the Z-level, which will

suffice for our purposes.

Define I' to be a mazimal arithmetic Kleinian group if it is not properly contained
in another Kleinian group. Given some Bianchi group PSLy(0,), there are infinitely many
maximal arithmetic Kleinian groups in its commensurability class, and these have the struc-
ture N(Tg(I)), where N denotes normalizer in PSLy(C), and T is a square-free ideal ([8],
[15]).

A Fuchsian group has genus zero if and only if it is normally generated by parabolic
elements (which correspond to cusps) and elliptic elements (which correspond to cone
points); as such, quotienting out parabolics and abelianizing the result leaves only elements
of finite order. This process can also be carried out for a Kleinian group: following Baker

[5], we define a Kleinian group T' to have trivial cuspidal cohomology if the rank
dimQ((F/UF)ab Qz Q)

is equal to zero, where Ur is the group generated by parabolic elements of I'. Topologically,
this is the rank of the rational homology which is not contributed by the boundary of the
manifold or orbifold H?/T. It is known ([5], [21], [41], [46], [50]) that finitely many of the

Bianchi groups have trivial cuspidal cohomology.

2.5 Reflection Groups

A hyperbolic reflection group Tyer < Isom(H™) is the group generated by reflections
in a hyperbolic polyhedron @) C H". It is assumed such groups are discrete. We say I'y¢f is of

finite covolume if @ has finite volume. A reflection group I',ef is not orientation-preserving,
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but it admits an index two subgroup I' which is, for example by considering the group
generated by products of pairs of the generating reflections; this subgroup is often called

the rotation subgroup of T'ief.

In the case of dimension two, it is known that the requirement that I',ef be discrete
is equivalent to the polygon @ having all angles equal to submultiples of 7 (where the
convention is that 0 = é, and a vertex with this angle is an ideal vertex). In higher
dimensions, this condition on the dihedral angles between the bounding hyperplanes is a
necessary, but not sufficient, condition for discreteness. For example, Andreev’s Theorem
[4] describes the picture for compact polyhedra in three dimensions (see also [40] for an

alternative proof and Rivin [39] for the non-compact case):

Theorem 2.5.1 (Andreev). If P is a compact, finite-sided hyperbolic polyhedron with di-

hedral angle a; at each edge e;, then the following conditions hold:

1. For each i, a; > 0;
2. If the three edges e;, ej, and ey, meet at a vertex, then o; + o + oy > 7;
3. If there exists a prismatic 3-circuit intersecting e;, e;, and ey, then oy + o + oy < 75

4. If there exists a prismatic 4-circuit intersecting e;, e;, ex and e;, then oy +oj+op+a; <

27

5. For a quadrilateral face with edges enumerated successively ey, e, ez, e4, and eis,
€23, €34, €41 are such that eio is the third edge meeting at the vertex where e; and es

intersect (and similarly for other e;;), then

(a) a1 + ag + a2 + aog + agg + aq1 < 375 and
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(b) a9 + ayg + a1 + oz + agg + agq < 3.

Moreover, any abstract polyhedron satisfying the above can be realized as a compact hyperbolic

polyhedron in H?, and any P satisfying the conditions is unique up to isometries of H°.

We define an arithmetic hyperbolic reflection group to be a reflection group belong-
ing to Isom(H") which is commensurable with a discrete, arithmetic group of orientation-
preserving isometries. Such a group is mazimal if it is not properly contained in another
such group. It was proved by Agol, Belolipetsky, Storm, and Whyte [2] and Nikulin [32]
that there are only finitely many arithmetic maximal hyperbolic reflection groups; it is of

interest to ask how many there are in total.

In their paper, Agol, Belolipetsky, Storm and Whyte argue as follows. Each maximal
reflection group corresponds to a maximal arithmetic isometry group, obtained by including
in the group the symmetries of the polyhedron Q. It is known that above dimension two,
the covolumes of these groups are discrete, and that there are only finitely many below a
given bound. Therefore an upper bound for the volume of the polyhedron gives an upper

bound on the number of possible reflection groups in the given dimension.

The existence of this bound implies the finiteness of the set of groups in question.
However, in order to compute the number, it would be helpful to improve the current bound.
If the groups were congruence, the additional information one would obtain regarding the
first eigenvalue of the Laplacian discussed above would be one step in this direction, since
this would provide a lower bound on A in all dimensions by Burger-Sarnak [10]. It is known
that if the group is maximal as an arithmetic group (and not just as a reflection group), then

it is congruence. It is therefore reasonable to ask whether all arithmetic maximal hyperbolic
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reflection groups are congruence, and, if not, whether one can find a universal lower bound

on their values of \;.

19



Chapter 3

Dirichlet—Ford Domains

The main goal of this chapter is to prove the following theorem.

Theorem 3.0.1. A Fuchsian group I' admits a fundamental domain which is simultaneously
a Dirichlet domain and a Ford domain if and only if it is the rotation subgroup of a reflection

group I'pef.

3.1 Preliminaries

Let T be a non-cocompact Fuchsian group. We begin by stating the definition of

Dirichlet—Ford domain.

Definition. A Dirichlet—-Ford domain, or a DF domain, is a fundamental domain for T'
which is both a Dirichlet domain for some center zg and a Ford domain for some choice of

a fundamental region for I'.

To see that DF domains exist, consider the example of PSLy(Z). Constructing the
Dirichlet domain centered at zg = 2i (or in fact any point yi on the imaginary axis for y > 1)

gives rise to the well-known fundamental domain for PSLy(Z) which is an ideal triangle P

1 /-3 1 V=3
with vertices at p=—=+ ——, —p= - +

2 5 > > and oco. This fundamental domain P can

also be obtained as a Ford domain: it suffices to consider the isometric circles of radius 1,

1 1
centered at each integer on the real line, and take the vertical strip between —3 and 3 as
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a fundamental region for

(0 )

Thus P is a DF domain for PSLy(Z).
We will make use of the following two standard theorems (see Ratcliffe [37], Chapter
7).

Theorem 3.1.1. Let G be a discrete reflection group with respect to the polygon Q. Then
all dihedral angles of Q are integer submultiples of w, and if gs and gr are reflections in

adjacent sides S and T of Q) meeting with angle %, then gsgr has order k.

Theorem 3.1.2. Let QQ be a finite-sided convex hyperbolic polygon of finite volume, all of
whose angles are integer submultiples of . Then the group G generated by reflections of H?

in the sides of Q is a discrete reflection group.

3.2 Reflection Groups
We begin by proving the following, one direction of Theorem 3.0.1.
Theorem 3.2.1. IfI',.¢ is the discrete group generated by reflections in a finite-sided, finite

area, non-compact polygon @, then the rotation subgroup I' of I'yep admits a DF domain.

Proof. Since @ is not compact, it has at least one ideal vertex. Suppose this vertex is placed
at co. Then @) has two vertical sides which meet at oo, contained in vertical geodesics L
and M respectively, and a finite number &k of non-vertical sides Sy,...,S5;. If 0;, 1 <@ <k,
denotes the reflection in the geodesic S’z in which the ith side is contained, and o, and o

denote reflections in L and M respectively, then

{017"'70k70L;0M}
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constitutes a generating set for I'yer. Let P = Q U op(Q) denote the union of @ and its
reflection in the vertical side M. We wish to show that P is a fundamental domain for I,

the rotation subgroup of I'ye, and further, that P is a DF domain.

The rotation subgroup I' consists of all of the elements of I',os which preserve ori-
entation; i.e. those elements which consist of an even number of reflections. It is generated

by products of two reflections. Consider the set
S={oyo1,...,0Mm0k, 0pOL}.
This is a generating set for I', because, given any pair of reflections o3, o;, we have
0i0; = oi(opmon)o; = (oionm)(omoj) = (O’Mdi)_l(O'MUj).

For each i including ¢ = L, the generator ops0; identifies S; with o/(S;), because o; fixes
S; pointwise. Thus the set S forms a set of side-pairings of P. Since o ¢ T', no two points
of P can be identified by elements of I', but each side of P is identified with another. Thus

P is a fundamental domain for I'.

Lemma 3.2.2. The polygon P is a Dirichlet domain for T'.

