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This thesis investigates the geometric and topological constraints placed on the

quotient space of a Fuchsian or Kleinian group by requiring that the group admits a funda-

mental domain which is simultaneously a Ford domain and a Dirichlet domain. In the case

of Fuchsian groups, a direct correspondence with reflection groups is proved, and this result

is used to first find explicitly the 23 non-cocompact arithmetic maximal hyperbolic reflec-

tion groups in Isom(H2), and subsequently to test whether these groups are all congruence.

In the case of Kleinian groups, similar results are shown, and some examples of reflection

groups are considered.
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Chapter 1

Introduction

The modular group (P)SL2(Z) is a well known example of a Fuchsian group acting

on the upper half-plane model for the hyperbolic plane H2. This action admits a triangular

fundamental domain P with vertices located at ρ = −1

2
+

√
−3

2
, −ρ and ∞. This domain

arises out of two common constructions of fundamental domains for Fuchsian groups: it

is both a Ford domain and a Dirichlet domain for the action of PSL2(Z). One can also

view P as the union of the triangle T with angles
π

2
,
π

3
and 0 located at i, ρ and ∞

respectively with its reflection in the imaginary axis; thus, PSL2(Z) can be viewed as the

orientation-preserving index two subgroup of the group generated by reflections in the sides

of P .

In this thesis, it is shown that these facts are not unrelated: in fact, there is a

bijective correspondence between Fuchsian groups which admit such a fundamental domain

and discrete hyperbolic reflection groups, which follows from this result.

Theorem 3.0.1. A Fuchsian group Γ admits a fundamental domain which is simultaneously

a Dirichlet domain and a Ford domain if and only if it is the orientation-preserving index

two subgroup of a reflection group Γref.

This theorem gives a way of identifying reflection groups via their orientation-

preserving subgroups. In particular, given a specific fundamental domain with the stated
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property, one obtains a specific polygon in H2 which defines the reflection group. In this

thesis, this correspondence will be exploited in order to determine explicitly the polygons

defining certain reflection groups.

Discrete reflection groups of spherical, Euclidean and hyperbolic space have been

the subject of much study. In the present work, we will focus on finite covolume hyperbolic

reflection groups. It was shown by Prokhorov [36] (in the non-cocompact case) and Vinberg

[45] (in the cocompact case) that there are no finite covolume hyperbolic reflection groups

above a certain dimension (respectively, 996 and 30).

It is possible to specialize further, and consider only arithmetic reflection groups,

which necessarily have finite covolume. A program of work that includes Nikulin [29, 30, 31],

Long–Maclachlan–Reid [27], and Agol [1], recently resulted in the following theorem, shown

independently by Agol–Belolipetsky–Storm–Whyte [2] and Nikulin [33].

Theorem. There are finitely many arithmetic maximal hyperbolic reflection groups.

This result is obtained from the bounds for the dimensions in which examples

may exist, combined with a bound on the possible number in each dimension. Given this

result, the question naturally arises of how many such groups exist. This has been partially

answered in dimension 2 by Nikulin [32] (and see also Allcock’s enumeration [3]), where

there are 122 defined over Q. To this end, Agol, Belolipetsky, Storm and Whyte (see also

Belolipetsky [7]) remark that the counting process could be made more effective under

certain hypotheses, and, with this in mind, posed the question:

Question. Is each arithmetic maximal hyperbolic reflection group also congruence?
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This thesis answers this question in the case of non-cocompact groups in dimension

two. More precisely, we prove:

Theorem 4.3.3. Of the 23 non-cocompact arithmetic maximal reflection groups belonging

to Isom(H2), fifteen are congruence, and eight are not.

It is possible to consider all of the above in the case of dimension three, and Kleinian

groups. It will be shown that the analogue of Theorem 3.0.1 does not hold in full, and in

particular that a wider variety of Kleinian groups can admit such a fundamental domain.

However, it will be demonstrated that the techniques used to prove all of the above can still

be brought to bear to consider examples of non-cocompact arithmetic maximal reflection

groups belonging to Isom(H3). This will lead to the following.

Theorem 5.0.2. There exists an arithmetic maximal reflection group in Isom(H3) which

is not congruence.

This thesis is organized as follows. Chapter 2 collects various background material

and preliminaries which will be relevant. Chapter 3 is devoted to the proof of Theorem

3.0.1 above, and this theorem is applied to the non-cocompact arithmetic maximal reflec-

tion groups of Isom(H2) in Chapter 4, leading to Theorem 4.3.3. In Chapter 5, various

results pertaining to the above concepts in dimension three are stated and proved, including

Theorem 5.0.2.
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Chapter 2

Background

In this chapter, we will review some preliminaries on hyperbolic geometry and

arithmetic reflection groups.

2.1 Hyperbolic Space

By n-dimensional hyperbolic space Hn we mean the unique simply-connected Rie-

mannian n-manifold with constant sectional curvature −1. We commonly study this space

by using standard models: the upper half-space, Poincaré ball, hyperboloid, and projective

or Klein models are perhaps most prevalent (see Ratcliffe [37], Chapter 4, for more). In the

following, we will predominantly use the upper half-space model.

2.1.1 The Upper Half-Space Model

Let Un denote the subset of Rn of points whose nth coordinate is positive, that is,

Un := {(x1, . . . , xn) ∈ Rn | xn > 0} .

We endow Un with the metric

ds2 =
dx2

1 + . . .+ dx2
n

x2
n

.

It is a standard fact that (Un, ds) is isometric to Hn. The boundary ∂Hn = Rn−1 ∪ {∞}

is homeomorphic to Sn−1 and will be referred to as the boundary sphere. This model is
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conformal, and geodesic k-planes are vertical or the northern hemispheres of k-spheres Sk

with their equators Sk−1 ⊂ Rn−1. Such planes meet the boundary sphere at right angles.

A horizontal plane {(x1, . . . , xn) ∈ Rn | xn = c} is called a horosphere based at ∞

(or, in dimension two, a horocycle based at ∞). It is the boundary of the corresponding

horoball based at ∞. It is well known that on a horosphere or horocycle the hyperbolic

metric on Hn restricts to a Euclidean metric on Rn−1.

2.1.2 Isometries

We may generate the group of isometries Isom(Hn) by reflections in geodesic (n−1)-

dimensional hyperplanes. Since these do not preserve orientation, the group Isom+(Hn) of

orientation-preserving isometries is generated by products of pairs of reflections. In the case

of Isom+(H2), this group is the group of real linear fractional transformations, and can be

identified with PSL2(R) via the correspondence(
a b
c d

)
←→ z 7−→ az + b

cz + d
.

In the same way, we have that Isom+(H3) ∼= PSL2(C). In this case, we identify H3

with the set of Hamiltonian quaternions

{
x0 + x1i+ x2j + x3k | x0, x1, x2, x3 ∈ R, i2 = j2 = k2 = ijk = −1

}
with x3 = 0 and x2 > 0. The action above extends to this setting, where by dividing

by (cz + d) is interpreted as multiplying by the quaternionic inverse. One checks that it

preserves the upper half-space and all distances.

Isometries belonging to PSL2(R) and PSL2(C) fall into three distinct categories,

based on their fixed points. These categories can be distinguished by the trace of the
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matrix. Let γ be a non-trivial element of PSL2(R) or of PSL2(C).

• If the action of γ fixes a point of hyperbolic space, then γ is called elliptic. In this

case, the trace is real and |tr γ| < 2.

• If the action of γ fixes no points of hyperbolic space and exactly one point of the

boundary sphere, then γ is called parabolic. In this case, tr γ = 2.

• In all other cases, γ fixes no points of hyperbolic space and two distinct points of the

boundary sphere. In this case, γ is called hyperbolic. Here the trace, if real, satisfies

|tr γ| > 2. If γ ∈ PSL2(C) we sometimes distinguish between elements with real trace

and those with non-zero imaginary part; the latter are sometimes called loxodromic.

2.2 Fuchsian Groups

A Fuchsian group Γ is a discrete subgroup of PSL2(R). The action of Γ on H2

then admits a connected fundamental domain. If this has finite area with respect to the

hyperbolic metric, then we say Γ has finite coarea. It is known [20] that such a group is

then also finitely presented, and admits a fundamental domain with finitely many sides.

For a given finitely generated Fuchsian group Γ, the signature (g;n1, . . . , nt;m; f) of

Γ records the topology of the quotient space H2/Γ, where g is the genus, t is the number of

cone points of orders n1, . . . , nt respectively, m is the number of cusps, and f is the number

of infinite area funnels.

2.2.1 Fundamental Domains

Given a finite-sided fundamental domain P for the Fuchsian group Γ, one can

recover a presentation for the group, and hence information about its signature, from it by
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using the Poincaré Polyhedron Theorem. To apply it, we require the following information:

the number of sides m of P ; the way in which the sides of P are paired; and the angle at

each vertex of P . Given this we divide the vertices of P into equivalence classes, where two

vertices are equivalent if they are identified by a side-pairing gi or sequence of side-pairings.

Each equivalence class is called a vertex cycle, and each vertex cycle gives rise to some word

w = gk . . . g1 in the side-pairings with the property that, for some vertex v, w fixes v, and

the sum of the angles in the cycle is
2π

nw
for nw ∈ N ∪ {∞}. A presentation for Γ is then

Γ ∼= 〈g1, . . . , gm | wnw = 1 for each word w〉 .

If nw =∞, then the vertex is ideal, and this corresponds to a cusp.

2.2.2 Dirichlet Domains

Though there is no “canonical” choice of a fundamental domain for a given Fuchsian

group Γ, there are some standard methods to construct one. Given a point z0 ∈ H2 not

fixed by the action of any non-trivial element of Γ, the Dirichlet domain for Γ centered at

z0 is defined to be

{
x ∈ H2 | d(x, z0) ≤ d(x, α(z0)) ∀ 1 6= α ∈ Γ

}
.

It is an intersection of closed half-spaces. We generically expect the resulting domain to

change with the choice of z0 [16].

One can give an alternative definition of Dirichlet domain [6]. Given the same

center z0 and a non-trivial γ ∈ Γ, there is a unique decomposition γ = γ2γ1, where γi

denotes reflection in the geodesic Li, and we require that γ2(z0) = z0, or z0 ∈ L2. Then

the assumption that γ(z0) 6= z0 means that z0 /∈ L1, so we may define Hγ to be the half-

7



plane bounded by L1 and containing z0. The Dirichlet domain is then the intersection of

all half-planes Hγ .

2.2.3 Ford Domains

Suppose now that Γ contains parabolic elements. The above allows us to define

a generalized Dirichlet domain by taking our center to be a parabolic fixed point on the

boundary ∂H2. We will typically conjugate Γ in PSL2(R) so that this center is placed at

∞ in the upper half-plane. In this case, the reflections γ1 and γ2 are well-defined when

γ(∞) 6=∞, and then the line L1 is called the isometric circle of γ, which we will denote by

Sγ . However, the reflections are not uniquely determined for any parabolic isometry fixing

∞. To account for this, we define a Ford domain [18] to be the intersection of the region

exterior to all isometric circles with a fundamental domain for the action of the parabolic

subgroup stabilizing ∞, Γ∞ < Γ.

Given an isometry γ =

(
a b
c d

)
with c 6= 0, the isometric circle Sγ can be read off

from the matrix representation: it has center −d
c

and radius
1

|c|
.

The following result is well known as Shimizu’s Lemma [43].

Theorem 2.2.1 (Shimizu). Suppose that a Fuchsian group contains the elements

A =

(
1 1
0 1

)
, X =

(
a b
c d

)
,

with c 6= 0. Then |c| ≥ 1.

This result is proved by assuming that 0 < |c| < 1 and exhibiting a sequence of

elements which converge to the identity, thereby violating discreteness. Note that Shimizu’s
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Lemma shows that in any Fuchsian group containing A, the radius of an isometric circle

cannot exceed 1.

2.3 Kleinian Groups

The group of orientation-preserving isometries Isom+(H3) of the upper half-space

model of H3 can be identified with PSL2(C). A Kleinian group is a discrete subgroup of

this isometry group. The definitions of Dirichlet domain and Ford domain carry over to this

situation. A necessary, but not sufficient, requirement for the Ford domain to be cofinite is

that Γ∞ contain a copy of Z2.

