Reliability and factorial validity of the Canadian Wechsler Intelligence Scale for Children–Fifth Edition

Marley W. Watkins, Stefan C. Dombrowski, and Gary L. Canivez

Department of Educational Psychology, Baylor University, Waco, Texas, USA; School Psychology Program, Rider University, Lawrenceville, New Jersey, USA; Department of Psychology, Eastern Illinois University, Charleston, Illinois, USA

ABSTRACT
The reliability and factorial validity of the Wechsler Intelligence Scale for Children–Fifth Edition: Canadian (WISC-V CDN) was investigated. The higher-order model preferred by Wechsler (2014b) contained five group factors but lacked discriminant validity. An alternative bifactor model with four group factors and one general factor, akin to the traditional Wechsler model, exhibited the best global fit. The general factor accounted for 33.8% of the total variance and 67.6% of the common variance, but none of the group factors accounted for substantial portions of variance. All together, the general and group factors accounted for 50% of the total variance. Omega reliability coefficients demonstrated that reliable variance of WISC-V CDN factor index scores was primarily due to the general factor, not the group factors. It was concluded that the cumulative weight of reliability and validity evidence suggests that psychologists should focus their interpretive efforts at the general factor level and exercise extreme caution when using group factor scores to make decisions about individuals.

The administration and interpretation of standardized psychological tests to assess cognitive functioning is a fundamental responsibility of psychologists (Australian Psychological Society [APS], 2009; Canadian Psychological Association [CPA], 2007; Evers et al., 2012; Hsu, Huang, & Cheng, 2009; Kranzler, 2016; Kranzler, Benson, & Floyd, 2016). Because “incompetent action is unethical per se” (CPA, 2000, p. 15), psychological assessment requires that psychologists have “a thorough understanding of statistics and psychometrics” sufficient to comprehend “the technical merits of selected instruments in terms of such characteristics as validity, reliability, standardization and test construction” (CPA, 2007, p. 8). Similar demands for understanding and applying psychometric evidence to test selection and interpretation have been articulated in other professional standards (American Educational Research Association [AERA], American Psychological Association [APA], & National Council on Measurement in Education [NCME], 2014; APS, 2009; British Psychological Society [BPS], 2007; Evers et al., 2013; International Test Commission [ITC], 2001; Krishnamurthy et al., 2004).

Psychometric competence is important when evaluating new assessment instruments (CPA, 2007). However, it is likely that “new” cognitive instruments encountered by psychologists will be revisions of existing instruments. In that case, Beaujean (2015a) recommended that a revision be treated as a new test because scores from the two instruments cannot be assumed to be directly comparable without supporting evidence. For example, subtest patterns and psychometric characteristics have been found to differ across Wechsler versions (Benson, Beaujean, & Taub, 2015; Strauss, Spreen, & Hunter, 2000).

Canadian WISC-V

A salient “new” test, the Wechsler Intelligence Scale for Children–Fifth Edition: Canadian (WISC-V CDN; Wechsler, 2014a), was recently published. According to Beaujean (2015a), its scores cannot be assumed to be identical to those of its predecessor and its psychometric merits must be independently evaluated by prospective users (AERA, APA, & NCME, 2014; CPA, 2007). This seems especially appropriate because the WISC-V CDN was a major revision involving the addition of three new subtests and two new factor indices, deletion of two subtests, and changes to the contents and instructions of all remaining subtests (Wechsler, 2014b).

Considerable psychometric information on the WISC-V CDN was provided in its manual (Wechsler, 2014b). However, sole reliance on the opinion of test
authors and publishers “is akin to relying solely on the opinions provided by pharmaceutical companies to make decisions on whether to take their medication. While their information can be valuable, these individuals . . . have a conflict of interest” (Beaujean, 2015a, p. 53). Additional information about the WISC-VCDN can be obtained from independent test reviews. For example, the WISC-VCDN was recently reviewed and found to maintain “many of the strong practical and psychometric qualities of its predecessors,” but the size of its norming sample was criticized as insufficient (Cormier, Kennedy, & Aquilina, 2016, p. 332).