Proof. Let zg € M NP be any point interior to P which lies on the vertical geodesic M. Fix
some side S; of P. Then S; bisects zy and 0i(z0), and so O’M(Si) bisects oar(z0) = 2o and
omoi(zo). But, by construction, ops(S;) is itself a side of P. Note that this holds equally

for ¢ = L. This shows that P contains a Dirichlet fundamental domain for I'; but since we

know that P is a fundamental domain, it shows that P is itself a Dirichlet domain. O

Lemma 3.2.3. The polygon P is a Ford domain for T.
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Proof. For each i, 1 < i <k, the side S; is paired with o;(S;) by the generator ops0;. Since
o; fixes 51 pointwise and ojs is a Euclidean isometry, ops0; acts as a Euclidean isometry
on S;. Furthermore, op0; sends 0;(00) # 00 to oo, and thus is not itself a Euclidean
isometry. This is enough for us to conclude that 51 is the isometric circle of ops0;. A similar
argument shows that op;(S;) is the isometric circle for (oa;0;)"! = oy0p. The parabolic
element o0y, pairs L with ops(L). Thus P is defined by isometric circles, and so P contains

a Ford domain for I'. Since P is a fundamental domain, it must be a Ford domain. O

The combination of Lemmas 3.2.2 and 3.2.3 completes the proof of Theorem 3.2.1.

O

Remark. Notice that this construction, when combined with the Poincaré Polygon Theo-

rem, provides a presentation for the group I'. If we suppose that 57 is the side adjacent to

the vertical geodesic M (and so Sy is adjacent to L), that the angle between S; and S;_;

is nﬂ (where, for present purposes, M = Sy and L = Si41), and for simplicity we denote
i

T; = oM 05, then
I'= <7-13 sy Ty TL ‘ (Tl)nla (727-1_1)”27 R (Tka—l)nk7 (TLTk_l)nk+1> 5

where if n; = oo (and thus the corresponding vertex is ideal), we delete the relation
(TiTi:11)O°-
We now prove the other direction of Theorem 3.0.1.

Theorem 3.2.4. If the Fuchsian group I' admits a DF domain, then it is the rotation

subgroup of the group generated by reflections in the sides of a polygon Q.
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Before commencing the proof, we will prove two elementary but important lemmas.

The first is stated as an exercise in Beardon [6], section 9.6.

Lemma 3.2.5. Any vertex cycle on the boundary of a Ford domain P is contained within

a horocycle based at co.

Proof. Fix a vertex v. By construction of P, v lies on or exterior to all isometric circles,
and necessarily lies on at least one. We first consider a v € I" such that v ¢ S,. Then v lies
exterior to S,. Recalling the decomposition of v = 7271 into two reflections, where 7 is
reflection in S, and ~y, fixes oo, we observe that v; sends v to a point interior to S,. Then,
since 2 sends S, to S,-1, it sends v1(v) to a point interior to S,-1 (see Figure 3.1). It

follows that «(v) cannot be a vertex of P.

Now suppose that v € S,. Then v; fixes S, pointwise, and hence fixes v. Since ¥,
is reflection in a vertical line, it necessarily preserves the imaginary part of v, proving the

lemma. O

Remark. From the argument above, it follows that when we wish to find the images of a
vertex v of P under side-pairings of P, it suffices to consider those side-pairings « such that

vES,.

Remark. The lemma holds for any point on the boundary of the Ford domain P. For our

purposes, it will be enough to have it for the vertices of P.

The second lemma can be found in, for example, Greenberg [20], p. 203. Since the

proof is simple application of the definition of a Dirichlet domain, we include it here.
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Lemma 3.2.6. Let P be a Dirichlet domain for I' with center zy. Let 1 # ~ € T' and

suppose that z, y(z) € OP NH2. Then dy(z,z0) = du(v(2), 20)-

Proof. This is an application of the definition of a Dirichlet domain stated above. Specifi-

cally, setting = z and a = v~ ! yields the inequality

d(z,20) < d(z,77 ' (20)) = d((2), 20),

the latter equality holding because 7 is an isometry. Setting = y(z) and a = v now gives

d(7(2), 20) < d(v(2),7(20)) = d(2, 20)-

Combining these two inequalities gives the required equality. O
We will now use these two lemmas to prove Theorem 3.2.4.

Proof. Suppose P is a DF domain for I". We will show that P has reflective symmetry about
a vertical line M, and furthermore that the side-pairings of P pair points of 0P with their

reflections in M.
Suppose that we have conjugated IT" so that I', is generated by
11
!

Since P is a DF domain, it is contained in a Dirichlet fundamental region for I',, which is
a vertical strip

{z e H? | 3y < Re(2) < zo + 1}

for some xy € R. By the assumption that I" be finitely generated, we see that above a

certain height, there are no sides of P besides the vertical lines with real parts xy and

25



xo + 1 respectively. Shimizu’s Lemma (see Theorem 2.2.1) tells us that the radii of the
isometric circles S, cannot exceed 1, and hence that this height is at most 1. Consider a
point z = zg+iy € OP. Choosing v = A, we see that A(z) = 29+ 1414y is another boundary
point of P. We apply Lemma 3.2.6 to z and A(z), and deduce that the Dirichlet center
zo of P lies equidistant from these points. Since they have the same height y, the locus of
equidistant points is the vertical line bisecting them. We conclude that Re(zp) = zo + %
Now suppose that v € H? is a vertex of P, and v € T is a side-pairing such that ~(v)
is another vertex of P. By the argument in the proof of Lemma 3.2.5, v € S,. Then Lemma
3.2.5 tells us that Im(v(v)) = Im(v), and Lemma 3.2.6 tells us that dg(y(v), z0) = du(v, 20).

We consider the two sets

{z e H* | Im(2) = Im(v) }

and

{z e H? | du(z,20) = du(v, 20)} -

The former is the horizontal line through v, and the latter a circle with Euclidean center
located vertically above zg. In particular, the picture is symmetrical in the vertical line

{Re(z) = 20 + 1} (see Figure 3.2). It follows that either v(v) = v or v(v) = v*, where v* is

free a0t ).

Suppose first that y(v) = v. Because 7 fixes v, it must be that 5 also fixes v, and thus that

the reflection of v in the line

79 is reflection in the vertical line through v (see Figure 3.3). Since 7 is a side-pairing, and
P is locally finite, we may find a point w € S, N OP, not equal to v, such that v(w) € IP.

Now w € S, so w is fixed by 71, and 7, preserves imaginary parts, so Im(y(v)) = Im(v).
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zo + iy 2 zo+ 141y

Uk

o+ 1

N

o o +

Figure 3.3: The isometry  fixes the vertex v.
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Again applying Lemma 3.2.6, we deduce that zy must lie equidistant from w and ~(w).
Referring again to Figure 3, this locus is precisely the vertical line through v. It therefore
follows that Re(v) = Re(zo) = 2o + 3. Thus we have shown that if v is fixed by ~, then v
necessarily lies directly below the Dirichlet center zg. Bearing in mind the above discussion,
the contrapositive of this states that if Re(v) # z¢ + %, then any side-pairing ~ pairing v

with a vertex of P must send v to v*.

We now turn our attention to ideal vertices. Let v € JH? be a vertex of P. Then
two isometric circles meet at v. Fix one such circle S, which is the isometric circle S, of
some element v € I'. This isometric circle S, contains a side of P adjacent to v, and we
pick two points of S, wy, we € AP NH? (see Figure 3.4). All three of the points v, wy,
wy are fixed by ;. By Lemma 3.2.6, 5 must send both w; and ws to points the same
respective distance from zy. Since 7, preserves imaginary parts, we see that for each i, w; is
either fixed or sent to its reflection in the line {Re(z) = Re(zo)}. If wy were fixed, wy would
neither be fixed nor sent to its reflection, and vice-versa if wy were fixed. Thus we conclude

that 7, is reflection in the line {Re(z) = Re(z0)}.

The above arguments show that if any side-pairing of P, v € ' \ ', is written
¥ = 7271, where 7 is reflection in S, and ~; is a reflection fixing oo, then 7 is reflection
on in the line M = {z | Re(z) = zo + 4}. Letting L = {z | Re(z) = 20} and o, denote
reflection in L, we may take A = op;0r to see that this also holds for I'y,. We summarize

this in the following result.

Proposition 3.2.7. Suppose the Fuchsian group I' admits a DF domain P. Then P has
reflective symmetry about a vertical line M. Furthermore, the side-pairings of P each have

the form oyro1, where oy is reflection in M and o1 is reflection in a side of P.
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We now use Proposition 3.2.7 to complete the proof of Theorem 3.2.4. We do this by
showing that the polygon @ obtained by dividing P in half along M satisfies the hypotheses

of Theorem 3.1.2.

By Proposition 3.2.7, we have a generating set for I' of the form
{omo1,...,00m0k, 000} .