If a Kleinian group Γ is non-cocompact but of finite covolume, then the action of

Γ on the boundary sphere C ∪ {∞} gives rise to at least one point which is fixed by two

non-conjugate (in Γ) parabolic isometries. Conjugating Γ in PSL2(C) so that this point

is moved to ∞, we see that the subgroup Γ∞ of elements of Γ fixing ∞ is an orientation-

preserving discrete group of isometries of the Euclidean plane R2. If Γ∞ is torsion-free then

it is isomorphic to Z2, and corresponds to a torus boundary component of the quotient space

H3/Γ which contributes non-trivial rational homology. If Γ∞ has torsion then it corresponds

to a cusp which is properly covered by a torus; there are four possibilities for such a cusp: a

sphere with four cone points of order 2 S2(2, 2, 2, 2); or three spheres with three cone points

S2(2, 3, 6), S2(2, 4, 4), and S2(3, 3, 3). Each of these four cusps corresponds to a spherical

boundary component of the quotient orbifold, which contributes no rational homology.

9



2.4 Arithmetic Groups

There is a substantial literature on the theory of arithmetic subgroups of algebraic

groups, and in particular of the isometry groups of hyperbolic space Hn. For the purposes of

this thesis, only dimensions two and three will be discussed in detail, and so our groups will

belong to PSL2(R) and PSL2(C). Additionally, all arithmetic groups will be non-cocompact.

As such, in this section we introduce only those definitions and results that pertain to non-

cocompact arithmetic Fuchsian and Kleinian groups.

2.4.1 Arithmetic Fuchsian Groups

A non-cocompact Fuchsian group Γ < PSL2(R) is called arithmetic if it is commen-

surable with the group PSL2(Z); that is, after possibly conjugating by some α ∈ PSL2(R),

the intersection αΓα−1∩PSL2(Z) has finite index in both PSL2(Z) and αΓα−1. Notice that

if Γ is arithmetic, it is necessarily of finite covolume.

Such a group is then called congruence if it contains some principal congruence

subgroup

Γ(N) = P

{(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1, b ≡ c ≡ 0 mod N

}
.

If this is the case, then the group is said to have level N . Note that the group Γ(N) is the

kernel of the natural projection

ϕN : PSL2(Z)→ PSL2(Z/NZ)

given by reducing each entry modulo N . As such, each principal congruence subgroup is

normal in PSL2(Z), and has finite index.

The following related groups are also frequently considered. Let Γ0(N) denote the
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preimage under ϕN of the group of upper-triangular matrices in PSL2(Z/NZ); i.e.,

Γ0(N) = P

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 mod N

}
.

Note that we have the inclusion Γ(N) < Γ0(N). Since we will consider Ford domains in

what follows, it is useful to note that Ford domains for each group Γ0(N) were found by

Lascurain Orive [26].

In contrast to other groups (such as (P)SLn(Z) for n ≥ 3), it is known that not

every arithmetic group commensurable with PSL2(Z) is congruence. It is possible to invoke

a number of results in order to test a given group for congruence. In order to do so we

widen the definition of level to make sense for non-congruence groups.

Definition. A finite index subgroup G < PSL2(Z) has level N if it contains the normal

closure of the element (
1 1
0 1

)N
=

(
1 N
0 1

)
in PSL2(Z), and N is minimal with this property. Equivalently, letting PSL2(Z) act on the

coset decomposition induced by G, one obtains a representation

ϕG : PSL2(Z)→ Sk

of PSL2(Z) into the symmetric group Sk on k letters, where k = [PSL2(Z) : G]. The level

of G is then defined to be the order of the element

ϕG

((
1 1
0 1

))
in Sk.

Given this wider definition, the following theorem of Wohlfahrt [49] provides a test

for congruence.
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Theorem 2.4.1 (Wohlfahrt). The group G is congruence if and only if it contains the

principal congruence subgroup Γ(N), where N is the level of G.

Note that there is a simple formula to calculate the index [PSL2(Z) : Γ(N)]; it is

[PSL2(Z) : Γ(N)] =


N3

2

∏
p|N

(
1− 1

p2

)
for N > 2,

6 for N = 2,

where p ranges over primes dividing N . We remark also that in this setting, Hsu [24] gives

an algorithm that one can run to test a group for congruence.

Remark. An alternative definition of a congruence subgroup is that a group is congru-

ence if it contains some PSL2(R)-conjugate αΓ(N)α−1 of a principal congruence subgroup

Γ(N). For groups commensurable with PSL2(Z), we must have that α ∈ PGL2(Q), the

commensurator of PSL2(Z). The following lemma shows that in the present situation, this

is equivalent to the definition given above.

Lemma 2.4.2. Any PGL2(Q)-conjugate of Γ(N) contains some principal congruence sub-

group Γ(N ′).

Proof. We refer to Chapter III of Lang [25] for the outline of the argument. If α ∈ GL2(Q),

then we may clear denominators if necessary to ensure that α ∈ PGL2(Q) has integer entries.

We set the determinant detα = D ∈ Z. If we write

α =

(
x y
z w

)
,

and let A ∈ Γ(DN), so we have that each entry of A − I is 0 mod DN , then it can be

checked that each entry of

α(A− I)α−1 =
1

D

(
x y
z w

)(
aDN bDN
cDN dDN

)(
w −y
−z x

)
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is 0 mod N . As such, we have that αAα−1 ∈ Γ(N), and hence αΓ(DN)α−1 ⊂ Γ(N). From

this it follows that the inverse conjugation α−1Γ(N)α contains Γ(DN), as required.

It will be useful to understand the maximal groups in which arithmetic groups can

be contained. Define Γ to be a maximal arithmetic group if it is not properly contained

in another (arithmetic) Fuchsian group. It is known by Borel [8] that there are infinitely

many maximal arithmetic Fuchsian groups in the commensurability class of PSL2(Z); these

groups have the form N(Γ0(n)), where N denotes the normalizer in PSL2(R), and n is a

square-free integer. It is due to Ogg [34] that only finitely many of these maximal groups are

of genus zero. The elements of N(Γ0(n)) are well understood by work of Helling ([22, 23]);

they are of the form a√q
b
√
q

cn
√
q

d
√
q

 ,

where a, b, c, d ∈ Z, q ≥ 1 is an integer dividing n, and adq − bcn

q
= 1.

There are deep relations between the number theory of an arithmetic Fuchsian

group and its action on the hyperbolic plane (and therefore the geometry of the quotient

space). For example, if λ1 denotes the first non-zero eigenvalue of the discrete spectrum of

the Laplacian operator, then it is known [44] that the purely arithmetic condition of being

congruence implies that

λ1 ≥
3

16
.

On the other hand, Buser and Sarnak constructed examples of congruence Fuchsian groups

with index two subgroups having λ1 arbitrarily small [11].

The value of λ1 is often difficult to calculate explicitly. As such, it is useful to
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estimate it via Cheeger’s isoperimetric constant. This is defined for a finite area surface M

as

h(M) = inf
S

Length(S)

min(Area(A),Area(B))

where S is a union of geodesic segments which separates M into two connected components

A and B. We have the following bounds, due respectively to Cheeger [14] and Buser [12]:

h2(M)

4
≤ λ1(M) ≤ 2h(M) + 10h2(M).

2.4.2 Arithmetic Kleinian Groups

The construction of arithmetic Kleinian groups is analogous to that of Fuchsian

groups. Let d be a square-free integer, k = Q(
√
−d) be a number field, and Od be the ring

of integers of k. Then the corresponding analogue of PSL2(Z) is the Bianchi group

PSL2(Od) =

{(
a b
c d

)
| a, b, c, d,∈ Od, ad− bc = 1

}
.

A non-cocompact Kleinian group Γ < PSL2(C) is called arithmetic if it is commensurable

with some Bianchi group PSL2(Od). It is known that the Bianchi groups have finite covol-

ume, and so again we find that non-cocompact arithmetic Kleinian groups must have finite

covolume.

An arithmetic Kleinian group Γ is called congruence if it contains some principal

congruence subgroup

Γ(I) = P

{(
a b
c d

)
∈ SL2(Od) | a ≡ d ≡ 1, b ≡ c ≡ 0 mod I

}
,

where I < Od is an ideal. These groups are again normal and of finite index. We similarly

define the related groups

Γ0(I) = P

{(
a b
c d

)
∈ SL2(Od) | c ≡ 0 mod I

}
.
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As in the case of PSL2(Z), there exist non-congruence arithmetic groups commen-

surable with the Bianchi groups. We extend the notion of level thus (see Petersen [35]):

Definition. Suppose that we are given a fixed Bianchi group PSL2(Od) and a finite index

subgroup G < PSL2(Od). Then G has Z-level N if G contains the normal closure of the

group generated by matrices of the form

{(
1 Nx
0 1

)
| x ∈ Od

}

in PSL2(Od), and N is the minimal positive integer with this property. We say that G has

Od-level I (for an ideal I < Od) if I is maximal with the property that the normal closure

of the group generated by (
1 y
0 1

)
,

for all y ∈ I, is contained in G.

We have the following extension of Wohlfahrt’s Theorem (Theorem 2.4.1) which

appears in Petersen [35]. We also note that Scarth’s thesis proves it for a wider class of

groups ([42], Corollary 5.2.3).

Theorem 2.4.3. Given an imaginary quadratic number field Q(
√
−d) of class number one

and a finite index subgroup G < PSL2(Od), then G is congruence if and only if it contains

the principal congruence subgroup Γ(I), where I is the Od-level of G.

As in the Fuchsian case, we are able to compute a representation

ϕG : PSL2(Od)→ Sh,

where h = [PSL2(Od) : G], and the orders of the images ϕG(A) and ϕG(B). Although this
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does not necessarily give the Od-level of G, it is enough to tell us the Z-level, which will

suffice for our purposes.

Define Γ to be a maximal arithmetic Kleinian group if it is not properly contained

in another Kleinian group. Given some Bianchi group PSL2(Od), there are infinitely many

maximal arithmetic Kleinian groups in its commensurability class, and these have the struc-

ture N(Γ0(I)), where N denotes normalizer in PSL2(C), and I is a square-free ideal ([8],

[15]).

A Fuchsian group has genus zero if and only if it is normally generated by parabolic

elements (which correspond to cusps) and elliptic elements (which correspond to cone

points); as such, quotienting out parabolics and abelianizing the result leaves only elements

of finite order. This process can also be carried out for a Kleinian group: following Baker

[5], we define a Kleinian group Γ to have trivial cuspidal cohomology if the rank

dimQ((Γ/UΓ)ab ⊗Z Q)

is equal to zero, where UΓ is the group generated by parabolic elements of Γ. Topologically,

this is the rank of the rational homology which is not contributed by the boundary of the

manifold or orbifold H3/Γ. It is known ([5], [21], [41], [46], [50]) that finitely many of the

Bianchi groups have trivial cuspidal cohomology.

2.5 Reflection Groups

A hyperbolic reflection group Γref < Isom(Hn) is the group generated by reflections

in a hyperbolic polyhedron Q ⊂ Hn. It is assumed such groups are discrete. We say Γref is of

finite covolume if Q has finite volume. A reflection group Γref is not orientation-preserving,
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but it admits an index two subgroup Γ which is, for example by considering the group

generated by products of pairs of the generating reflections; this subgroup is often called

the rotation subgroup of Γref.

In the case of dimension two, it is known that the requirement that Γref be discrete

is equivalent to the polygon Q having all angles equal to submultiples of π (where the

convention is that 0 =
π

∞
, and a vertex with this angle is an ideal vertex). In higher

dimensions, this condition on the dihedral angles between the bounding hyperplanes is a

necessary, but not sufficient, condition for discreteness. For example, Andreev’s Theorem

[4] describes the picture for compact polyhedra in three dimensions (see also [40] for an

alternative proof and Rivin [39] for the non-compact case):

Theorem 2.5.1 (Andreev). If P is a compact, finite-sided hyperbolic polyhedron with di-

hedral angle αi at each edge ei, then the following conditions hold:

1. For each i, αi > 0;

2. If the three edges ei, ej, and ek meet at a vertex, then αi + αj + αk > π;

3. If there exists a prismatic 3-circuit intersecting ei, ej, and ek, then αi +αj +αk < π;

4. If there exists a prismatic 4-circuit intersecting ei, ej, ek and el, then αi+αj+αk+αl <

2π;

5. For a quadrilateral face with edges enumerated successively e1, e2, e3, e4, and e12,

e23, e34, e41 are such that e12 is the third edge meeting at the vertex where e1 and e2

intersect (and similarly for other eij), then

(a) α1 + α3 + α12 + α23 + α34 + α41 < 3π; and
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(b) α2 + α4 + α12 + α23 + α34 + α41 < 3π.