Although this review of the WISC-VCDN characterized its psychometric properties as strong, it did not critically analyze the psychometric evidence presented by Wechsler (2014b) to support its claims of reliability and validity of the WISC-VCDN. Nor was that psychometric evidence critically evaluated in a review of the U.S. version of the WISC-V (Na & Burns, 2016). Specifically, psychometric evidence presented by Wechsler (2014b, 2014c) was uncritically reported with no evaluation of the methods used to estimate reliability nor the degree to which the scoring structure of the WISC-V matched the theoretical structure of the underlying constructs it purports to measure—that is, evidence to support its factorial or structural validity (Messick, 1995). These omissions are puzzling, given that methodological and practical problems with similar reliability and validity methods have previously been reported (Canivez & Kush, 2013; Canivez, Watkins, & Dombrowski, 2016, 2017; Dombrowski, Canivez, Watkins, & Beaujean, 2015).

Validity

Regarding factorial validity, Wechsler (2014b) proposed a higher-order structure for the WISC-VCDN with an overarching general intelligence (g) factor being loaded by five general factors which, in turn, were loaded by 16 primary and secondary subtests. This structure is illustrated in Figure 1 and was obtained via confirmatory factor analysis (CFA). However, “CFA studies based upon weak theoretical perspectives, lack of testing alternative theoretical views, or insufficient evidence may not offer adequate support of construct validity” (DiStefano & Hess, 2005, p. 225).

Guided by best practices in CFA (Bowen & Guo, 2012; Brown, 2015; DiStefano & Hess, 2005; Kline, 2016; MacCallum & Austin, 2000; McDonald & Ho, 2002; Widaman, 2012), there are six notable concerns regarding the CFA methods reported by Wechsler (2014b). First, not all plausible WISC-VCDN models were tested by Wechsler (2014b). Inclusion of alternative conceptualizations of test structure is essential to provide convincing support for one model over another (Brown, 2015). Failure to include alternative models makes researchers susceptible to confirmation bias (MacCallum & Austin, 2000). That is, prone to seek or interpret “evidence in ways that are partial to existing beliefs” (Nickerson, 1998). For example, Wechsler (2014b, p. 53) stated that the preferred five-factor model “is supported by strong model fit indicators and consistently high factor loadings.” However, Figure 1 clearly shows standardized factor loadings that are not generally considered to be high (e.g., .19–.34; DiStefano & Hess, 2005; Widaman, 2012).

The potential for confirmation bias may have been heightened by the nature of the models selected for evaluation of the WISC-VCDN. According to Wechsler (2014b), CFA was used “to confirm whether the final factor model specified in the U.S. WISC-V could be applied to the Canadian WISC-V” (p. 48). Thus, only those models previously selected by the publisher of the U.S. WISC-V were included. A further caution concerns an intrinsic limitation of CFA. Namely, CFA can demonstrate that a model is

Figure 1. Standardized structure of the WISC-VCDN proposed by Wechsler (2014b).

SI = Similarities, VO = Vocabulary, IN = Information, CO = Comprehension, DS = Digit Span, LN = Letter-Number Sequencing, PS = Picture Span, AR = Arithmetic, MR = Matrix Reasoning, FW = Figure Weights, PC = Picture Concepts, BD = Block Design, VP = Visual Puzzles, CD = Coding, SS = Symbol Search, CA = Cancellation, VC = Verbal Comprehension factor, WM = Working Memory factor, FR = Fluid Reasoning factor, VS = Visual Spatial factor, PS = Processing Speed factor, and g = General Intelligence.
consistent with the data but “it does not confirm the veracity of the researcher’s model” (Kline, 2016, p. 21).