By the above discussion, each vertex cycle contains exactly two vertices, with the exception

of the point L N P directly below zy. By the Poincaré Polygon Theorem, each vertex cycle
2w

sums to — for some n; € NU {co}. By the reflectional symmetry of P, the angle at each

L7

vertex of @ is . We therefore conclude that @ is a convex, finite-sided polygon with all

U

angles integer submultiples of 7. We see that the reflections

{017"’70kuUMaUL}

generate a reflection group I'yer which contains I' as an orientation-preserving subgroup of
index two, or, in other words, its rotation subgroup. This concludes the proof of Theorem

3.2.4, and hence of Theorem 3.0.1. O

Remark. We established that Re(zp) = xo + %, but did not deduce anything about the
imaginary part of zg. This is because, by Lemma 3.2.2, we may take the Dirichlet center of
P to be any point of the interior of P on this vertical line. This observation will be explored

in the subsequent section.

3.3 Double Dirichlet Domains

In this section, we show that there is a similar result to Theorem 3.0.1 for cocompact

reflection groups of Isom(H?). Since the definition of a Ford fundamental domain is only
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valid for non-cocompact Fuchsian groups, we require a slightly different definition as our
starting point. However, we note that, as observed in the previous section, if a group admits
a DF domain P, then P arises as the Dirichlet domain for various choices of Dirichlet center

zp. This motivates the following definition.

Definition. A Double Dirichlet Domain, P, for a Fuchsian group I' is a fundamental domain

for I which arises as the Dirichlet domain centered at two distinct points zg and z;.

Notice that every DF domain satisfies this definition. We prove that possessing a
Double Dirichlet domain places constraints on a Fuchsian group which are similar to those

of DF domains.

Theorem 3.3.1. A cofinite Fuchsian group I' admits a Double Dirichlet domain if and only

if it is the rotation subgroup of a reflection group I'yes.

The proof of this result will follow a similar path to that of Theorem 3.0.1. We
first prove a technical lemma. In the previous section, we made an assumption on I' and
' which implied that the two vertical sides were identified by a side-pairing. It was then
demonstrated in the subsequent arguments that, given this, there was a unique way that
the remaining sides could be identified. In the absence of a similar assumption on the group

I" in the present setting, we prove explicitly that there can be only one way to pair the sides

of P.

Lemma 3.3.2. If P = Py = Py is the Dirichlet domain centered at zg and at z1, then the

sides of P are identified the same way in each case.

Proof. Suppose, for the sake of contradiction, that this is not the case. Any side of a

Dirichlet domain bisects the domain’s center and its image under some isometry. Here, we
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have a side A of P which is the bisector of both the pair zo and ;' (2) and the pair z; and
Y 1(21), where g # -1 are the isometries defining that side of P. It follows that -y pairs
A with some side B, and ~; pairs A with some other side C # B. Let d := d(2q, 21) be the
distance between the two centers zp and z;. Since 7, '(29) and ;' (21) are the reflections

of each in A, we see that
(5 (20),71 1 (21)) = d.

Applying the isometry v, to both points, this gives that

d(v1 (g ' (20)), 21) = d.

Now, if 71 (75 ' (20)) = 20, then the isometries 7o and v, both send 75 *(20) to 2o and v, *(21)
to z1. Since they also both preserve orientation, this implies that vy = 1, a contradiction.
Thus 'yl('ygl(zo)) # z9. But then ~; (’yal(zo)) is a point in the orbit of 2y, and thus the
construction of Py involves the half-space {x € H? | d(z,20) < d(z,v1(75 *(20)))}. As we
saw above,

d(v1 (79 1 (20)), 21) = d(z0, 21) = d.

Hence z is equidistant from zo and 1 (v, 1(30)). Thus z; cannot be in the interior of P,

contradicting the assumption that Py = P;. O

We are now able to prove Theorem 3.3.1.

Proof. Suppose I';¢f is generated by reflections in the polygon ). Conjugate I' such that
some side M of @ is vertical. We then remark that the proof of Theorem 3.2.1 can be

applied, with the modification that L is no longer a vertical side. Then the proof of Lemma
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3.2.2 shows that any point of M N P is a Dirichlet center; thus, P arises as the Dirichlet

domain for at least two centers.

Now suppose that P is a Double Dirichlet domain. Then there exist two distinct
points zg and z; which are the corresponding Dirichlet centers. Let M be the geodesic
passing through these points, and suppose for simplicity that we have conjugated so that M
is vertical. As in the proof of Theorem 3.2.4, we aim to show that P has reflective symmetry

about M, and that the side-pairings of P pair points with their reflections in M.

Consider one vertex v of P lying on M. If v is ideal, then we can apply Theorem
3.2.4 and get the required conclusion, so suppose v is finite. Then, by Lemma 3.2.6, v must
be identified with another vertex v’ such that d(v,zg) = d(v',29) and d(v,z1) = d(v', z1).
Since v, zg and z; are all distinct points lying on the same geodesic M, it follows that the
intersection of the two relevant loci is exactly one point, v. Thus v is fixed by a rotation

which pairs the two sides adjacent to v, and furthermore, M bisects the angle at v.

Given this starting point, it now follows by the proof of Theorem 3.2.4 that all of the
side-pairings of P consist of products ¢,,0; of reflections in sides composed with reflection
in M. One again observes that all but at most two of the vertex cycles contain exactly two
vertices, and applies the Poincaré Polygon Theorem to see that we may add in the reflection
oy without violating discreteness. Thus I is the rotation subgroup of a reflection group, as

required. O

We next apply Theorems 3.0.1 and 3.3.1 to show that given the signature of a
sphere, with cone points and/or punctures, such that its fundamental group is hyperbolic,

we may find a Fuchsian group I', with quotient space of the given signature, which admits
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a Double Dirichlet domain, or a DF domain if the signature has at least one puncture.

Corollary 3.3.3. Given the signature (0;nq,...,n;;m) of a (non-trivial) sphere with m > 0
punctures and t > 0 cone points of orders n; € N, for 1 < i < t, there exists a Fuchsian
group T’ such that T' admits a Double Dirichlet domain (and a DF domain if m > 0) and

H?2/T is a sphere of the given signature.

Proof. With the discussion following the proof of Theorem 3.2.1 in mind, this result follows
immediately from the fact that a convex polygon with the required angles may be con-
structed in the hyperbolic plane. Specifically, we require a polygon @ with ¢ finite vertices

™
with angle — as required, and with m ideal vertices. O
n;

Remark. If m > 0 above, then there is a certain amount of freedom in our choice of the
polygon Q. For example, we do not necessarily have to place one of the ideal vertices of @
at co. We do so in order to ensure that we obtain a DF domain for I'. Instead, we could
have all of the ideal vertices lie in R, thereby placing the line of symmetry L away from
any of the ideal vertices. Similarly, if m > 1, we could construct @ so that L meets only
one of the m ideal vertices, instead of 2 in the construction above. We also do not have
to construct @ so that each angle is bisected by a vertical line; we only do so in order to

demonstrate that it is possible to find the required polygon.

33



w1

v

Figure 3.4: The case v € OHZ2.
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Chapter 4

Arithmetic Maximal Reflection Groups

In this chapter, we apply Theorem 3.0.1 to find all of the non-cocompact arithmetic
maximal reflection groups of Isom(H?), and generators in PSLy(R) for their respective ro-

tation subgroups. Using this information, we test these groups for congruence.

4.1 Preliminaries

From work of Nikulin [32], we know that there are 122 arithmetic maximal reflection
groups in Isom(H?). Such a group is non-cocompact if and only if the corresponding polygon
has at least one ideal vertex; this information can be determined from Nikulin’s tables.
Alternatively, Allcock gives angle information, and ideal vertices are represented by the
symbol oo in his tables. In this way, we find that 23 of the 122 groups are non-cocompact.
Furthermore, we find that thirteen of these have exactly one ideal vertex, and the remaining

ten have two ideal vertices.

If Tyef is a cofinite arithmetic reflection group in Isom(H?), then its rotation sub-
group I is a cofinite arithmetic Fuchsian group of genus zero. Since the quotient space H?/T
has underlying space a punctured sphere, it can only cover other punctured spheres; thus,
we see that if I' is properly contained in some maximal Fuchsian group M, then M must
also be of genus zero. The maximal arithmetic Fuchsian groups of genus zero are understood

[27]; in particular, there are finitely many such groups. In the non-cocompact case, there
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are 45; they are PSLy(Z) and the normalizers N (I'g(n)) (see Section 2.4) for n belonging to

the set

{2,3,5,6,7,10,11,13, 14, 15,17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 38, 39,

41,42, 46, 47,51, 55, 59, 62, 66, 69, 70, 71, 78, 87,94, 95, 105, 110, 119, 141}.