Moreover, any abstract polyhedron satisfying the above can be realized as a compact hyperbolic

polyhedron in H3, and any P satisfying the conditions is unique up to isometries of H3.

We define an arithmetic hyperbolic reflection group to be a reflection group belong-

ing to Isom(Hn) which is commensurable with a discrete, arithmetic group of orientation-

preserving isometries. Such a group is maximal if it is not properly contained in another

such group. It was proved by Agol, Belolipetsky, Storm, and Whyte [2] and Nikulin [32]

that there are only finitely many arithmetic maximal hyperbolic reflection groups; it is of

interest to ask how many there are in total.

In their paper, Agol, Belolipetsky, Storm and Whyte argue as follows. Each maximal

reflection group corresponds to a maximal arithmetic isometry group, obtained by including

in the group the symmetries of the polyhedron Q. It is known that above dimension two,

the covolumes of these groups are discrete, and that there are only finitely many below a

given bound. Therefore an upper bound for the volume of the polyhedron gives an upper

bound on the number of possible reflection groups in the given dimension.

The existence of this bound implies the finiteness of the set of groups in question.

However, in order to compute the number, it would be helpful to improve the current bound.

If the groups were congruence, the additional information one would obtain regarding the

first eigenvalue of the Laplacian discussed above would be one step in this direction, since

this would provide a lower bound on λ1 in all dimensions by Burger-Sarnak [10]. It is known

that if the group is maximal as an arithmetic group (and not just as a reflection group), then

it is congruence. It is therefore reasonable to ask whether all arithmetic maximal hyperbolic
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reflection groups are congruence, and, if not, whether one can find a universal lower bound

on their values of λ1.
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Chapter 3

Dirichlet–Ford Domains

The main goal of this chapter is to prove the following theorem.

Theorem 3.0.1. A Fuchsian group Γ admits a fundamental domain which is simultaneously

a Dirichlet domain and a Ford domain if and only if it is the rotation subgroup of a reflection

group Γref.

3.1 Preliminaries

Let Γ be a non-cocompact Fuchsian group. We begin by stating the definition of

Dirichlet–Ford domain.

Definition. A Dirichlet–Ford domain, or a DF domain, is a fundamental domain for Γ

which is both a Dirichlet domain for some center z0 and a Ford domain for some choice of

a fundamental region for Γ∞.

To see that DF domains exist, consider the example of PSL2(Z). Constructing the

Dirichlet domain centered at z0 = 2i (or in fact any point yi on the imaginary axis for y > 1)

gives rise to the well-known fundamental domain for PSL2(Z) which is an ideal triangle P

with vertices at ρ = −1

2
+

√
−3

2
, −ρ =

1

2
+

√
−3

2
and ∞. This fundamental domain P can

also be obtained as a Ford domain: it suffices to consider the isometric circles of radius 1,

centered at each integer on the real line, and take the vertical strip between −1

2
and

1

2
as
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a fundamental region for

Γ∞ =

〈(
1 1
0 1

)〉
.

Thus P is a DF domain for PSL2(Z).

We will make use of the following two standard theorems (see Ratcliffe [37], Chapter

7).

Theorem 3.1.1. Let G be a discrete reflection group with respect to the polygon Q. Then

all dihedral angles of Q are integer submultiples of π, and if gS and gT are reflections in

adjacent sides S and T of Q meeting with angle
π

k
, then gSgT has order k.

Theorem 3.1.2. Let Q be a finite-sided convex hyperbolic polygon of finite volume, all of

whose angles are integer submultiples of π. Then the group G generated by reflections of H2

in the sides of Q is a discrete reflection group.

3.2 Reflection Groups

We begin by proving the following, one direction of Theorem 3.0.1.

Theorem 3.2.1. If Γref is the discrete group generated by reflections in a finite-sided, finite

area, non-compact polygon Q, then the rotation subgroup Γ of Γref admits a DF domain.

Proof. Since Q is not compact, it has at least one ideal vertex. Suppose this vertex is placed

at ∞. Then Q has two vertical sides which meet at ∞, contained in vertical geodesics L

and M respectively, and a finite number k of non-vertical sides S1, . . . , Sk. If σi, 1 ≤ i ≤ k,

denotes the reflection in the geodesic S̃i in which the ith side is contained, and σL and σM

denote reflections in L and M respectively, then

{σ1, . . . , σk, σL, σM}
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constitutes a generating set for Γref. Let P = Q ∪ σM (Q) denote the union of Q and its

reflection in the vertical side M . We wish to show that P is a fundamental domain for Γ,

the rotation subgroup of Γref, and further, that P is a DF domain.

The rotation subgroup Γ consists of all of the elements of Γref which preserve ori-

entation; i.e. those elements which consist of an even number of reflections. It is generated

by products of two reflections. Consider the set

S = {σMσ1, . . . , σMσk, σMσL} .

This is a generating set for Γ, because, given any pair of reflections σi, σj , we have

σiσj = σi(σMσM )σj = (σiσM )(σMσj) = (σMσi)
−1(σMσj).

For each i including i = L, the generator σMσi identifies Si with σM (Si), because σi fixes

Si pointwise. Thus the set S forms a set of side-pairings of P . Since σM /∈ Γ, no two points

of P̊ can be identified by elements of Γ, but each side of P is identified with another. Thus

P is a fundamental domain for Γ.

Lemma 3.2.2. The polygon P is a Dirichlet domain for Γ.

Proof. Let z0 ∈M ∩ P̊ be any point interior to P which lies on the vertical geodesic M . Fix

some side Si of P . Then S̃i bisects z0 and σi(z0), and so σM (S̃i) bisects σM (z0) = z0 and

σMσi(z0). But, by construction, σM (Si) is itself a side of P . Note that this holds equally

for i = L. This shows that P contains a Dirichlet fundamental domain for Γ; but since we

know that P is a fundamental domain, it shows that P is itself a Dirichlet domain.

Lemma 3.2.3. The polygon P is a Ford domain for Γ.
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Proof. For each i, 1 ≤ i ≤ k, the side Si is paired with σM (Si) by the generator σMσi. Since

σi fixes S̃i pointwise and σM is a Euclidean isometry, σMσi acts as a Euclidean isometry

on S̃i. Furthermore, σMσi sends σi(∞) 6= ∞ to ∞, and thus is not itself a Euclidean

isometry. This is enough for us to conclude that S̃i is the isometric circle of σMσi. A similar

argument shows that σM (S̃i) is the isometric circle for (σMσi)
−1 = σiσM . The parabolic

element σMσL pairs L with σM (L). Thus P is defined by isometric circles, and so P contains

a Ford domain for Γ. Since P is a fundamental domain, it must be a Ford domain.

The combination of Lemmas 3.2.2 and 3.2.3 completes the proof of Theorem 3.2.1.

Remark. Notice that this construction, when combined with the Poincaré Polygon Theo-

rem, provides a presentation for the group Γ. If we suppose that S1 is the side adjacent to

the vertical geodesic M (and so Sk is adjacent to L), that the angle between Si and Si−1

is
π

ni
(where, for present purposes, M = S0 and L = Sk+1), and for simplicity we denote

τi = σMσi, then

Γ ∼=
〈
τ1, . . . , τk, τL | (τ1)n1 , (τ2τ

−1
1 )n2 , . . . , (τkτk−1)nk , (τLτ

−1
k )nk+1

〉
,

where if ni = ∞ (and thus the corresponding vertex is ideal), we delete the relation

(τiτ
−1
i−1)∞.

We now prove the other direction of Theorem 3.0.1.

Theorem 3.2.4. If the Fuchsian group Γ admits a DF domain, then it is the rotation

subgroup of the group generated by reflections in the sides of a polygon Q.
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Before commencing the proof, we will prove two elementary but important lemmas.

The first is stated as an exercise in Beardon [6], section 9.6.

Lemma 3.2.5. Any vertex cycle on the boundary of a Ford domain P is contained within

a horocycle based at ∞.

Proof. Fix a vertex v. By construction of P , v lies on or exterior to all isometric circles,

and necessarily lies on at least one. We first consider a γ ∈ Γ such that v /∈ Sγ . Then v lies

exterior to Sγ . Recalling the decomposition of γ = γ2γ1 into two reflections, where γ1 is

reflection in Sγ and γ2 fixes ∞, we observe that γ1 sends v to a point interior to Sγ . Then,

since γ2 sends Sγ to Sγ−1 , it sends γ1(v) to a point interior to Sγ−1 (see Figure 3.1). It

follows that γ(v) cannot be a vertex of P .

Now suppose that v ∈ Sγ . Then γ1 fixes Sγ pointwise, and hence fixes v. Since γ2

is reflection in a vertical line, it necessarily preserves the imaginary part of v, proving the

lemma.

Remark. From the argument above, it follows that when we wish to find the images of a

vertex v of P under side-pairings of P , it suffices to consider those side-pairings γ such that

v ∈ Sγ .

Remark. The lemma holds for any point on the boundary of the Ford domain P . For our

purposes, it will be enough to have it for the vertices of P .

The second lemma can be found in, for example, Greenberg [20], p. 203. Since the

proof is simple application of the definition of a Dirichlet domain, we include it here.
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Lemma 3.2.6. Let P be a Dirichlet domain for Γ with center z0. Let 1 6= γ ∈ Γ and

suppose that z, γ(z) ∈ ∂P ∩H2. Then dH(z, z0) = dH(γ(z), z0).

Proof. This is an application of the definition of a Dirichlet domain stated above. Specifi-

cally, setting x = z and α = γ−1 yields the inequality

d(z, z0) ≤ d(z, γ−1(z0)) = d(γ(z), z0),

the latter equality holding because γ is an isometry. Setting x = γ(z) and α = γ now gives

d(γ(z), z0) ≤ d(γ(z), γ(z0)) = d(z, z0).

Combining these two inequalities gives the required equality.

We will now use these two lemmas to prove Theorem 3.2.4.

Proof. Suppose P is a DF domain for Γ. We will show that P has reflective symmetry about

a vertical line M , and furthermore that the side-pairings of P pair points of ∂P with their

reflections in M .

Suppose that we have conjugated Γ so that Γ∞ is generated by

A =

(
1 1
0 1

)
.

Since P is a DF domain, it is contained in a Dirichlet fundamental region for Γ∞, which is

a vertical strip {
z ∈ H2 | x0 ≤ Re(z) ≤ x0 + 1

}
for some x0 ∈ R. By the assumption that Γ be finitely generated, we see that above a

certain height, there are no sides of P besides the vertical lines with real parts x0 and
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x0 + 1 respectively. Shimizu’s Lemma (see Theorem 2.2.1) tells us that the radii of the

isometric circles Sγ cannot exceed 1, and hence that this height is at most 1. Consider a

point z = x0 +iy ∈ ∂P . Choosing γ = A, we see that A(z) = x0 +1+iy is another boundary

point of P . We apply Lemma 3.2.6 to z and A(z), and deduce that the Dirichlet center

z0 of P lies equidistant from these points. Since they have the same height y, the locus of

equidistant points is the vertical line bisecting them. We conclude that Re(z0) = x0 + 1
2 .

Now suppose that v ∈ H2 is a vertex of P , and γ ∈ Γ is a side-pairing such that γ(v)

is another vertex of P . By the argument in the proof of Lemma 3.2.5, v ∈ Sγ . Then Lemma

3.2.5 tells us that Im(γ(v)) = Im(v), and Lemma 3.2.6 tells us that dH(γ(v), z0) = dH(v, z0).

We consider the two sets {
z ∈ H2 | Im(z) = Im(v)

}
and {

z ∈ H2 | dH(z, z0) = dH(v, z0)
}
.

The former is the horizontal line through v, and the latter a circle with Euclidean center

located vertically above z0. In particular, the picture is symmetrical in the vertical line

{Re(z) = x0 + 1
2} (see Figure 3.2). It follows that either γ(v) = v or γ(v) = v∗, where v∗ is

the reflection of v in the line {
Re(z) = x0 +

1

2

}
.

Suppose first that γ(v) = v. Because γ1 fixes v, it must be that γ2 also fixes v, and thus that

γ2 is reflection in the vertical line through v (see Figure 3.3). Since γ is a side-pairing, and

P is locally finite, we may find a point w ∈ Sγ ∩ ∂P , not equal to v, such that γ(w) ∈ ∂P .