There is a variety of factorial models that can represent the structure of cognitive abilities. Those that include a general intelligence factor can be roughly separated into higher-order versus bifactor (sometimes called nested or direct hierarchical) models (Beaujean, 2015b). Figure 2 illustrates those two types of models. The higher-order model conceptualizes \(g \) as a superordinate factor having a direct effect on several group factors but only an indirect effect on the measured variables. Thus, the relationship of general intelligence to the measured variables is fully mediated by the group factors. In contrast, the bifactor model conceptualizes \(g \) as a breadth factor having direct effects on the measured variables, as do the group factors. Wechsler (2014b) only evaluated higher-order factor models for the WISC-V\(^{CDN} \). Carroll’s (1993) cognitive model, which is best represented through a bifactor model (Beaujean, 2015b), was incorporated into the Cattell-Horn-Carroll theory (CHC; Schneider & McGrew, 2012) that was considered in development of the WISC-V\(^{CDN} \) (Wechsler, 2014b). Additionally, bifactor models have been found to be good representations of the structure of other tests of cognitive ability (Brunner, Nagy, & Wilhelm, 2012; Canivez, 2014; Cucina & Howardson, 2017; Dombrowski et al., 2015; Gignac & Watkins, 2013; Golay, Reverte, Rossier, Favez, & Lecerf, 2013; Watkins & Beaujean, 2014). Finally, the bifactor model is a viable candidate for measures that have demonstrated good fit to a second-order model (Reise, 2012) and offers advantages for subsequent investigations of reliability and external validity (Benson, Kranzler, & Floyd, 2016; Brown, 2015; Canivez, 2016; Chen, Hayes, Carver, Laurenceau, & Zhang, 2012; Reise, Moore, & Haviland, 2010). Therefore, the omission of bifactor models from the CFA of Wechsler (2014b) calls into question the scoring structure of the WISC-V\(^{CDN} \) (Wasserman & Bracken, 2013).

Second, the method used to scale the latent variables in CFA models was not disclosed by Wechsler (2014b). In CFA, the distribution of latent variables (i.e., factors) and disturbance terms (i.e., factor variances) requires that some components be fixed in order to scale the latent variables and allow the model to be statistically

Figure 2. Conceptual illustration of higher-order versus bifactor models.
identified. The choice of scaling method can affect unstandardized parameters and may "yield different conclusions regarding the statistical significance of freely estimated parameters" (Brown, 2015, p. 133). Typically, either a reference indicator loading or a latent variable variance is fixed. Beaujean (2016) replicated the results reported in Wechsler (2014c) and deduced that an effects-coding method (Little, Slegers, & Card, 2006) was probably used with the U.S. WISC-V. All three methods should produce the same global model fit measures (i.e., chi-square, degrees of freedom, approximate fit indices) but Beaujean (2016) demonstrated that a modification of the effects-coding method was used in U.S. WISC-V analyses (2014c) that caused degrees of freedom to be understated with cascading consequences for fit statistics that rely on degrees of freedom for their computation. Beaujean (2016) concluded that this modified effects-coding method “should be employed with caution because it could produce multiple problems” (p. 406). Given that the analyses reported by Wechsler (2014b) for the Canadian WISC-V mirror those found in Wechsler (2014c) for the U.S. WISC-V, it appears that this modified effects-coding method was also employed in the WISC-VCDN CFA. The consequences of using a nonstandard scaling method in the WISC-VCDN analyses are unknown but should be explored through replication using conventional scaling methods.

Third, the method of estimating parameters in the CFA models tested by Wechsler (2014b) was nonstandard. “The choice of estimation method becomes essential because it will affect evaluation of model fit and parameter estimates” (Lei & Wu, 2012). Maximum likelihood (ML) estimation is typically used with multivariate continuous data and either weighted least squares (WLS) or robust ML with nonnormal data (Brown, 2015). Wechsler (2014b) reported that WLS estimation via SAS software was employed in CFA of the WISC-VCDN. In its default version, the SAS WLS estimator is an asymptotic distribution-free estimator that is biased with sample sizes as small as those found in the WISC-VCDN standardization sample (Lei & Wu, 2012). When considering estimators for continuous data, Hoyle (2000, p. 478) cautioned that “the use of an estimator other than maximum likelihood requires explicit justification” and Brown (2015, p. 346) concluded that “WLS is not recommended.” Given these caveats, use of WLS is perplexing and represents a departure from the use of ML estimation typically observed in CFA of intelligence tests. Its effect is unknown but should be investigated.