So each non-cocompact arithmetic maximal reflection group gives rise to a rotation subgroup
which is contained in one of these normalizers, and which admits a DF domain. Each of
these groups is one-cusped, and contains the corresponding I'g(n) as a finite index subgroup.
Notice that, given some maximal arithmetic Fuchsian group M, if M admits a DF domain
then, by Theorem 3.0.1, it is itself one of these rotation subgroups, and further that it

corresponds to a reflection group with one ideal vertex.

4.2 Examples with One Ideal Vertex

In this section, we find generators in PSLs(R), and DF domains, for (the rotation
subgroups of) the thirteen non-cocompact arithmetic maximal reflection groups with one

ideal vertex. In the process, we will prove the following result.

Proposition 4.2.1. There are thirteen mazximal arithmetic Fuchsian groups of genus zero
which admit a DF domain; they are PSLy(Z) and the normalizers N(Io(n)) for values of n
in the set

{2,3,5,6,7,10,13, 14, 21, 30, 34, 39} .

These groups are precisely the rotation subgroups of the thirteen non-cocompact arithmetic

mazximal reflection groups with one ideal vertez.
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It follows immediately from the construction that all thirteen of these examples are

congruence.

4.2.1 Construction of Ford domains

In each of the following examples, we compute a Ford domain as follows. Each
example contains the element <(1) 1), and so we take our fundamental region for I', to
be between —5 and 3 on the real line. Since the set of possible entries of matrices in each
group is a discrete subset of R, there is a unique smallest such entry x1; finding all matrices

<Z Z) with lower-left entry ¢ = z; is equivalent to finding all isometric circles of maximal

radius; notice that we may always pre- and post-multiply by ((1) 1) if necessary to ensure
that the centers —CEZ and % of the isometric circle and its inverse respectively are between
—5 and % inclusive. We then proceed to find all matrices with the next smallest lower-left
entry o in the same way, where we may ignore those whose isometric circles (and those
of their inverses) are completely contained within those already found. We continue this
process until we have a polygon defined by the isometric circles and the lines R(z) = —%
and R(z) = % which has the required area, which is given to us by knowing the signature
of the corresponding quotient surface. Since all these groups are cofinite, the process will

always terminate in finite time. We give as an example a detailed explanation of how this

algorithm applies to one of the present cases.

We will calculate in detail a Ford domain for the group N(I'o(34)). By Long,
9
Maclachlan and Reid [27], this group has signature (0;2,2,2,2,2,4;1) and coarea 777 We

begin by including the element ((1) 1) and taking a fundamental region for its action

1
bounded by the lines R(z) = —3 and R(z) = = (see Figure 4.1). We note that the smallest

N =
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lower left entry of an element of T'g(34) is equal to 34; with this in mind, we next seek to

minimize the lower left entry of
b
ay/q —
v

34c )
= dyg

V4
34b 34
where a,b,c,d € Z, ¢ > 1 is an integer dividing 34, and adq — o0 _ 1. We see that 70
q q

is minimized by minimizing ¢ and maximizing ¢; in other words, taking ¢ = 1 and ¢ = 34.
We look for ways to complete the matrix

a\/ﬂﬁ

V34 dv34

V34 —dv/34 1 1

such that and are between —— and —. This can only be achieved if a = d = 0,
V34 V34 2 2

which then implies that b = —1, and we have the matrix

1

V34|,
V34 0

which we add to our generating set. We also add the isometric circle of this matrix to our
Ford domain, and note that the isometric circle of the inverse is the same isometric circle.

1
This circle has center 0 and radius — (see Figure 4.2).

V34

We now seek the next smallest lower left entry; this is obtained by setting ¢ = 1

and ¢ = 17. This makes the standard matrix
b

av17 T
217 dV17

Here if either a or d were equal to 0, then the determinant would be —2b, for which no
choice of integer b makes the determinant equal to 1. Thus if a = d = 1, we have b = 8 and

we obtain the matrix

8

V17T —
VIT |

2V/17 V17
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1
2

N

Figure 4.1: First step in the construction of a Ford domain for N(T'¢(34))

1
2

N[

Figure 4.2: Second step in the construction of a Ford domain for N(I'g(34))
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1 1
which gives us two isometric circles (for the element and its inverse) centered at —3 and 3

respectively, and of radius (see Figure 4.3).

1
2417
We next come to the case of ¢ = 2, ¢ = 34. But we notice that the matrix

b
av3d —
V34
2v/34  dv34

has determinant 34ad — 2b, and thus no choices of a, b, d € Z make this determinant equal to

1. We therefore move on to the case ¢ = 2, ¢ = 17. Here —— = 44/17, so we seek matrices

V1T

of the form

b
N
“ JI7

417 dV1T

If either a or d is even then the determinant must be even. If a = d = 1 we find b = 4 and

obtain the matrix
4
V17T —
V17
417 V17
We see that the isometric circles for this element and its inverse are not contained inside

the ones we have already found, and so we add these circles to our Ford domain, and the

matrix to our list (see Figure 4.4).

We move on to the case of ¢ = 3, ¢ = 34. This gives a matrix of the form
b

a\/ﬂﬁ

3V34 dv34

and again we see that if a or d is 0 then the determinant cannot be equal to 1. This leads
us to the matrix
11

Vit e
3v34 V34

The isometric circles of this element and its inverse are not covered by our existing circles,
and so we add these circles to our Ford domain, and the element to our generating set (see

Figure 4.5).
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Figure 4.3: Third step in the construction of a Ford domain for N(T'¢(34))

=
N[ =

Figure 4.4: Fourth step in the construction of a Ford domain for N(T'y(34))

N
W=
N[

Figure 4.5: Fifth step in the construction of a Ford domain for N(I'y(34))
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The next case to consider is that of ¢ = 4, ¢ = 34, and therefore matrices of the

form

b
av34 —
V34 |

434 dv/34

however, such a matrix must have even determinant. We therefore move on to the case of

c =1, ¢ = 2, and matrices of the form

b
aﬁﬁ

17v2  dv?2

We seek values of a and d between —8 and 8 inclusive such that 2ad —17b = 1. One solution

is to let @ = d = 3 and b = 1; the resulting matrix

1
3\/55

17v2 3v2

has isometric circles not covered by those we have, and so we add these circles to our Ford
domain and the matrix to our generating set. At this point we observe that our Ford domain
is now of finite area, and in fact has area equal to 97”, the coarea of the group. We also
check that all of the isometric circles which correspond to other possible matrices of the
present form are covered by the existing isometric circles. Notice also that if we did not
know in advance the coarea of our group, we would have to continue this algorithm, and it
would terminate when we reach a point where the radii of the isometric circles is less than

the imaginary part of the lowest point of our Ford domain.

We therefore conclude that the matrices

11 0 —o5\ [(VIT 2=

6 1) (e ) (o TB)
VIT = V3L o V2
417 V1T)7\3v34 V34) \17vV2 3v2)’

42



constitute a generating set for N(I'g(34)). We observe that for each matrix in this list, the
two entries on the diagonal are equal to each other. This means that each side of our domain
is paired with its reflection in the imaginary axis; in other words, this will be a DF domain

(see Figure 4.6).
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4.2.2 Results

Below we list, in each of the thirteen cases we consider, the matrices required to
define a Ford domain by considering their isometric circles, and those of their inverses in
the case they are not of order two. These are obtained using the same algorithm described
above. These matrices also define a DF domain; in the setup described, this is equivalent to
each generator having equal diagonal entries, that is, a = d. The DF domains themselves

will be drawn.