Now w ∈ Sγ , so w is fixed by γ1, and γ2 preserves imaginary parts, so Im(γ(v)) = Im(v).
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P

Sγ
Sγ−1

v

γ1(v) γ(v)

Figure 3.1: The case v /∈ Sγ .

z0

v v∗

x0 + 1 + iyx0 + iy

x0 x0 + 1x0 + 1
2

Figure 3.2: The circle and horocycle intersect in at most two points.

SγSγ−1

γ(w) w

v

Figure 3.3: The isometry γ fixes the vertex v.
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Again applying Lemma 3.2.6, we deduce that z0 must lie equidistant from w and γ(w).

Referring again to Figure 3, this locus is precisely the vertical line through v. It therefore

follows that Re(v) = Re(z0) = x0 + 1
2 . Thus we have shown that if v is fixed by γ, then v

necessarily lies directly below the Dirichlet center z0. Bearing in mind the above discussion,

the contrapositive of this states that if Re(v) 6= x0 + 1
2 , then any side-pairing γ pairing v

with a vertex of P must send v to v∗.

We now turn our attention to ideal vertices. Let v ∈ ∂H2 be a vertex of P. Then

two isometric circles meet at v. Fix one such circle S, which is the isometric circle Sγ of

some element γ ∈ Γ. This isometric circle Sγ contains a side of P adjacent to v, and we

pick two points of Sγ , w1, w2 ∈ ∂P ∩ H2 (see Figure 3.4). All three of the points v, w1,

w2 are fixed by γ1. By Lemma 3.2.6, γ2 must send both w1 and w2 to points the same

respective distance from z0. Since γ2 preserves imaginary parts, we see that for each i, wi is

either fixed or sent to its reflection in the line {Re(z) = Re(z0)}. If w1 were fixed, w2 would

neither be fixed nor sent to its reflection, and vice-versa if w2 were fixed. Thus we conclude

that γ2 is reflection in the line {Re(z) = Re(z0)}.

The above arguments show that if any side-pairing of P , γ ∈ Γ \ Γ∞, is written

γ = γ2γ1, where γ1 is reflection in Sγ and γ2 is a reflection fixing ∞, then γ2 is reflection

σM in the line M = {z | Re(z) = x0 + 1
2}. Letting L = {z | Re(z) = x0} and σL denote

reflection in L, we may take A = σMσL to see that this also holds for Γ∞. We summarize

this in the following result.

Proposition 3.2.7. Suppose the Fuchsian group Γ admits a DF domain P . Then P has

reflective symmetry about a vertical line M . Furthermore, the side-pairings of P each have

the form σMσ1, where σM is reflection in M and σ1 is reflection in a side of P .
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We now use Proposition 3.2.7 to complete the proof of Theorem 3.2.4. We do this by

showing that the polygon Q obtained by dividing P in half along M satisfies the hypotheses

of Theorem 3.1.2.

By Proposition 3.2.7, we have a generating set for Γ of the form

{σMσ1, . . . , σMσk, σMσL} .

By the above discussion, each vertex cycle contains exactly two vertices, with the exception

of the point L ∩ P̊ directly below z0. By the Poincaré Polygon Theorem, each vertex cycle

sums to
2π

ni
for some ni ∈ N ∪ {∞}. By the reflectional symmetry of P , the angle at each

vertex of Q is
π

ni
. We therefore conclude that Q is a convex, finite-sided polygon with all

angles integer submultiples of π. We see that the reflections

{σ1, . . . , σk, σM , σL}

generate a reflection group Γref which contains Γ as an orientation-preserving subgroup of

index two, or, in other words, its rotation subgroup. This concludes the proof of Theorem

3.2.4, and hence of Theorem 3.0.1.

Remark. We established that Re(z0) = x0 + 1
2 , but did not deduce anything about the

imaginary part of z0. This is because, by Lemma 3.2.2, we may take the Dirichlet center of

P to be any point of the interior of P on this vertical line. This observation will be explored

in the subsequent section.

3.3 Double Dirichlet Domains

In this section, we show that there is a similar result to Theorem 3.0.1 for cocompact

reflection groups of Isom(H2). Since the definition of a Ford fundamental domain is only
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valid for non-cocompact Fuchsian groups, we require a slightly different definition as our

starting point. However, we note that, as observed in the previous section, if a group admits

a DF domain P , then P arises as the Dirichlet domain for various choices of Dirichlet center

z0. This motivates the following definition.

Definition. A Double Dirichlet Domain, P , for a Fuchsian group Γ is a fundamental domain

for Γ which arises as the Dirichlet domain centered at two distinct points z0 and z1.

Notice that every DF domain satisfies this definition. We prove that possessing a

Double Dirichlet domain places constraints on a Fuchsian group which are similar to those

of DF domains.

Theorem 3.3.1. A cofinite Fuchsian group Γ admits a Double Dirichlet domain if and only

if it is the rotation subgroup of a reflection group Γref.

The proof of this result will follow a similar path to that of Theorem 3.0.1. We

first prove a technical lemma. In the previous section, we made an assumption on Γ and

Γ∞ which implied that the two vertical sides were identified by a side-pairing. It was then

demonstrated in the subsequent arguments that, given this, there was a unique way that

the remaining sides could be identified. In the absence of a similar assumption on the group

Γ in the present setting, we prove explicitly that there can be only one way to pair the sides

of P .

Lemma 3.3.2. If P = P0 = P1 is the Dirichlet domain centered at z0 and at z1, then the

sides of P are identified the same way in each case.

Proof. Suppose, for the sake of contradiction, that this is not the case. Any side of a

Dirichlet domain bisects the domain’s center and its image under some isometry. Here, we
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have a side A of P which is the bisector of both the pair z0 and γ−1
0 (z0) and the pair z1 and

γ−1
1 (z1), where γ0 6= γ1 are the isometries defining that side of P . It follows that γ0 pairs

A with some side B, and γ1 pairs A with some other side C 6= B. Let d := d(z0, z1) be the

distance between the two centers z0 and z1. Since γ−1
0 (z0) and γ−1

1 (z1) are the reflections

of each in A, we see that

d(γ−1
0 (z0), γ−1

1 (z1)) = d.

Applying the isometry γ1 to both points, this gives that

d(γ1(γ−1
0 (z0)), z1) = d.

Now, if γ1(γ−1
0 (z0)) = z0, then the isometries γ0 and γ1 both send γ−1

0 (z0) to z0 and γ−1
1 (z1)

to z1. Since they also both preserve orientation, this implies that γ0 = γ1, a contradiction.

Thus γ1(γ−1
0 (z0)) 6= z0. But then γ1(γ−1

0 (z0)) is a point in the orbit of z0, and thus the

construction of P0 involves the half-space {x ∈ H2 | d(x, z0) ≤ d(x, γ1(γ−1
0 (z0)))}. As we

saw above,

d(γ1(γ−1
0 (z0)), z1) = d(z0, z1) = d.

Hence z1 is equidistant from z0 and γ1(γ−1
0 (z0)). Thus z1 cannot be in the interior of P0,

contradicting the assumption that P0 = P1.

We are now able to prove Theorem 3.3.1.

Proof. Suppose Γref is generated by reflections in the polygon Q. Conjugate Γ such that

some side M of Q is vertical. We then remark that the proof of Theorem 3.2.1 can be

applied, with the modification that L is no longer a vertical side. Then the proof of Lemma
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3.2.2 shows that any point of M ∩ P̊ is a Dirichlet center; thus, P arises as the Dirichlet

domain for at least two centers.

Now suppose that P is a Double Dirichlet domain. Then there exist two distinct

points z0 and z1 which are the corresponding Dirichlet centers. Let M be the geodesic

passing through these points, and suppose for simplicity that we have conjugated so that M

is vertical. As in the proof of Theorem 3.2.4, we aim to show that P has reflective symmetry

about M , and that the side-pairings of P pair points with their reflections in M .

Consider one vertex v of P lying on M . If v is ideal, then we can apply Theorem

3.2.4 and get the required conclusion, so suppose v is finite. Then, by Lemma 3.2.6, v must

be identified with another vertex v′ such that d(v, z0) = d(v′, z0) and d(v, z1) = d(v′, z1).

Since v, z0 and z1 are all distinct points lying on the same geodesic M , it follows that the

intersection of the two relevant loci is exactly one point, v. Thus v is fixed by a rotation

which pairs the two sides adjacent to v, and furthermore, M bisects the angle at v.

Given this starting point, it now follows by the proof of Theorem 3.2.4 that all of the

side-pairings of P consist of products σmσ1 of reflections in sides composed with reflection

in M . One again observes that all but at most two of the vertex cycles contain exactly two

vertices, and applies the Poincaré Polygon Theorem to see that we may add in the reflection

σM without violating discreteness. Thus Γ is the rotation subgroup of a reflection group, as

required.

We next apply Theorems 3.0.1 and 3.3.1 to show that given the signature of a

sphere, with cone points and/or punctures, such that its fundamental group is hyperbolic,

we may find a Fuchsian group Γ, with quotient space of the given signature, which admits
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a Double Dirichlet domain, or a DF domain if the signature has at least one puncture.

Corollary 3.3.3. Given the signature (0;n1, . . . , nt;m) of a (non-trivial) sphere with m ≥ 0

punctures and t ≥ 0 cone points of orders ni ∈ N, for 1 ≤ i ≤ t, there exists a Fuchsian

group Γ such that Γ admits a Double Dirichlet domain (and a DF domain if m > 0) and

H2/Γ is a sphere of the given signature.

Proof. With the discussion following the proof of Theorem 3.2.1 in mind, this result follows

immediately from the fact that a convex polygon with the required angles may be con-

structed in the hyperbolic plane. Specifically, we require a polygon Q with t finite vertices

with angle
π

ni
as required, and with m ideal vertices.

Remark. If m > 0 above, then there is a certain amount of freedom in our choice of the

polygon Q. For example, we do not necessarily have to place one of the ideal vertices of Q

at ∞. We do so in order to ensure that we obtain a DF domain for Γ. Instead, we could

have all of the ideal vertices lie in R, thereby placing the line of symmetry L away from

any of the ideal vertices. Similarly, if m > 1, we could construct Q so that L meets only

one of the m ideal vertices, instead of 2 in the construction above. We also do not have

to construct Q so that each angle is bisected by a vertical line; we only do so in order to

demonstrate that it is possible to find the required polygon.
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Figure 3.4: The case v ∈ ∂H2.
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Chapter 4

Arithmetic Maximal Reflection Groups

In this chapter, we apply Theorem 3.0.1 to find all of the non-cocompact arithmetic

maximal reflection groups of Isom(H2), and generators in PSL2(R) for their respective ro-

tation subgroups. Using this information, we test these groups for congruence.

4.1 Preliminaries

From work of Nikulin [32], we know that there are 122 arithmetic maximal reflection

groups in Isom(H2). Such a group is non-cocompact if and only if the corresponding polygon

has at least one ideal vertex; this information can be determined from Nikulin’s tables.

Alternatively, Allcock gives angle information, and ideal vertices are represented by the

symbol ∞ in his tables. In this way, we find that 23 of the 122 groups are non-cocompact.

Furthermore, we find that thirteen of these have exactly one ideal vertex, and the remaining

ten have two ideal vertices.

If Γref is a cofinite arithmetic reflection group in Isom(H2), then its rotation sub-

group Γ is a cofinite arithmetic Fuchsian group of genus zero. Since the quotient space H2/Γ

has underlying space a punctured sphere, it can only cover other punctured spheres; thus,

we see that if Γ is properly contained in some maximal Fuchsian group M , then M must

also be of genus zero. The maximal arithmetic Fuchsian groups of genus zero are understood

[27]; in particular, there are finitely many such groups. In the non-cocompact case, there
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are 45; they are PSL2(Z) and the normalizers N(Γ0(n)) (see Section 2.4) for n belonging to

the set

{2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 38, 39,

41, 42, 46, 47, 51, 55, 59, 62, 66, 69, 70, 71, 78, 87, 94, 95, 105, 110, 119, 141}.

So each non-cocompact arithmetic maximal reflection group gives rise to a rotation subgroup

which is contained in one of these normalizers, and which admits a DF domain. Each of

these groups is one-cusped, and contains the corresponding Γ0(n) as a finite index subgroup.

Notice that, given some maximal arithmetic Fuchsian group M , if M admits a DF domain

then, by Theorem 3.0.1, it is itself one of these rotation subgroups, and further that it

corresponds to a reflection group with one ideal vertex.