Example 1. PSLy(Z) is generated by the two matrices
1 1 0 —1
0 1)’\1 0 /)"

Example 2. N(T'4(2)) is generated by

G )(e )

=5k

Example 3. N(T'x(3)) is generated by
11 0 -7
0 1)°\v3 o0 /)’

Example 4. N(I'¢(5)) is generated by

GO ) (3
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=3 3 1 1
0 7 4 3

=
[
-
-

Figure 4.6: Final result of the construction of a Ford domain for N(T'(34))

0

SIS
SIS

Figure 4.7: Ford domain for PSLy(Z)
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TN

0 >

N[ =

Figure 4.8: Ford domain for N(T'y(2))

-~

SIS
O [---ccceennn-

1
2

Figure 4.9: Ford domain for N(T'y(3))
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N[
o
[

Figure 4.10: Ford domain for N(T'o(5))
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Example 5. N(T'5(6)) is generated by
0 1) (s ) s 7
0 1)"\v6 o0 /) \2v3 v3)"
Example 6. N(I'g(7)) is generated by
11 0 —ﬁ) V7 %
0 1)7\v7 0 )7 \2v7T V7)°

Example 7. N(T'4(10)) is generated by

63 ) (005 )

Example 8. N(T'y(13)) is generated by

(1) (s 5 s 7B) (s 2
0 1)7\v13 0 /'\2v13 v13) \3V13 Vi3]
Example 9. N(T'g(14)) is generated by
6 ) ()8
0 1/7\Wid 0 J'\2v7 V7)) \7v2 2v2)

Example 10. N(T'y(21)) is generated by

G D) () (v ) (o )
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0

N[ =
N[ =

Figure 4.11: Ford domain for N(T'(6))

|
N[
s
(SIS

Figure 4.12: Ford domain for N(T'g(7))

49



N[
=

Figure 4.13: Ford domain for N(T'x(10))

[ T S

(SIS

1
3

Figure 4.14: Ford domain for N(T'x(13))
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N[

1
1

Figure 4.15: Ford domain for N(T'o(14))

N[ =

1
3

Figure 4.16: Ford domain for N(T'¢(21))
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Example 11. N(T'4(30)) is generated by

6o (e ) s
0 1/°\v30 o ) \2v1i5 V15’
V10 A Ve
3v10 v10) ' \5v6 VG

Example 12. N(T'y(34)) is generated by
1 8
0 1)°\v34 0 /) \2vi7T V17)’

VT V3L oL V2 o
417 V17)7\3v34 V34 ) \17v2 3v2)°

3

Example 13. N(T'¢(39)) is generated by
1 19
(1 1) <0 —\/@) V39
0 1)°\v39 0 /J'\2v39 V39)’

Vi3 3V3 % Vi3 2
3WV13 v13) '\13v3 3v3) ' \6v13 Vi3]~

w
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1 1
5 3

Figure 4.17: Ford domain for N (T'4(30))

1 3 1 1
417 7 4 3

D=

Figure 4.18: Ford domain for N(T'y(34))

1

= j

w

—1
= 0

|

13 1
6 13 3

[N
Wl
w

Figure 4.19: Ford domain for N(T'((39))
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4.3 Examples with Two Ideal Vertices

In this section, we find generators in PSLs(R), and DF domains, for (the rotation
subgroups of) the ten non-cocompact arithmetic maximal reflection groups with two ideal

vertices.
To find these groups, the following definition will be useful.

Definition. Suppose I' is a cofinite Fuchsian group with I'y, consisting of parabolic ele-
ments, and which does not admit a DF domain. We will say that I' admits an almost-DF
domain if it admits a Ford domain which is symmetric about a vertical line L, such that
all but two of the side-pairings are symmetric about L, and the remaining two side-pairings

are involutions about fixed points on their respective sides.

In the process of finding the ten examples, we will prove the following result.

Proposition 4.3.1. Of the 32 maximal arithmetic Fuchsian groups of genus zero which do
not admit a DF domain, precisely ten admit an almost-DF domain; they are N(To(n)) for
n belonging to the set

{11,15,17,19,22, 26, 33,42, 55,66} .

Each of these ten groups contains an index two subgroup which admits a DF domain, and

which corresponds to an arithmetic mazximal reflection group with two ideal vertices.

Since these groups are proper subgroups of the maximal groups, it is not immediate
that they are congruence. Testing these groups for congruence will lead to the following

result.

Theorem 4.3.2. Of the ten arithmetic mazximal reflection groups with two ideal vertices,
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two are congruence, and eight are not. Hence, of the 23 non-cocompact arithmetic maximal

reflection groups in Isom(H?), fifteen are congruence, and eight are not.

In summary, we have the following.

Theorem 4.3.3. Of the 23 non-cocompact arithmetic mazimal reflection groups contained

in Isom(H?), fifteen are congruence, and eight are not.

4.3.1 Proofs

Before considering the individual examples, we first describe how to test each of
the groups for congruence. Recall that a non-cocompact arithmetic Fuchsian group I' is
congruence if and only if, after possible conjugation in PSLy(R), it contains some principal
congruence subgroup I'(IV). Suppose I is the rotation subgroup of a reflection group T'ef,
and that I' < N(T'g(n)) for some fixed n. Since all principal congruence subgroups are
contained in PSLy(Z), to test I' (and hence I'y) for congruence, it suffices to test G =
I'NPSLe(Z) =T NTo(n). A set of generators for G can be obtained in terms of generators
for N(I'y(n)) by using a computer algebra system such as Magma [9] to find the intersection
of the two subgroups I'g(n) and T'. This can then be expressed as a set of generators for G

as a subgroup of PSLs(Z) by using the Euclidean algorithm on each generator.

Given these generators and knowledge of the index [PSLg(Z) : G], the following
method determines whether G is congruence. Suppose G is congruence. Then it contains
some principal congruence subgroup I'(IV). More precisely, by Wohlfahrt’s theorem (The-
orem 2.4.1), it must contain I'(N) for N equal to the level of G. Since I'(N) is a normal

subgroup of PSLs(Z), it is then contained in the normal core of G in PSLy(Z), which is
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defined as the intersection

Core(PSL2(Z),G) := ﬂ yGy 1,
YEPSLa(Z)

and is the unique maximal normal subgroup of PSLy(Z) contained within Gj; that is, every
normal subgroup of PSLy(Z) which is contained in G is contained in this core. We have the

following diagram.

Note that we may compute the two indices

1 = [PSLy(Z) : T(N))]

and

m = [PSLy(Z) : Core(PSL»(Z), G)],

the former by way of a standard formula (see Section 2.4), and the latter by using Magma.
If m divides [, then this analysis tells us nothing, as it does not confirm or preclude the

possibility that G contains I'(IN). However, if m > [, or m fails to divide [, then we have a
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contradiction, which allows us to conclude that GG, and hence I" and I'y¢¢, is not congruence.

The results are summarized in Table 4.1 at the end of the section.

Remark. In all cases, we use the algorithm of Hsu [24] to check whether G is in fact
congruence. This serves as a check in the case (G is not congruence, and provides an answer
when G is congruence, when the method above gave no conclusive answer. We develop the
method above in order that we may apply it to other situations where Hsu’s algorithm is
not immediately available to us; in particular, we will use this method in Chapter 5 to treat

groups contained in Isom(H?).

Example 14. N(T'4(11)) is generated by the matrices
_ 1L v/ -5
S Tovy ol v (v R
0 1 V11 0 2v11 V11

AT 4 AT 4
Y4 = —vi v y V5 = u CVIL.
V11 V11 V11 —/11
A Ford domain defined by these elements is given in Figure 4.20. The subgroup I' generated
by 71, 72, 73,

(10 3 (23 8
V5Y1V4 = 33 10 ) V57V4 = 66 23

has index two in N(T'g(11)) and admits a DF domain (shown in Figure 4.21). Thus I is the

rotation subgroup of some arithmetic reflection group I'yef.

Claim. I',.; is a mazimal reflection group.

Proof. If T'\et were not maximal, it would be properly contained in another reflection group
H,.f, which is therefore also arithmetic. Let H < H,of denote the rotation subgroup. Note
that then we have I' < H. Since I' and H are both arithmetic Fuchsian groups of genus

zero, they are contained in a common maximal, arithmetic, genus zero Fuchsian group M
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1
3

Figure 4.20: Ford domain for N(T'¢(11))

W=

1/

Figure 4.21: Ford domain for I" < N(I'y(11))
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from the appropriate list in Long—Maclachlan-Reid [27]. By construction, I' is contained
in the normalizer N (T'g(11)), and by area considerations we find that [N(T'¢(11)) : T'] = 2.
Further, I' cannot be contained in any other of these maximal arithmetic groups; to see this,

observe that if n # 11 then, if we pick some non-zero integer b coprime to n, we may find

b
d

2o )6 ) 0n )

116 —a )’

We wish to show that this does not belong to T'g(n). If n is not divisible by 11 this is clear,

integers a, d such that (Z > € I'p(n). We then have

so suppose n > 22 is a multiple of 11. Then, by construction, b is coprime to 11, and so 11b
is not divisible by n. This shows that v2 cannot belong to any normalizer N(T'g(n)) except

N(To(11).

It remains to verify that we cannot have H = M = N(I'g(11)). But if this were the
case, then N (T'g(11)) would admit a DF domain, and we would have a fourteenth arithmetic

maximal reflection group with one ideal vertex, a contradiction. O

Thus the group T' is the rotation subgroup of an arithmetic maximal reflection

group. We find that the subgroup G = T'NTy(11) is generated by the elements

(11 (10 (=2 -1
Y1 = 0 1)’ Y21 Y2 = 11 1) Y273 = 11 5 )
1 (2 -1 (10 3 (23 8
2= —5) T 33 10)0 T \66 23)°
It has index two in both I and T'y(11), and index 24 in PSLy(Z). It has level N = 11, so

we test for whether G contains I'(11). We find that

[PSLy(Z) : [(11)] = 660
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but
[PSLo(Z) : Core(PSL2(Z), G)] = 1351680,
allowing us to conclude that G is not congruence.

In this case, checking our findings using Hsu’s algorithm, we find
L=(24915851113736)(10 17 21 23 22 19 14 12 18 20 16)

and

R=(1251214741016 8 3)(9 17 19 13 11 18 21 24 22 20 15)

are both of order 11, also giving that the level of G is 11. Hsu’s test is then that G is

1

5 is the multiplicative inverse of 2 mod 11,

congruence if and only if (R2L™2)3 = 1, where

in this case equal to 6. We find that R?L~6 has order 6, and so G is not congruence.

Example 15. N(T'¢(15)) is generated by

__1 7
71(1 1>772< 0 \/ﬁ>773 \/ﬁ 15 )
0 1 V150 2V15 /15

I e v IO C
M\svE VB )P T svE s )

The corresponding Ford domain is given in Figure 4.22, and includes the dashed isometric

ﬁ

circle. In this case, I" is generated by 71, 2, 773, along with

/114 (41
V5Y4 = 30 11 y V514 = 15 4/

The DF domain for I' is also given in Figure 4.22, and comprises only the solid circles.
Computation reveals that

[N(To(15)) : To(15)] = 4
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and

[N(To(15)) : T NTo(15)] = 4,

from which it follows that G = I'NT(15) = I'y(15). Thus the rotation subgroup I" contains

I'y(15), and hence T'(15). This reflection group I'yet is congruence.

Example 16. N(I'o(17)) is generated by

a5 >(? 7).

VT b VIT -8\ (vIT A
n=lam Vi vt —vi7) T \avir Vit

The corresponding Ford domain is given in Figure 4.23. In this case, I" is generated by ~1,

Oﬂ
=
3

V25 V3, V6, along with
(35 12 (16 5 _ (31T =
V54 = 102 35 > V5 V1V4 = 51 16 y V57274 = 8\/ﬁ 3\/ﬁ :
The level of G =T NTy(17) is N = 17. We find
[PSLo(Z) : T(17)] = [PSL2(Z) : Core(PSLy(Z), G)] = 2448,

from which we are unable to conclude anything. We therefore apply Hsu’s test, which tells

us that this example is congruence.

Example 17. N(['((19)) is generated by

we o= )= (0 )

(VP 4 VT Vi
M \svis vig) P T\ avie f’%‘ W19 —

Here T is generated by v1, 72, 73, 74, along with

3
<
=}

=

) |
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Figure 4.22: Ford domain for N(T'¢(15))

%%

N[

Wl
(e
W=

Figure 4.23: Ford domain for N(T'z(17))

Figure 4.24: Ford domain for N(T'x(19))
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(39 10 (37 9 (1 I
Y67V5 = 152 39 » V67175 = 152 37 » V67375 = 30\/@ 7\/@ .
A DF domain for I' is obtained by rotating each half of the Ford domain in Figure 4.24 by
~5 and ~yg respectively. The level of G =T NT((19) is N = 19. We find
[PSLo(Z) : T'(19)] = 3420,
and
[PSLo(Z) : Core(PSLa(Z), G)] = 1793064960.
This example is not congruence.

Example 18. N(T'y(22)) is generated by

we o= ()= (0 )

7 3 3
Y4 = \/@ V22 , V5 = _\/ﬁ i) ;Y6 = \/ﬁ SV,
322 V22 411 V11

Here T is generated by v1, 72, 73, 74, along with

¥

_ <23 6) _ <21 5> (31T =
The level of G =T NT((22) is N = 22. We find

[PSLy(Z) : T(22)] = 3960,

and

[PSLy(Z) : Core(PSLy(Z), G)] = 34016140984320.

This example is not congruence.
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Example 19. N(I'y(26)) is generated by

__1 _6_
T = L1 y V2 = < 0 \/%>773: \/ﬁ Vi3 )
0 1 V26 0 213 /13

9 9 3
Ya = VB Vs = N Y6 = A
3v26 /26 3v26  —V/26 4413 V13
Here T is generated by 71, 72, 73, 76, along with
(53 18 (25 8 [ 6v26 \/5—;’*6
V5Y4 = 156 53 ;Y5174 = 78 25 , V5274 = 17\/% 6\/% .

The level of G =T NT((26) is N = 26. We find

ﬂ

[PSLy(Z) : T'(26)] = 6552,
and
[PSLy(Z) : Core(PSLa(Z), G)] = 439697276928.
This example is not congruence.

Example 20. N(T'((33)) is generated by

_ 1 \/ 16 —/ _
= - y Y2 = ’ 33) y V3 = s 33 y Y4 = 1
0 1 V33 0 2v33 V33 3v11 1

VI - (VB L (2

Here T is generated by ~v1, ¥2, v3, V6, 77, along with

(23 8 (10 3
V5V4 = 66 23 » Y5V1Y4 = 33 10/

37 11
V5 Y2V = VS Im Y5 VTV = AN
8v33 3v33 223 9V3
The level of G =T NT((33) is N = 33. We find

W
=

)

[PSLy(Z) : I'(33)] = 15840,
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Figure 4.25: Ford domain for N(I'¢(22))

Figure 4.26: Ford domain for N(T'¢(26))

W=

2 1
11 4

Figure 4.27: Ford domain for N(I'y(33))
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and

[PSLo(Z) : Core(PSLa(Z), G)] = 139330113471774720.
This example is not congruence.

Example 21. N(T'((42)) is generated by

11 0 ——= V2l L —\/14
= V2 = Va2 y V3 = 21 y Y4 =
0 1 V42 0 2v21 V21 3v14

/14 5 / _5_
SR ) A . i) R
3V14 —V14 421 /21
Here T is generated by 1, v2, 73, 76, 77, along with
(29 10 (13 4
V574 = 84 29 y V5174 = 42 13/

61 19
V5V2V4 = 4\/@ Va2 y VY7 V4 = 7ﬁ V7).
11V42 442 18V7 VT

The level of G =T NT((42) is N = 42. We find
[PSLo(Z) : T'(42)] = 24192,

and

[PSLy(Z) : Core(PSL2(Z),G)] = 53198770598313984.
This example is not congruence.

Example 22. N(T'¢(55)) is generated by
1 27
"= L1 y V2 = 0 V5 y V3 = \/% V55 ;
0 1 V55 255 /55

(VBB (3 &) (vl =
Y4 = 3& \/g y V5 = 11\/5 3\/5 , V6 =

66

25



/
1 1
6 14

Figure 4.28: Ford domain for N(T'¢(42))

1 =2 -1-3 -1 =3 0 3
2 5 3 11 5 22 2

1 3 1
5 11 3

[\

Figure 4.29: Ford domain for N(T'y(55))
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2 9 9
vr = 3\[ V5 72& VL ;Y9 = Qm VI |,
221/5 3[ 511 2V/11 5v11 =211
Here I' is generated by ~v1, 72, ¥3, V4, V5, V6, V7, along with
89 36 21 8
Yovs = 290 89 y Y918 = 55 21)°
361 41
Yoy2vs = 16V55 i ,YoV5Ys = Vh - A ,
3955 1655 445 195

21v/11 2L 173y/5 358
YoY6ys = VIL | y9yrys = Ve .
50411 2111 418v5 173v/5
The level of G =T NTy(55) is N = 55. We find

[PSLy(Z) : T'(55)] = 79200,
and
[PSLo(Z) : Core(PSLa(Z), G)] = 2921964261275592975974400.

This example is not congruence.

Example 23. N(['((66)) is generated by
11 0 -~ V33 &
e (e ) (1 @
(V2 E) Lo (VB ) = (Y
Y4 = 3\/5 \/ﬁ y V5 = 4\/§ \/ﬁ , Y6 = \/* \/*

o e
Y7 =
6v11 V11 6v11 —/11

Here T is generated by ~v1, v2, v3, V4, V5, V6, along with

(23 4 (437
78’77 - 132 23 778’7177 - 264 43 9

13 68
82T = \/% V66 , V8Y3YT = 13\/:% V33 s
5v66 /66 82v/33 13v/33

OJ
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)

)

(v (V33
Y8VaYT = 27\/@ 4\/@ , V85T = 8\/373
79v3 3L
8Y6VT = V3 .
506v3 793
The level of G =T NTy(66) is N = 66. We find
[PSLy(Z) : T(66)] = 95040,
and
[PSL2(Z) : Core(PSLa(Z), G)] = 258723489217327932540472981522522006534225920.