4.2 Examples with One Ideal Vertex

In this section, we find generators in PSL2(R), and DF domains, for (the rotation

subgroups of) the thirteen non-cocompact arithmetic maximal reflection groups with one

ideal vertex. In the process, we will prove the following result.

Proposition 4.2.1. There are thirteen maximal arithmetic Fuchsian groups of genus zero

which admit a DF domain; they are PSL2(Z) and the normalizers N(Γ0(n)) for values of n

in the set

{2, 3, 5, 6, 7, 10, 13, 14, 21, 30, 34, 39} .

These groups are precisely the rotation subgroups of the thirteen non-cocompact arithmetic

maximal reflection groups with one ideal vertex.
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It follows immediately from the construction that all thirteen of these examples are

congruence.

4.2.1 Construction of Ford domains

In each of the following examples, we compute a Ford domain as follows. Each

example contains the element

(
1 1
0 1

)
, and so we take our fundamental region for Γ∞ to

be between −1

2
and

1

2
on the real line. Since the set of possible entries of matrices in each

group is a discrete subset of R, there is a unique smallest such entry x1; finding all matrices(
a b
c d

)
with lower-left entry c = x1 is equivalent to finding all isometric circles of maximal

radius; notice that we may always pre- and post-multiply by

(
1 1
0 1

)
if necessary to ensure

that the centers −d
c

and
a

c
of the isometric circle and its inverse respectively are between

−1

2
and

1

2
inclusive. We then proceed to find all matrices with the next smallest lower-left

entry x2 in the same way, where we may ignore those whose isometric circles (and those

of their inverses) are completely contained within those already found. We continue this

process until we have a polygon defined by the isometric circles and the lines <(z) = −1

2

and <(z) =
1

2
which has the required area, which is given to us by knowing the signature

of the corresponding quotient surface. Since all these groups are cofinite, the process will

always terminate in finite time. We give as an example a detailed explanation of how this

algorithm applies to one of the present cases.

We will calculate in detail a Ford domain for the group N(Γ0(34)). By Long,

Maclachlan and Reid [27], this group has signature (0; 2, 2, 2, 2, 2, 4; 1) and coarea
9π

2
. We

begin by including the element

(
1 1
0 1

)
and taking a fundamental region for its action

bounded by the lines <(z) = −1

2
and <(z) =

1

2
(see Figure 4.1). We note that the smallest
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lower left entry of an element of Γ0(34) is equal to 34; with this in mind, we next seek to

minimize the lower left entry of a
√
q

b
√
q

34c
√
q

d
√
q

 ,

where a, b, c, d ∈ Z, q ≥ 1 is an integer dividing 34, and adq − 34bc

q
= 1. We see that

34c
√
q

is minimized by minimizing c and maximizing q; in other words, taking c = 1 and q = 34.

We look for ways to complete the matrixa√34
b√
34√

34 d
√

34


such that

a
√

34√
34

and
−d
√

34√
34

are between −1

2
and

1

2
. This can only be achieved if a = d = 0,

which then implies that b = −1, and we have the matrix 0 − 1√
34√

34 0

 ,

which we add to our generating set. We also add the isometric circle of this matrix to our

Ford domain, and note that the isometric circle of the inverse is the same isometric circle.

This circle has center 0 and radius
1√
34

(see Figure 4.2).

We now seek the next smallest lower left entry; this is obtained by setting c = 1

and q = 17. This makes the standard matrixa√17
b√
17

2
√

17 d
√

17

 .

Here if either a or d were equal to 0, then the determinant would be −2b, for which no

choice of integer b makes the determinant equal to 1. Thus if a = d = 1, we have b = 8 and

we obtain the matrix  √17
8√
17

2
√

17
√

17

 ,
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Figure 4.1: First step in the construction of a Ford domain for N(Γ0(34))

Figure 4.2: Second step in the construction of a Ford domain for N(Γ0(34))
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which gives us two isometric circles (for the element and its inverse) centered at −1

2
and

1

2

respectively, and of radius
1

2
√

17
(see Figure 4.3).

We next come to the case of c = 2, q = 34. But we notice that the matrixa√34
b√
34

2
√

34 d
√

34


has determinant 34ad−2b, and thus no choices of a, b, d ∈ Z make this determinant equal to

1. We therefore move on to the case c = 2, q = 17. Here
2.34√

17
= 4
√

17, so we seek matrices

of the form a√17
b√
17

4
√

17 d
√

17

 .

If either a or d is even then the determinant must be even. If a = d = 1 we find b = 4 and

obtain the matrix  √17
4√
17

4
√

17
√

17

 .

We see that the isometric circles for this element and its inverse are not contained inside

the ones we have already found, and so we add these circles to our Ford domain, and the

matrix to our list (see Figure 4.4).

We move on to the case of c = 3, q = 34. This gives a matrix of the forma√34
b√
34

3
√

34 d
√

34


and again we see that if a or d is 0 then the determinant cannot be equal to 1. This leads

us to the matrix  √34
11√
34

3
√

34
√

34

 .

The isometric circles of this element and its inverse are not covered by our existing circles,

and so we add these circles to our Ford domain, and the element to our generating set (see

Figure 4.5).
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Figure 4.3: Third step in the construction of a Ford domain for N(Γ0(34))

Figure 4.4: Fourth step in the construction of a Ford domain for N(Γ0(34))

Figure 4.5: Fifth step in the construction of a Ford domain for N(Γ0(34))
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The next case to consider is that of c = 4, q = 34, and therefore matrices of the

form a√34
b√
34

4
√

34 d
√

34

 ;

however, such a matrix must have even determinant. We therefore move on to the case of

c = 1, q = 2, and matrices of the form a
√

2
b√
2

17
√

2 d
√

2

 .

We seek values of a and d between −8 and 8 inclusive such that 2ad−17b = 1. One solution

is to let a = d = 3 and b = 1; the resulting matrix 3
√

2
1√
2

17
√

2 3
√

2

 .

has isometric circles not covered by those we have, and so we add these circles to our Ford

domain and the matrix to our generating set. At this point we observe that our Ford domain

is now of finite area, and in fact has area equal to
9π

2
, the coarea of the group. We also

check that all of the isometric circles which correspond to other possible matrices of the

present form are covered by the existing isometric circles. Notice also that if we did not

know in advance the coarea of our group, we would have to continue this algorithm, and it

would terminate when we reach a point where the radii of the isometric circles is less than

the imaginary part of the lowest point of our Ford domain.

We therefore conclude that the matrices

(
1 1
0 1

)
,

(
0 − 1√

34√
34 0

)
,

(√
17 8√

17

2
√

17
√

17

)
,

( √
17 4√

17

4
√

17
√

17

)
,

( √
34 11√

34

3
√

34
√

34

)
,

(
3
√

2 1√
2

17
√

2 3
√

2

)
,
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constitute a generating set for N(Γ0(34)). We observe that for each matrix in this list, the

two entries on the diagonal are equal to each other. This means that each side of our domain

is paired with its reflection in the imaginary axis; in other words, this will be a DF domain

(see Figure 4.6).
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4.2.2 Results

Below we list, in each of the thirteen cases we consider, the matrices required to

define a Ford domain by considering their isometric circles, and those of their inverses in

the case they are not of order two. These are obtained using the same algorithm described

above. These matrices also define a DF domain; in the setup described, this is equivalent to

each generator having equal diagonal entries, that is, a = d. The DF domains themselves

will be drawn.

Example 1. PSL2(Z) is generated by the two matrices

(
1 1
0 1

)
,

(
0 −1
1 0

)
.

Example 2. N(Γ0(2)) is generated by

(
1 1
0 1

)
,

(
0 − 1√

2√
2 0

)
.

Example 3. N(Γ0(3)) is generated by

(
1 1
0 1

)
,

(
0 − 1√

3√
3 0

)
.

Example 4. N(Γ0(5)) is generated by

(
1 1
0 1

)
,

(
0 − 1√

5√
5 0

)
,

(√
5 2√

5

2
√

5
√

5

)
.
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Figure 4.6: Final result of the construction of a Ford domain for N(Γ0(34))

Figure 4.7: Ford domain for PSL2(Z)
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Figure 4.8: Ford domain for N(Γ0(2))

Figure 4.9: Ford domain for N(Γ0(3))
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Figure 4.10: Ford domain for N(Γ0(5))
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Example 5. N(Γ0(6)) is generated by(
1 1
0 1

)
,

(
0 − 1√

6√
6 0

)
,

(√
3 1√

3

2
√

3
√

3

)
.

Example 6. N(Γ0(7)) is generated by(
1 1
0 1

)
,

(
0 − 1√

7√
7 0

)
,

(√
7 3√

7

2
√

7
√

7

)
.

Example 7. N(Γ0(10)) is generated by(
1 1
0 1

)
,

(
0 − 1√

10√
10 0

)
,

( √
5 2√

5

2
√

5
√

5

)
.

Example 8. N(Γ0(13)) is generated by(
1 1
0 1

)
,

(
0 − 1√

13√
13 0

)
,

( √
13 6√

13

2
√

13
√

13

)
,

(√
13 4√

13

3
√

13
√

13

)
.

Example 9. N(Γ0(14)) is generated by(
1 1
0 1

)
,

(
0 − 1√

14√
14 0

)
,

(√
7 3√

7

2
√

7
√

7

)
,

(
2
√

2 1√
2

7
√

2 2
√

2

)
.

Example 10. N(Γ0(21)) is generated by(
1 1
0 1

)
,

(
0 − 1√

21√
21 0

)
,

( √
21 10√

21

2
√

21
√

21

)
,

( √
7 2√

7

3
√

7
√

7

)
.
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Figure 4.11: Ford domain for N(Γ0(6))

Figure 4.12: Ford domain for N(Γ0(7))
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Figure 4.13: Ford domain for N(Γ0(10))

Figure 4.14: Ford domain for N(Γ0(13))
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Figure 4.15: Ford domain for N(Γ0(14))

Figure 4.16: Ford domain for N(Γ0(21))
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Example 11. N(Γ0(30)) is generated by

(
1 1
0 1

)
,

(
0 − 1√

30√
30 0

)
,

(√
15 7√

15

2
√

15
√

15

)
,

( √
10 3√

10

3
√

10
√

10

)
,

(√
6 1√

6

5
√

6
√

6

)
.

Example 12. N(Γ0(34)) is generated by

(
1 1
0 1

)
,

(
0 − 1√

34√
34 0

)
,

(√
17 8√

17

2
√

17
√

17

)
,

( √
17 4√

17

4
√

17
√

17

)
,

( √
34 11√

34

3
√

34
√

34

)
,

(
3
√

2 1√
2

17
√

2 3
√

2

)
.

Example 13. N(Γ0(39)) is generated by

(
1 1
0 1

)
,

(
0 − 1√

39√
39 0

)
,

(√
39 19√

39

2
√

39
√

39

)
,

( √
13 4√

13

3
√

13
√

13

)
,

(
3
√

3 2√
3

13
√

3 3
√

3

)
,

( √
13 2√

13

6
√

13
√

13

)
.
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Figure 4.17: Ford domain for N(Γ0(30))

Figure 4.18: Ford domain for N(Γ0(34))

Figure 4.19: Ford domain for N(Γ0(39))
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4.3 Examples with Two Ideal Vertices

In this section, we find generators in PSL2(R), and DF domains, for (the rotation

subgroups of) the ten non-cocompact arithmetic maximal reflection groups with two ideal

vertices.

To find these groups, the following definition will be useful.

Definition. Suppose Γ is a cofinite Fuchsian group with Γ∞ consisting of parabolic ele-

ments, and which does not admit a DF domain. We will say that Γ admits an almost-DF

domain if it admits a Ford domain which is symmetric about a vertical line L, such that

all but two of the side-pairings are symmetric about L, and the remaining two side-pairings

are involutions about fixed points on their respective sides.

In the process of finding the ten examples, we will prove the following result.

Proposition 4.3.1. Of the 32 maximal arithmetic Fuchsian groups of genus zero which do

not admit a DF domain, precisely ten admit an almost-DF domain; they are N(Γ0(n)) for

n belonging to the set

{11, 15, 17, 19, 22, 26, 33, 42, 55, 66} .

Each of these ten groups contains an index two subgroup which admits a DF domain, and

which corresponds to an arithmetic maximal reflection group with two ideal vertices.

Since these groups are proper subgroups of the maximal groups, it is not immediate

that they are congruence. Testing these groups for congruence will lead to the following

result.