This example is not congruence.

4.3.2 Estimates

Since we found examples of arithmetic maximal reflection groups which are not con-
gruence, and which therefore do not necessarily have a lower bound on their first eigenvalue
of %, it is reasonable to ask whether one can produce useful bounds on this quantity for
these examples. Here we provide one rough estimate for the spectral gap of the rotation
subgroup I' via the Cheeger constant (see Section 2.4). We do this by observing that in
each two-vertex example, we have a pair of involutions o and 8 in N(I'g(n)) which do not
belong to the subgroup I'. The isometric circles of a and 8 descend to two geodesic arcs s,
sg in the quotient, and these arcs have common endpoints. Furthermore, they separate the
quotient into two connected components of equal area, thereby maximizing the denominator
in the definition of the Cheeger constant. We therefore calculate the upper bounds for h
and Ap arising from this decomposition and the inequalities described in Chapter 2. This

data is listed in Table 4.2. We note that this data does not prove the existence of a maximal

3
arithmetic reflection group with A\; < 6= 0.1875.
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Figure 4.30: Ford domain for N(I'(66))

n | [PSLa(Z) : T'(n)] [PSLo(Z) : Core(PSL2(Z), G)] Congruence?
11 660 1351680 No
15 1440 720 Yes
17 2448 2448 Yes
19 3420 1793064960 No
22 3960 34016140984320 No
26 6552 439697276928 No
33 15840 139330113471774720 No
42 24192 53198770598313984 No
55 79200 2921964261275592975974400 No
66 95040 258723489217327932540472981522522006534225920 No

Table 4.2: Upper bounds for the spectral gap of H?/T

Table 4.1: Results for two ideal vertices

n | Estimate for A | Upper Bound for \;
11 0.310382 1.58413

19 0.189393 0.737484

22 0.177715 0.671254

26 0.234439 1.0185

33 0.476386 3.22221

42 0.351283 1.93656

55 0.208312 0.850564

66 0.317591 1.64382
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Chapter 5

Dirichlet—Ford Domains and Kleinian Groups

This chapter discusses what constraints are placed on Kleinian groups which admit
a Dirichlet—Ford domain. Throughout, I will be a non-cocompact Kleinian group, conju-
gated in PSLy(C) such that the parabolic fixed point at oo has stabilizer I'o, which acts

cocompactly on C.

Definition. A Dirichlet—-Ford domain, or DF domain, P, for the Kleinian group I is
a Dirichlet domain for some center zy which is also a Ford domain for some choice of

fundamental region for I'.

It will be shown that there is no direct correspondence between DF domains and
reflection groups as there is in the case of Fuchsian groups. In particular, we will prove the

following theorem.

Theorem 5.0.1. The rotation subgroup of any non-cocompact reflection group of Isom(H?)

admits a Dirichlet-Ford domain.

It will also be shown that the converse of Theorem 5.0.1 does not hold; we will
exhibit examples of Kleinian groups which do not admit DF domains. However, it is still
possible to extend the methods of Chapter 4 to test arithmetic maximal reflection groups

for congruence. We will show the following.
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Theorem 5.0.2. There exists an arithmetic mazimal reflection group in Isom(H?) which

18 mot congruence.

The discussion will be restricted to DF domains; as the discussion of Section 3.3
demonstrates, it is not unreasonable to suppose that Double Dirichlet domains share many

similar properties.

5.1 Dirichlet—Ford Domains

In this section, it will be shown that only one direction (the analogue of Theorem
3.2.1) of Theorem 3.0.1 holds when we consider Kleinian groups in the place of Fuchsian
groups. This is because the added dimension gives new possibilities for the shape of the
domains in question; in particular, they no longer have to glue up in a completely symmet-
rical way, although some symmetry remains. Examples will be given to demonstrate this

flexibility, which extends as far as having non-trivial cuspidal cohomology.
We begin by proving a result analogous to Theorem 3.2.1.

Theorem 5.1.1. Let Q C H? be a finite-sided, convex, non-compact hyperbolic polyhedron
satisfying the hypotheses of Andreev’s Theorem 2.5.1, and let G be the discrete group of

reflections in Q. Then G contains an index 2 Kleinian subgroup which admits a DF domain.

Proof. Suppose that Q is placed in upper half-space H? such that one of its faces M is
contained in a vertical plane. Let

G={T1,..., Tk, TM)
be a generating set for G. Let

I'= <7'M7'1,---;7'M7'k>
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be the index 2 subgroup. Let P = Q Uy Q. Let wy = x¢ + yot + 20J € M, for z5 > 0.
The claim is that wq is a Dirichlet center for I'. Fix a generator v; = 73;7;. Then the plane
P; fixed by 7; bisects wg and 7;(wp), and so 71, (P;), which by construction is a face of P,
bisects wg and 7;(wp). Furthermore, P; is the isometric sphere of ~;, and so P is a Ford

domain. 0

The next result provides a family of counterexamples to the analogue of Theorem
3.2.4 by exhibiting Kleinian groups which admit DF domains and do not have index 2 in a

reflection group.

Proposition 5.1.2. Let Q be an all-right hyperbolic polyhedron, with a vertex at oo, and
all vertices ideal. Let G be the group of reflections in Q. Then G contains a subgroup of

index 4 which admits a DF domain.

Proof. Since @ is all-right, the link of each vertex is a rectangle. Rotate @ in H? so that the
four vertical sides, which meet at the vertex at oo, each lie above vertical or horizontal lines
in C. Let H be a vertical side, V' a horizontal side, and 75 and 7 the respective reflections.
Let P = (QU7rgQ)Uty(QUTygQ). Then P is the union of 4 copies of (). Looking down
from oo on the floor of P, label by A the non-vertical face adjacent to the top-left vertex
and to the vertical face opposite H. Label any non-vertical faces adjacent to this face B.
Proceed to label every non-vertical face A or B, with no two adjacent faces sharing the same
label. The symmetry of P implies that this labeling is symmetric in both horizontal and
vertical directions. Define the subgroup I' as follows. Given a non-vertical side P; of P, if

P; has label A, let the element 747; belong to I'; if P; has label B, let 7, 7; belong to I'. If

73



H' is the face opposite H, and V' opposite V, let 7y 7y and 7y 7y belong to I'. Then P is

a DF domain for I'. O

Remark. Given a group I' constructed as in the above proof, note that I' is not an index
2 subgroup of the group of reflections in the polyhedron (Q U 75@). This is because the
reflection 7 will be absent from this group, preventing the construction of elements of I" of
the form 747;. The same is valid for the group of reflections in the polyhedron (Q U Q).
Furthermore, I' is not the rotation subgroup of any reflection group, as can be seen from

the fact that " possesses torus cusps.

Remark. The following is an alternative definition pointed out by Allcock. Given the
polyhedron @, color the faces white or black so that adjacent faces have different colors.
Then define a map ¢ : G — Z/27Z x 7/27 that sends all white reflections to (1,0) and all

black reflections to (0,1). Then the subgroup I' is the kernel of .

Since there is no direct analogue of Theorem 3.2.4 for Kleinian groups, the question
arises as to what, if anything, is implied about a Kleinian group by it having a DF domain.
For example, one might ask whether such groups must have trivial cuspidal cohomology.
The following example gives a Kleinian group which admits a DF domain, but which has
non-trivial cuspidal cohomology; that is, there exists a non-peripheral homology class of

infinite order in the first homology of the quotient space.

Example. Let I' < PSLy(C) be generated by the matrices

66D B (05 3

G D6 D-(F )
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foreach a € {1,2,14+4,2+4,2¢,1+ 24,2+ 2i,1 — 4,2 — i, —2i,1 — 2i,2 — 2i}, where a is the
complex conjugate of a. Then the isometric spheres of these matrices have centers at the
Gaussian integers {z + iy | =,y € Z} and radius % The square with vertices at :I:% + %z
is a Dirichlet domain for the action of I'sc. Let P be the intersection of the exterior of
all these isometric spheres with the chimney above the given rectangle. Then P is a DF
domain for I', with Dirichlet center any point of P above 0. Every dihedral angle of P is
5+ The quotient space H?3 /T has 14 boundary components; the cusp at oo gives a boundary
torus, and each of the 13 cusp cycles in C gives a (2,2,2,2) or a (2,4,4) sphere (see Section

2.3). Thus the peripheral homology has rank 1. Computation using Gap [19] gives that

H{(H3/T) has Q-rank 2, so there is infinite non-peripheral homology.