Theorem 4.3.2. Of the ten arithmetic maximal reflection groups with two ideal vertices,
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two are congruence, and eight are not. Hence, of the 23 non-cocompact arithmetic maximal

reflection groups in Isom(H2), fifteen are congruence, and eight are not.

In summary, we have the following.

Theorem 4.3.3. Of the 23 non-cocompact arithmetic maximal reflection groups contained

in Isom(H2), fifteen are congruence, and eight are not.

4.3.1 Proofs

Before considering the individual examples, we first describe how to test each of

the groups for congruence. Recall that a non-cocompact arithmetic Fuchsian group Γ is

congruence if and only if, after possible conjugation in PSL2(R), it contains some principal

congruence subgroup Γ(N). Suppose Γ is the rotation subgroup of a reflection group Γref,

and that Γ < N(Γ0(n)) for some fixed n. Since all principal congruence subgroups are

contained in PSL2(Z), to test Γ (and hence Γref) for congruence, it suffices to test G =

Γ ∩ PSL2(Z) = Γ ∩ Γ0(n). A set of generators for G can be obtained in terms of generators

for N(Γ0(n)) by using a computer algebra system such as Magma [9] to find the intersection

of the two subgroups Γ0(n) and Γ. This can then be expressed as a set of generators for G

as a subgroup of PSL2(Z) by using the Euclidean algorithm on each generator.

Given these generators and knowledge of the index [PSL2(Z) : G], the following

method determines whether G is congruence. Suppose G is congruence. Then it contains

some principal congruence subgroup Γ(N). More precisely, by Wohlfahrt’s theorem (The-

orem 2.4.1), it must contain Γ(N) for N equal to the level of G. Since Γ(N) is a normal

subgroup of PSL2(Z), it is then contained in the normal core of G in PSL2(Z), which is
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defined as the intersection

Core(PSL2(Z), G) :=
⋂

γ∈PSL2(Z)

γGγ−1,

and is the unique maximal normal subgroup of PSL2(Z) contained within G; that is, every

normal subgroup of PSL2(Z) which is contained in G is contained in this core. We have the

following diagram.

PSL2(Z)

JJJJJJJJJ

m

l

N(Γ0(n))

oooooooooooo

MMMMMMMMMMMM
Γref

~~
~~

~~
~~

Γ0(n)

PPPPPPPPPPPPPP Γ

pppppppppppppp

G

Core(PSL2(Z), G)

?

Γ(N)

Note that we may compute the two indices

l = [PSL2(Z) : Γ(N)]

and

m = [PSL2(Z) : Core(PSL2(Z), G)] ,

the former by way of a standard formula (see Section 2.4), and the latter by using Magma.

If m divides l, then this analysis tells us nothing, as it does not confirm or preclude the

possibility that G contains Γ(N). However, if m > l, or m fails to divide l, then we have a
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contradiction, which allows us to conclude that G, and hence Γ and Γref, is not congruence.

The results are summarized in Table 4.1 at the end of the section.

Remark. In all cases, we use the algorithm of Hsu [24] to check whether G is in fact

congruence. This serves as a check in the case G is not congruence, and provides an answer

when G is congruence, when the method above gave no conclusive answer. We develop the

method above in order that we may apply it to other situations where Hsu’s algorithm is

not immediately available to us; in particular, we will use this method in Chapter 5 to treat

groups contained in Isom(H3).

Example 14. N(Γ0(11)) is generated by the matrices

γ1 =

(
1 1
0 1

)
, γ2 =

(
0 − 1√

11√
11 0

)
, γ3 =

( √
11 5√

11

2
√

11
√

11

)
,

γ4 =

(
−
√

11 − 4√
11

3
√

11
√

11

)
, γ5 =

( √
11 − 4√

11

3
√

11 −
√

11

)
.

A Ford domain defined by these elements is given in Figure 4.20. The subgroup Γ generated

by γ1, γ2, γ3,

γ5γ1γ4 =

(
10 3
33 10

)
, γ5γ4 =

(
23 8
66 23

)
has index two in N(Γ0(11)) and admits a DF domain (shown in Figure 4.21). Thus Γ is the

rotation subgroup of some arithmetic reflection group Γref.

Claim. Γref is a maximal reflection group.

Proof. If Γref were not maximal, it would be properly contained in another reflection group

Href , which is therefore also arithmetic. Let H < Href denote the rotation subgroup. Note

that then we have Γ < H. Since Γ and H are both arithmetic Fuchsian groups of genus

zero, they are contained in a common maximal, arithmetic, genus zero Fuchsian group M
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Figure 4.20: Ford domain for N(Γ0(11))

Figure 4.21: Ford domain for Γ < N(Γ0(11))
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from the appropriate list in Long–Maclachlan–Reid [27]. By construction, Γ is contained

in the normalizer N(Γ0(11)), and by area considerations we find that [N(Γ0(11)) : Γ] = 2.

Further, Γ cannot be contained in any other of these maximal arithmetic groups; to see this,

observe that if n 6= 11 then, if we pick some non-zero integer b coprime to n, we may find

integers a, d such that

(
a b
n d

)
∈ Γ0(n). We then have

γ2

(
a b
n d

)
γ2 =

(
0 − 1√

11√
11 0

)(
a b
n d

)(
0 − 1√

11√
11 0

)
=

(
−d n

11
11b −a

)
.

We wish to show that this does not belong to Γ0(n). If n is not divisible by 11 this is clear,

so suppose n ≥ 22 is a multiple of 11. Then, by construction, b is coprime to 11, and so 11b

is not divisible by n. This shows that γ2 cannot belong to any normalizer N(Γ0(n)) except

N(Γ0(11)).

It remains to verify that we cannot have H = M = N(Γ0(11)). But if this were the

case, then N(Γ0(11)) would admit a DF domain, and we would have a fourteenth arithmetic

maximal reflection group with one ideal vertex, a contradiction.

Thus the group Γ is the rotation subgroup of an arithmetic maximal reflection

group. We find that the subgroup G = Γ ∩ Γ0(11) is generated by the elements

γ1 =

(
1 1
0 1

)
, γ2γ

−1
1 γ2 =

(
1 0
11 1

)
, γ2γ3 =

(
−2 −1
11 5

)
,

γ2γ
−1
3 =

(
2 −1
11 −5

)
, γ4 =

(
10 3
33 10

)
, γ5 =

(
23 8
66 23

)
.

It has index two in both Γ and Γ0(11), and index 24 in PSL2(Z). It has level N = 11, so

we test for whether G contains Γ(11). We find that

[PSL2(Z) : Γ(11)] = 660
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but

[PSL2(Z) : Core(PSL2(Z), G)] = 1351680,

allowing us to conclude that G is not congruence.

In this case, checking our findings using Hsu’s algorithm, we find

L = (2 4 9 15 8 5 11 13 7 3 6)(10 17 21 23 22 19 14 12 18 20 16)

and

R = (1 2 5 12 14 7 4 10 16 8 3)(9 17 19 13 11 18 21 24 22 20 15)

are both of order 11, also giving that the level of G is 11. Hsu’s test is then that G is

congruence if and only if (R2L−
1
2 )3 = 1, where 1

2 is the multiplicative inverse of 2 mod 11,

in this case equal to 6. We find that R2L−6 has order 6, and so G is not congruence.

Example 15. N(Γ0(15)) is generated by

γ1 =

(
1 1
0 1

)
, γ2 =

(
0 − 1√

15√
15 0

)
, γ3 =

( √
15 7√

15

2
√

15
√

15

)
,

γ4 =

(
−
√

5 − 2√
5

3
√

5
√

5

)
, γ5 =

( √
5 − 2√

5

3
√

5 −
√

5

)
.

The corresponding Ford domain is given in Figure 4.22, and includes the dashed isometric

circle. In this case, Γ is generated by γ1, γ2, γ3, along with

γ5γ4 =

(
11 4
30 11

)
, γ5γ1γ4 =

(
4 1
15 4

)
.

The DF domain for Γ is also given in Figure 4.22, and comprises only the solid circles.

Computation reveals that

[N(Γ0(15)) : Γ0(15)] = 4

60



and

[N(Γ0(15)) : Γ ∩ Γ0(15)] = 4,

from which it follows that G = Γ∩Γ0(15) = Γ0(15). Thus the rotation subgroup Γ contains

Γ0(15), and hence Γ(15). This reflection group Γref is congruence.

Example 16. N(Γ0(17)) is generated by

γ1 =

(
1 1
0 1

)
, γ2 =

(
0 − 1√

17√
17 0

)
, γ3 =

( √
17 8√

17

2
√

17
√

17

)
,

γ4 =

(
−
√

17 − 6√
17

3
√

17
√

17

)
, γ5 =

( √
17 − 6√

17

3
√

17 −
√

17

)
, γ6 =

(√
17 4√

17

4
√

17
√

17

)
.

The corresponding Ford domain is given in Figure 4.23. In this case, Γ is generated by γ1,

γ2, γ3, γ6, along with

γ5γ4 =

(
35 12
102 35

)
, γ5γ1γ4 =

(
16 5
51 16

)
, γ5γ2γ4 =

(
3
√

17 19√
17

8
√

17 3
√

17

)
.

The level of G = Γ ∩ Γ0(17) is N = 17. We find

[PSL2(Z) : Γ(17)] = [PSL2(Z) : Core(PSL2(Z), G)] = 2448,

from which we are unable to conclude anything. We therefore apply Hsu’s test, which tells

us that this example is congruence.

Example 17. N(Γ0(19)) is generated by

γ1 =

(
1 1
0 1

)
, γ2 =

(
0 − 1√

19√
19 0

)
, γ3 =

( √
19 9√

19

2
√

19
√

19

)
,

γ4 =

( √
19 6√

19

3
√

19
√

19

)
, γ5 =

(
−
√

19 − 5√
19

4
√

19
√

19

)
, γ6 =

( √
19 − 5√

19

4
√

19 −
√

19

)
.

Here Γ is generated by γ1, γ2, γ3, γ4, along with
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Figure 4.22: Ford domain for N(Γ0(15))

Figure 4.23: Ford domain for N(Γ0(17))

Figure 4.24: Ford domain for N(Γ0(19))
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γ6γ5 =

(
39 10
152 39

)
, γ6γ1γ5 =

(
37 9
152 37

)
, γ6γ3γ5 =

(
7
√

19 31√
19

30
√

19 7
√

19

)
.

A DF domain for Γ is obtained by rotating each half of the Ford domain in Figure 4.24 by

γ5 and γ6 respectively. The level of G = Γ ∩ Γ0(19) is N = 19. We find

[PSL2(Z) : Γ(19)] = 3420,

and

[PSL2(Z) : Core(PSL2(Z), G)] = 1793064960.

This example is not congruence.

Example 18. N(Γ0(22)) is generated by

γ1 =

(
1 1
0 1

)
, γ2 =

(
0 − 1√

22√
22 0

)
, γ3 =

( √
11 5√

11

2
√

11
√

11

)
,

γ4 =

( √
22 7√

22

3
√

22
√

22

)
, γ5 =

(
−
√

11 − 3√
11

4
√

11
√

11

)
, γ6 =

( √
11 − 3√

11

4
√

11 −
√

11

)
.

Here Γ is generated by γ1, γ2, γ3, γ4, along with

γ6γ5 =

(
23 6
88 23

)
, γ6γ1γ5 =

(
21 5
88 21

)
, γ6γ3γ5 =

(
3
√

11 7√
11

14
√

11 3
√

11

)
.

The level of G = Γ ∩ Γ0(22) is N = 22. We find

[PSL2(Z) : Γ(22)] = 3960,

and

[PSL2(Z) : Core(PSL2(Z), G)] = 34016140984320.

This example is not congruence.
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Example 19. N(Γ0(26)) is generated by

γ1 =

(
1 1
0 1

)
, γ2 =

(
0 − 1√

26√
26 0

)
, γ3 =

( √
13 6√

13

2
√

13
√

13

)
,

γ4 =

(
−
√

26 − 9√
26

3
√

26
√

26

)
, γ5 =

( √
26 − 9√

26

3
√

26 −
√

26

)
, γ6 =

(√
13 3√

13

4
√

13
√

13

)
.

Here Γ is generated by γ1, γ2, γ3, γ6, along with

γ5γ4 =

(
53 18
156 53

)
, γ5γ1γ4 =

(
25 8
78 25

)
, γ5γ2γ4 =

(
6
√

26 55√
26

17
√

26 6
√

26

)
.

The level of G = Γ ∩ Γ0(26) is N = 26. We find

[PSL2(Z) : Γ(26)] = 6552,

and

[PSL2(Z) : Core(PSL2(Z), G)] = 439697276928.

This example is not congruence.

Example 20. N(Γ0(33)) is generated by

γ1 =

(
1 1
0 1

)
, γ2 =

(
0 − 1√

33√
33 0

)
, γ3 =

( √
33 16√

33

2
√

33
√

33

)
, γ4 =

(
−
√

11 − 4√
11

3
√

11
√

11

)
,

γ5 =

( √
11 − 4√

11

3
√

11 −
√

11

)
, γ6 =

( √
33 8√

33

4
√

33
√

33

)
, γ7 =

(
2
√

3 1√
3

11
√

3 2
√

3

)
.

Here Γ is generated by γ1, γ2, γ3, γ6, γ7, along with

γ5γ4 =

(
23 8
66 23

)
, γ5γ1γ4 =

(
10 3
33 10

)
,

γ5γ2γ4 =

(
3
√

33 37√
33

8
√

33 3
√

33

)
, γ5γ7γ4 =

(
9
√

3 11√
3

22
√

3 9
√

3

)
.

The level of G = Γ ∩ Γ0(33) is N = 33. We find

[PSL2(Z) : Γ(33)] = 15840,
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Figure 4.25: Ford domain for N(Γ0(22))

Figure 4.26: Ford domain for N(Γ0(26))

Figure 4.27: Ford domain for N(Γ0(33))
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and

[PSL2(Z) : Core(PSL2(Z), G)] = 139330113471774720.

This example is not congruence.

Example 21. N(Γ0(42)) is generated by

γ1 =

(
1 1
0 1

)
, γ2 =

(
0 − 1√

42√
42 0

)
, γ3 =

( √
21 10√

21

2
√

21
√

21

)
, γ4 =

(
−
√

14 − 5√
14

3
√

14
√

14

)
,

γ5 =

( √
14 − 5√

14

3
√

14 −
√

14

)
, γ6 =

( √
21 5√

21

4
√

21
√

21

)
, γ7 =

( √
7 1√

7

6
√

7
√

7

)
.

Here Γ is generated by γ1, γ2, γ3, γ6, γ7, along with

γ5γ4 =

(
29 10
84 29

)
, γ5γ1γ4 =

(
13 4
42 13

)
,

γ5γ2γ4 =

(
4
√

42 61√
42

11
√

42 4
√

42

)
, γ5γ7γ4 =

(
7
√

7 19√
7

18
√

7 7
√

7

)
.

The level of G = Γ ∩ Γ0(42) is N = 42. We find

[PSL2(Z) : Γ(42)] = 24192,

and

[PSL2(Z) : Core(PSL2(Z), G)] = 53198770598313984.

This example is not congruence.

Example 22. N(Γ0(55)) is generated by

γ1 =

(
1 1
0 1

)
, γ2 =

(
0 − 1√

55√
55 0

)
, γ3 =

( √
55 27√

55

2
√

55
√

55

)
,

γ4 =

(√
55 18√

55

3
√

55
√

55

)
, γ5 =

(
3
√

5 4√
5

11
√

5 3
√

5

)
, γ6 =

( √
11 2√

11

5
√

11
√

11

)
,
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Figure 4.28: Ford domain for N(Γ0(42))

Figure 4.29: Ford domain for N(Γ0(55))
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γ7 =

(
3
√

5 2√
5

22
√

5 3
√

5

)
, γ8 =

(
−2
√

11 − 9√
11

5
√

11 2
√

11

)
, γ9 =

(
2
√

11 − 9√
11

5
√

11 −2
√

11

)
.

Here Γ is generated by γ1, γ2, γ3, γ4, γ5, γ6, γ7, along with

γ9γ8 =

(
89 36
220 89

)
, γ9γ1γ8 =

(
21 8
55 21

)
,

γ9γ2γ8 =

(
16
√

55 361√
55

39
√

55 16
√

55

)
, γ9γ5γ8 =

(
19
√

5 41√
5

44
√

5 19
√

5

)
,

γ9γ6γ8 =

(
21
√

11 97√
11

50
√

11 21
√

11

)
, γ9γ7γ8 =

(
173
√

5 358√
5

418
√

5 173
√

5

)
.

The level of G = Γ ∩ Γ0(55) is N = 55. We find

[PSL2(Z) : Γ(55)] = 79200,

and

[PSL2(Z) : Core(PSL2(Z), G)] = 2921964261275592975974400.

This example is not congruence.

Example 23. N(Γ0(66)) is generated by

γ1 =

(
1 1
0 1

)
, γ2 =

(
0 − 1√

66√
66 0

)
, γ3 =

( √
33 16√

33

2
√

33
√

33

)
,

γ4 =

(√
22 7√

22

3
√

22
√

22

)
, γ5 =

( √
33 8√

33

4
√

33
√

33

)
, γ6 =

(
9
√

3 11√
3

22
√

3 9
√

3

)
,

γ7 =

(
−
√

11 − 2√
11

6
√

11
√

11

)
, γ8 =

( √
11 − 2√

11

6
√

11 −
√

11

)
.

Here Γ is generated by γ1, γ2, γ3, γ4, γ5, γ6, along with

γ8γ7 =

(
23 4
132 23

)
, γ8γ1γ7 =

(
43 7
264 43

)
,

γ8γ2γ7 =

( √
66 13√

66

5
√

66
√

66

)
, γ8γ3γ7 =

(
13
√

33 68√
33

82
√

33 13
√

33

)
,
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γ8γ4γ7 =

(
4
√

22 13√
22

27
√

22 4
√

22

)
, γ8γ5γ7 =

( √
33 4√

33

8
√

33
√

33

)
,

γ8γ6γ7 =

(
79
√

3 37√
3

506
√

3 79
√

3

)
.

The level of G = Γ ∩ Γ0(66) is N = 66. We find

[PSL2(Z) : Γ(66)] = 95040,

and

[PSL2(Z) : Core(PSL2(Z), G)] = 258723489217327932540472981522522006534225920.

This example is not congruence.

4.3.2 Estimates

Since we found examples of arithmetic maximal reflection groups which are not con-

gruence, and which therefore do not necessarily have a lower bound on their first eigenvalue

of 3
16 , it is reasonable to ask whether one can produce useful bounds on this quantity for

these examples. Here we provide one rough estimate for the spectral gap of the rotation

subgroup Γ via the Cheeger constant (see Section 2.4). We do this by observing that in

each two-vertex example, we have a pair of involutions α and β in N(Γ0(n)) which do not

belong to the subgroup Γ. The isometric circles of α and β descend to two geodesic arcs sα,

sβ in the quotient, and these arcs have common endpoints. Furthermore, they separate the

quotient into two connected components of equal area, thereby maximizing the denominator

in the definition of the Cheeger constant. We therefore calculate the upper bounds for h

and λ1 arising from this decomposition and the inequalities described in Chapter 2. This

data is listed in Table 4.2. We note that this data does not prove the existence of a maximal

arithmetic reflection group with λ1 <
3

16
= 0.1875.
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Figure 4.30: Ford domain for N(Γ0(66))

n [PSL2(Z) : Γ(n)] [PSL2(Z) : Core(PSL2(Z), G)] Congruence?
11 660 1351680 No
15 1440 720 Yes
17 2448 2448 Yes
19 3420 1793064960 No
22 3960 34016140984320 No
26 6552 439697276928 No
33 15840 139330113471774720 No
42 24192 53198770598313984 No
55 79200 2921964261275592975974400 No
66 95040 258723489217327932540472981522522006534225920 No

Table 4.1: Results for two ideal vertices

n Estimate for h Upper Bound for λ1

11 0.310382 1.58413
19 0.189393 0.737484
22 0.177715 0.671254
26 0.234439 1.0185
33 0.476386 3.22221
42 0.351283 1.93656
55 0.208312 0.850564
66 0.317591 1.64382

Table 4.2: Upper bounds for the spectral gap of H2/Γ
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Chapter 5

Dirichlet–Ford Domains and Kleinian Groups

This chapter discusses what constraints are placed on Kleinian groups which admit

a Dirichlet–Ford domain. Throughout, Γ will be a non-cocompact Kleinian group, conju-

gated in PSL2(C) such that the parabolic fixed point at ∞ has stabilizer Γ∞ which acts

cocompactly on C.

Definition. A Dirichlet–Ford domain, or DF domain, P , for the Kleinian group Γ is

a Dirichlet domain for some center z0 which is also a Ford domain for some choice of

fundamental region for Γ∞.

It will be shown that there is no direct correspondence between DF domains and

reflection groups as there is in the case of Fuchsian groups. In particular, we will prove the

following theorem.

Theorem 5.0.1. The rotation subgroup of any non-cocompact reflection group of Isom(H3)

admits a Dirichlet–Ford domain.

It will also be shown that the converse of Theorem 5.0.1 does not hold; we will

exhibit examples of Kleinian groups which do not admit DF domains. However, it is still

possible to extend the methods of Chapter 4 to test arithmetic maximal reflection groups

for congruence. We will show the following.
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Theorem 5.0.2. There exists an arithmetic maximal reflection group in Isom(H3) which

is not congruence.

The discussion will be restricted to DF domains; as the discussion of Section 3.3

demonstrates, it is not unreasonable to suppose that Double Dirichlet domains share many

similar properties.

5.1 Dirichlet–Ford Domains

In this section, it will be shown that only one direction (the analogue of Theorem

3.2.1) of Theorem 3.0.1 holds when we consider Kleinian groups in the place of Fuchsian

groups. This is because the added dimension gives new possibilities for the shape of the

domains in question; in particular, they no longer have to glue up in a completely symmet-

rical way, although some symmetry remains. Examples will be given to demonstrate this

flexibility, which extends as far as having non-trivial cuspidal cohomology.

We begin by proving a result analogous to Theorem 3.2.1.

Theorem 5.1.1. Let Q ⊂ H3 be a finite-sided, convex, non-compact hyperbolic polyhedron

satisfying the hypotheses of Andreev’s Theorem 2.5.1, and let G be the discrete group of

reflections in Q. Then G contains an index 2 Kleinian subgroup which admits a DF domain.

Proof. Suppose that Q is placed in upper half-space H3 such that one of its faces M is

contained in a vertical plane. Let

G = 〈τ1, . . . , τk, τM 〉

be a generating set for G. Let

Γ = 〈τMτ1, . . . , τMτk〉
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be the index 2 subgroup. Let P = Q ∪ τMQ. Let w0 = x0 + y0i + z0j ∈ M̊, for z0 > 0.

The claim is that w0 is a Dirichlet center for Γ. Fix a generator γi = τMτi. Then the plane

Pi fixed by τi bisects w0 and τi(w0), and so τL(Pi), which by construction is a face of P ,

bisects w0 and γi(w0). Furthermore, Pi is the isometric sphere of γi, and so P is a Ford

domain.

The next result provides a family of counterexamples to the analogue of Theorem

3.2.4 by exhibiting Kleinian groups which admit DF domains and do not have index 2 in a

reflection group.

Proposition 5.1.2. Let Q be an all-right hyperbolic polyhedron, with a vertex at ∞, and

all vertices ideal. Let G be the group of reflections in Q. Then G contains a subgroup of

index 4 which admits a DF domain.

Proof. Since Q is all-right, the link of each vertex is a rectangle. Rotate Q in H3 so that the

four vertical sides, which meet at the vertex at∞, each lie above vertical or horizontal lines

in C. Let H be a vertical side, V a horizontal side, and τH and τV the respective reflections.

Let P = (Q ∪ τHQ) ∪ τV (Q ∪ τHQ). Then P is the union of 4 copies of Q. Looking down

from ∞ on the floor of P , label by A the non-vertical face adjacent to the top-left vertex

and to the vertical face opposite H. Label any non-vertical faces adjacent to this face B.

Proceed to label every non-vertical face A or B, with no two adjacent faces sharing the same

label. The symmetry of P implies that this labeling is symmetric in both horizontal and

vertical directions. Define the subgroup Γ as follows. Given a non-vertical side Pi of P , if

Pi has label A, let the element τHτi belong to Γ; if Pi has label B, let τV τi belong to Γ. If
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H ′ is the face opposite H, and V ′ opposite V , let τHτH′ and τV τV ′ belong to Γ. Then P is

a DF domain for Γ.