Remark. The cuspidal cohomology of this example has rank 1, but it can be modified to

give examples where this rank is arbitrarily high.

Remark. This example is arithmetic. To see this, observe that I" belongs to the normalizer

N(Ty(2)) of Ty(2) < PSLy(O1); this follows from the fact that

0 =1
v = V2
V2 0
belongs to this normalizer, and each of the generators can be written as the product of ~

with an element of I'g(2). Since I' has finite covolume, it must be a finite index subgroup of

an arithmetic group, and so it is itself arithmetic.

Remark. The quotient space of H? by this group is not a manifold, so one can thus ask
whether there exists another example which has non-trivial cuspidal cohomology, and which

is additionally torsion-free.

Although there does not appear to be a specific condition for a Kleinian group which
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is equivalent to having a DF domain, we can say something about a group which admits a
DF domain. We cannot always decompose an orientation-preserving isometry of H? into the
composition of two reflections, but Carathéodory [13] shows that we need at most four. If
v ¢ ', these can be taken to be v = 44 073 02 0y1, where 1 is reflection in the isometric
sphere Sy, 72 in the vertical plane R, bisecting S, and S,-1, and ~4 03 is rotation around

the vertical axis through the North pole of S -1.

Theorem 5.1.3. Suppose the Kleinian group I' admits a DF domain P. Then the planes
R, for side-pairings v € I'\I'ss of P, all intersect in a vertical azis. Furthermore, for each
such v, v40v3 = 1, and so each element of the corresponding generating set for I' has real

trace.

Proof. Let P be a Ford domain. Suppose there is some side-pairing 7 such that v, 0~y3 # 1.
By considering the North pole of S, and its image, the North pole of S,-1, we see that if
P were a Dirichlet domain, its center wy would have to be in the plane R.,. But given any
such choice of wy, one can find a point w € PN S, such that d(wy,w) # d(wo, y(w)). Thus
P is not a Dirichlet domain. Since each v € T\ T' is then simply the composition of two
reflections, it is the conjugate in PSLy(C) of an element of PSLy(R). It thus has real trace.

Since it is assumed that any element of ', is parabolic, these too have real trace.

Next suppose that the planes I, do not have a common intersection. Since we know that
v4 0v3 = 1, for a given v, the plane R, represents the set of potential Dirichlet centers. If
there is no common such center, P is not a Dirichlet domain. Thus if P is a DF domain,

the planes R, have a common intersection. O

The examples given earlier in this section give a flavor of the particular case with
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only two distinct, perpendicular planes R,. It is therefore possible for DF domains to
be more complicated than this. This theorem provides a useful criterion for having a DF
domain, which can be used to check known Ford domains. Observe that the vertical axis
of intersection of the planes R, must correspond to a Dirichlet center for the action of I'.
Thus we see that the figure-8 knot group [38], as well as the Whitehead link group and
the group of the Borromean rings [47] do not admit DF domains. Furthermore, the groups
obtained from a standard Ford domain in [48] cannot admit DF domains. Although in
some cases, with the right choice of Ford domain, one can generate congruence subgroups of
Bianchi groups using elements of real trace, the sides of the domain are identified in a way
similar to the corresponding Fuchsian congruence subgroup, and so these groups seldom

admit a DF domain.

5.2 Reflection Groups

In this section, we prove Theorem 5.0.2 by exhibiting an example of a maximal
arithmetic reflection group in Isom(H?) which is not congruence. This construction is very
much informed by the nature of the non-congruence examples found in Chapter 4; we first

recall how those are constructed, without reference to DF domains.

We may summarize the method for constructing non-congruence arithmetic max-
imal hyperbolic reflection groups in H? as follows: begin by considering maximal non-
cocompact arithmetic Fuchsian groups; restrict attention to those of genus zero, and which
are not themselves reflection groups, but which are, in some sense, “almost” reflection
groups; construct a subgroup of index 2 which is a reflection group, and maximal by the

small index; test this group for congruence.
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Though we have less information about hyperbolic reflection groups in H?, there is
no obstruction to carrying out a similar method there. In particular, we seek a maximal
non-cocompact arithmetic Kleinian group which admits a Ford domain with the following
property: all by two of the faces are paired with their reflection in a fixed vertical plane R;

and the remaining two sides are paired with themselves via order two rotations.

We begin by recalling that the analogues of PSLy(Z) which we will consider are
the Bianchi groups PSLy(0,), where d is a positive square-free integer, and Oy is the ring
of integers of the number fields Q(v/—d). It is known that the non-cocompact maximal
arithmetic Kleinian groups are precisely the normalizers N (I'g(J)) < PSLg(C) for (square-
free) ideals J < Oy (see Borel [8], Chinburg-Friedman [15], and Chapter 11 of Maclachlan—

Reid [28]).

Consider the group I'o(5) < PSL2(0O3), where Oy = Z[v/—2]. It consists of the

matrices

To(5) = {(5“6 Z)} < PSLy(0y).

In this case Oy is a principal ideal domain, and the ideal (5) is prime, so the normalizer

N(Ty(5)) is generated by I'g(5) and the involutions

1 .
(s )0 %)
\/5 0 I 0 7 I
where 1 = /—1. We now construct a Ford domain for this normalizer.

We begin by selecting a fundamental region for the stabilizer of co acting on C; we

choose the rectangle with vertices at :I:% and j:% + @ Sides of this are paired by the

R B C )

78

three isometries



Next we seek isometric spheres in this region; we find that the following isometries suffice:

A _1 (V5 ls [ =iv5 2iv/-2
[+ V=2)V5 _— (24V=2 1

B V5 —2(1\;5¢T2> ;L V5 —2(135\/—*%
”9‘<<1+F2>\@ V5 )’”9‘<<1—m>¢5 -5 )

Observe that 74, 5, Y6, 77 and =g pair their isometric spheres with their reflection
in the plane above the y-axis (so z = 0) - this can be seen most readily by observing that
in each case, the trace is real, and the diagonal entries are complex conjugates. In contrast,

~9 and 4 are involutions whose axes are as indicated in Figure 5.1 below.

Denote by @ the polyhedron which is that portion of the above Ford domain lying
above the rectangle with vertices at —%, —% + @, @ and 0 € C. Note that not all of
the dihedral angles of @ are submultiples of . Then let Q' = Q U~9Q. As above, we use
the relations of the side-pairings in N(I'g(5)) to check the dihedral angles of @’ and find
that here they are all submultiples of 7. We thus consider the group Fgf of reflections in

the side of @', and its orientation-preserving index 2 subgroup I'¢y.

We find that I'¢y is generated by the following elements:

Y15 V25 Y3 Vs V5 V65 V7> V85 V9Y95 VoV2 © Y9, Vo V3Y95 V9V5Y0-

Each isometry on this list is the composition of reflection in the corresponding face of @’
with reflection in the vertical plane z = 0. The claim now is that I/, which is an arithmetic

hyperbolic reflection group, is maximal and not congruence.

0 —-L
To see that I/ is maximal, observe that it contains v4 = ( V3 (\)/5)7 and that

this cannot belong to any other normalizer N(I'y(J)) for an ideal J < O, and hence Iy
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Figure 5.1: A Ford domain for N(I'¢(5))
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cannot be contained in any maximal arithmetic Kleinian group but N(T'g(5)). We observe

that this maximal group is not a reflection group, and hence that Fref is maximal.

To examine congruence, we set up the same diagram as we had for Fuchsian groups
in Chapter 3. Letting G = PSLy(O2) NT'gr =T'y(5) NT'gs, we find that G has index 52 in

PSL2(0O2), and we obtain a representation
©wa - PSLQ(OQ) — Sso.

This enables us to calculate that the orders of the images of the matrices

1 1 1 —2
6 1))
under the map ¢¢ are both equal to 5, an thus that the Z-level of G is 5. Since the ideal (5)
is prime in O, it follows that the Os-level of G is also (5). By the analogue of Wohlfahrt’s

Theorem given in Theorem 2.4.3, G is congruence if and only if G contains the principal

congruence subgroup I'(5). We have the following diagram.

ref
FQe/

We are given a formula for the index [PSLy(O2) : T'(5)] by Fine [17] and find that this index

is equal to I = 1550. By using Magma [9] we determine that the index of the kernel of ¢¢
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induced by the action on cosets is m = 63897600. We therefore conclude that G, and hence

I‘rQe,f, is not congruence.
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