Remark. Given a group Γ constructed as in the above proof, note that Γ is not an index

2 subgroup of the group of reflections in the polyhedron (Q ∪ τHQ). This is because the

reflection τH will be absent from this group, preventing the construction of elements of Γ of

the form τHτi. The same is valid for the group of reflections in the polyhedron (Q ∪ τVQ).

Furthermore, Γ is not the rotation subgroup of any reflection group, as can be seen from

the fact that Γ possesses torus cusps.

Remark. The following is an alternative definition pointed out by Allcock. Given the

polyhedron Q, color the faces white or black so that adjacent faces have different colors.

Then define a map ψ : G → Z/2Z × Z/2Z that sends all white reflections to (1, 0) and all

black reflections to (0, 1). Then the subgroup Γ is the kernel of ψ.

Since there is no direct analogue of Theorem 3.2.4 for Kleinian groups, the question

arises as to what, if anything, is implied about a Kleinian group by it having a DF domain.

For example, one might ask whether such groups must have trivial cuspidal cohomology.

The following example gives a Kleinian group which admits a DF domain, but which has

non-trivial cuspidal cohomology; that is, there exists a non-peripheral homology class of

infinite order in the first homology of the quotient space.

Example. Let Γ < PSL2(C) be generated by the matrices(
1 5
0 1

)
,

(
1 5i
0 1

)
,

(
0 −1√

2√
2 0

)
,

(
−
√

2 i√
2

−i
√

2 −
√

2

)
,

and (
1 a
0 1

)(
0 −1√

2√
2 0

)(
1 ā
0 1

)
=

(√
2a

√
2aā− 1√

2√
2

√
2ā

)
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for each a ∈ {1, 2, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i, 1− i, 2− i,−2i, 1− 2i, 2− 2i}, where ā is the

complex conjugate of a. Then the isometric spheres of these matrices have centers at the

Gaussian integers {x + iy | x, y ∈ Z} and radius 1√
2
. The square with vertices at ± 5

2 ±
5
2 i

is a Dirichlet domain for the action of Γ∞. Let P be the intersection of the exterior of

all these isometric spheres with the chimney above the given rectangle. Then P is a DF

domain for Γ, with Dirichlet center any point of P̊ above 0. Every dihedral angle of P is

π
2 . The quotient space H3/Γ has 14 boundary components; the cusp at∞ gives a boundary

torus, and each of the 13 cusp cycles in C gives a (2, 2, 2, 2) or a (2, 4, 4) sphere (see Section

2.3). Thus the peripheral homology has rank 1. Computation using Gap [19] gives that

H1(H3/Γ) has Q-rank 2, so there is infinite non-peripheral homology.

Remark. The cuspidal cohomology of this example has rank 1, but it can be modified to

give examples where this rank is arbitrarily high.

Remark. This example is arithmetic. To see this, observe that Γ belongs to the normalizer

N(Γ0(2)) of Γ0(2) < PSL2(O1); this follows from the fact that

γ =

(
0 −1√

2√
2 0

)

belongs to this normalizer, and each of the generators can be written as the product of γ

with an element of Γ0(2). Since Γ has finite covolume, it must be a finite index subgroup of

an arithmetic group, and so it is itself arithmetic.

Remark. The quotient space of H3 by this group is not a manifold, so one can thus ask

whether there exists another example which has non-trivial cuspidal cohomology, and which

is additionally torsion-free.

Although there does not appear to be a specific condition for a Kleinian group which
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is equivalent to having a DF domain, we can say something about a group which admits a

DF domain. We cannot always decompose an orientation-preserving isometry of H3 into the

composition of two reflections, but Carathéodory [13] shows that we need at most four. If

γ /∈ Γ∞, these can be taken to be γ = γ4 ◦ γ3 ◦ γ2 ◦ γ1, where γ1 is reflection in the isometric

sphere Sγ , γ2 in the vertical plane Rγ bisecting Sγ and Sγ−1 , and γ4 ◦ γ3 is rotation around

the vertical axis through the North pole of Sγ−1 .

Theorem 5.1.3. Suppose the Kleinian group Γ admits a DF domain P . Then the planes

Rγ , for side-pairings γ ∈ Γ \Γ∞ of P , all intersect in a vertical axis. Furthermore, for each

such γ, γ4 ◦ γ3 = 1, and so each element of the corresponding generating set for Γ has real

trace.

Proof. Let P be a Ford domain. Suppose there is some side-pairing γ such that γ4 ◦ γ3 6= 1.

By considering the North pole of Sγ and its image, the North pole of Sγ−1 , we see that if

P were a Dirichlet domain, its center w0 would have to be in the plane Rγ . But given any

such choice of w0, one can find a point w ∈ P ∩ Sγ such that d(w0, w) 6= d(w0, γ(w)). Thus

P is not a Dirichlet domain. Since each γ ∈ Γ \ Γ∞ is then simply the composition of two

reflections, it is the conjugate in PSL2(C) of an element of PSL2(R). It thus has real trace.

Since it is assumed that any element of Γ∞ is parabolic, these too have real trace.

Next suppose that the planes Rγ do not have a common intersection. Since we know that

γ4 ◦ γ3 = 1, for a given γ, the plane Rγ represents the set of potential Dirichlet centers. If

there is no common such center, P is not a Dirichlet domain. Thus if P is a DF domain,

the planes Rγ have a common intersection.

The examples given earlier in this section give a flavor of the particular case with
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only two distinct, perpendicular planes Rγ . It is therefore possible for DF domains to

be more complicated than this. This theorem provides a useful criterion for having a DF

domain, which can be used to check known Ford domains. Observe that the vertical axis

of intersection of the planes Rγ must correspond to a Dirichlet center for the action of Γ∞.

Thus we see that the figure-8 knot group [38], as well as the Whitehead link group and

the group of the Borromean rings [47] do not admit DF domains. Furthermore, the groups

obtained from a standard Ford domain in [48] cannot admit DF domains. Although in

some cases, with the right choice of Ford domain, one can generate congruence subgroups of

Bianchi groups using elements of real trace, the sides of the domain are identified in a way

similar to the corresponding Fuchsian congruence subgroup, and so these groups seldom

admit a DF domain.

5.2 Reflection Groups

In this section, we prove Theorem 5.0.2 by exhibiting an example of a maximal

arithmetic reflection group in Isom(H3) which is not congruence. This construction is very

much informed by the nature of the non-congruence examples found in Chapter 4; we first

recall how those are constructed, without reference to DF domains.

We may summarize the method for constructing non-congruence arithmetic max-

imal hyperbolic reflection groups in H2 as follows: begin by considering maximal non-

cocompact arithmetic Fuchsian groups; restrict attention to those of genus zero, and which

are not themselves reflection groups, but which are, in some sense, “almost” reflection

groups; construct a subgroup of index 2 which is a reflection group, and maximal by the

small index; test this group for congruence.
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Though we have less information about hyperbolic reflection groups in H3, there is

no obstruction to carrying out a similar method there. In particular, we seek a maximal

non-cocompact arithmetic Kleinian group which admits a Ford domain with the following

property: all by two of the faces are paired with their reflection in a fixed vertical plane R;

and the remaining two sides are paired with themselves via order two rotations.

We begin by recalling that the analogues of PSL2(Z) which we will consider are

the Bianchi groups PSL2(Od), where d is a positive square-free integer, and Od is the ring

of integers of the number fields Q(
√
−d). It is known that the non-cocompact maximal

arithmetic Kleinian groups are precisely the normalizers N(Γ0(J)) < PSL2(C) for (square-

free) ideals J < Od (see Borel [8], Chinburg–Friedman [15], and Chapter 11 of Maclachlan–

Reid [28]).

Consider the group Γ0(5) < PSL2(O2), where O2 = Z[
√
−2]. It consists of the

matrices

Γ0(5) =

{(
a b
5c d

)}
< PSL2(O2).

In this case O2 is a principal ideal domain, and the ideal (5) is prime, so the normalizer

N(Γ0(5)) is generated by Γ0(5) and the involutions(
0 − 1√

5√
5 0

)
,

(
−i 0
0 i

)
,

where i =
√
−1. We now construct a Ford domain for this normalizer.

We begin by selecting a fundamental region for the stabilizer of ∞ acting on C; we

choose the rectangle with vertices at ± 1
2 and ± 1

2 +
√
−2
2 . Sides of this are paired by the

three isometries

γ1 =

(
1 1
0 1

)
, γ2 =

(
−i 0
0 i

)
, γ3 =

(
−i

√
2

0 i

)
.
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Next we seek isometric spheres in this region; we find that the following isometries suffice:

γ4 =

(
0 − 1√

5√
5 0

)
, γ5 =

( √
5 2√

5

2
√

5
√

5

)
, γ6 =

(
−i
√

5 2i
√
−2√
5

i
√

5
√
−2 i

√
5

)
,

γ7 =

(
(1 +

√
−2)
√

5 7√
5

2
√

5 (1−
√
−2)
√

5

)
, γ8 =

(
2 +
√
−2 1

5 2−
√
−2

)
,

γ9 =

(
−
√

5 −2(1−
√
−2)√

5

(1 +
√
−2)
√

5
√

5

)
, γ′9 =

( √
5 −2(1+

√
−2)√

5

(1−
√
−2)
√

5 −
√

5

)
.

Observe that γ4, γ5, γ6, γ7 and γ8 pair their isometric spheres with their reflection

in the plane above the y-axis (so x = 0) - this can be seen most readily by observing that

in each case, the trace is real, and the diagonal entries are complex conjugates. In contrast,

γ9 and γ′9 are involutions whose axes are as indicated in Figure 5.1 below.

Denote by Q the polyhedron which is that portion of the above Ford domain lying

above the rectangle with vertices at − 1
2 , − 1

2 +
√
−2
2 ,

√
−2
2 and 0 ∈ C. Note that not all of

the dihedral angles of Q are submultiples of π. Then let Q′ = Q ∪ γ9Q. As above, we use

the relations of the side-pairings in N(Γ0(5)) to check the dihedral angles of Q′ and find

that here they are all submultiples of π. We thus consider the group Γref
Q′ of reflections in

the side of Q′, and its orientation-preserving index 2 subgroup ΓQ′ .

We find that ΓQ′ is generated by the following elements:

γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ
′
9γ9, γ

′
9γ2 ◦ γ9, γ

′
9γ3γ9, γ

′
9γ5γ9.

Each isometry on this list is the composition of reflection in the corresponding face of Q′

with reflection in the vertical plane x = 0. The claim now is that ΓQ′ , which is an arithmetic

hyperbolic reflection group, is maximal and not congruence.

To see that ΓQ′ is maximal, observe that it contains γ4 =

(
0 − 1√

5√
5 0

)
, and that

this cannot belong to any other normalizer N(Γ0(J)) for an ideal J < O2, and hence ΓQ′

79



Figure 5.1: A Ford domain for N(Γ0(5))
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cannot be contained in any maximal arithmetic Kleinian group but N(Γ0(5)). We observe

that this maximal group is not a reflection group, and hence that Γref
Q′ is maximal.

To examine congruence, we set up the same diagram as we had for Fuchsian groups

in Chapter 3. Letting G = PSL2(O2) ∩ ΓQ′ = Γ0(5) ∩ ΓQ′ , we find that G has index 52 in

PSL2(O2), and we obtain a representation

ϕG : PSL2(O2)→ S52.

This enables us to calculate that the orders of the images of the matrices(
1 1
0 1

)
and

(
1
√
−2

0 1

)
under the map ϕG are both equal to 5, an thus that the Z-level of G is 5. Since the ideal (5)

is prime in O2 it follows that the O2-level of G is also (5). By the analogue of Wohlfahrt’s

Theorem given in Theorem 2.4.3, G is congruence if and only if G contains the principal

congruence subgroup Γ(5). We have the following diagram.

PSL2(O2)

26

JJJJJJJJJJ

m

l

N(Γ0(5))

4

oooooooooooo
2

NNNNNNNNNNNNN
Γref
Q′

2

||
||

||
||

Γ0(5)

2

PPPPPPPPPPPPPP ΓQ′

4

nnnnnnnnnnnnnn

G

Core(PSL2(O2), G)

?

Γ(5)

We are given a formula for the index [PSL2(O2) : Γ(5)] by Fine [17] and find that this index

is equal to l = 1550. By using Magma [9] we determine that the index of the kernel of ϕG
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induced by the action on cosets is m = 63897600. We therefore conclude that G, and hence

Γref
Q′ , is not congruence.
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15(2):213–230, 1982.
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