Fourth, the preferred five-factor model abandoned the parsimony of simple structure (Thurstone, 1947) by allowing multiple cross-loadings of the Arithmetic subtest (see Figure 1). Simple structure facilitates interpretation because each variable loads onto only one factor. From a broader perspective, the parsimony of simple structure honors "the purpose of science [which] is to uncover the relatively simple deep structure principles or causes that underlie the apparent complexity observed at the surface structure level" (Le, Schmidt, Harter, & Lauver, 2010, p. 112). Following this concept, cross-loadings that are not both statistically and practically significant (i.e., >.30) might best be constrained to zero (Stromeyer, Miller, Sriramachandramurthy, & DeMartino, 2015). In fact, simple structure is implied by the scoring structure of the WISC-VCDN where composite scores are created from unit-weighted sums of separate subtest scores. Thus, the preferred five-factor model is discrepant from the scoring structure of the WISC-VCDN. Additionally, this complex structure can create identification problems because it deviates from an independent clusters structure (McDonald & Ho, 2002), especially when the primary index scales are formed by only two subtests.

Fifth, selection of the preferred five-factor model was primarily based on chi-square difference tests of nested models. Wechsler (2014b) acknowledged the sensitivity of the chi-square test of exact fit to trivial differences when analyzing large samples, but nevertheless used chi-square difference tests of nested models to identify the preferred five-factor model. However, large samples also make the chi-square difference test sensitive to trivial differences. In fact, Millsap (2007) admonished that "ignoring the global chi-square tests while at the same time conducting and interpreting chi-square difference tests between nested models should be prohibited as nonsensical.” Additionally, there was no control of Type I error levels for these multiple statistical tests (Shaffer, 1995). For example, Wechsler (2014b) reported 9 chi-square difference tests at the .05 alpha level, which with a simple Bonferroni correction would suggest that each test should be set at .006 to maintain a study-wide error rate at the .05 level. Hence, the differences in global fit relied on by Wechsler (2014b) to select preferred models might reflect only trivial differences between models.

A somewhat related sixth concern is that global model fit, by itself, is an inadequate measure of model veracity (Bowen & Guo, 2012; Brown, 2015; DiStefano & Hess, 2005; Kline, 2016; MacCallum & Austin, 2000; Widaman, 2012). Even with good global fit, relationships among variables might be weak, parameter estimates might not be statistically significant, the latent variables might not account for meaningful variance in
Concerns regarding reliability of WISC-V_{CDN} scores are interrelated with concerns about the validity of its scores because reliability is necessary but not sufficient for validity (Geisinger, 2013). Different estimates of reliability assess different sources of scoring inconsistency. For example, test–retest coefficients tap the consistency of responses across time while internal consistency coefficients monitor the consistency of responses across test content. Nevertheless, all reliability estimates are a property of the scores on a test for a specific group of examinees (Geisinger, 2013). That is, estimates might differ from sample to sample. This distinction is important because Wechsler (2014b) did not compute test–retest reliability estimates for the WISC-V_{CDN} standardization sample. Rather, stability coefficients from the U.S. standardization of the WISC-V were reported for the WISC-V_{CDN}. This substitution was especially meaningful for the speeded subtests that comprise one of the composite index scores. Consequently, the reliability of those scores among Canadian children is unknown.

Wechsler (2014b) reported split-half coefficients computed from the standardization sample as indices of reliability for nonspeeded WISC-V_{CDN} subtests. The resulting coefficients ranged from .83 to .94, whereas composite index score coefficients based on those subtests ranged from .91 to .96. Wechsler (2014b) characterized these coefficients as evidence providing “strong support for the precision of WISC-V scores” (p. 39). Given these strong reliability coefficients, clinicians have been encouraged to interpret WISC-V_{CDN} score patterns, especially those at the factor index level (Wechsler, 2014b).

However, neither the method used to split subtests into equivalent scales nor the method used to compute reliability indices for composite scores were specifically identified by Wechsler (2014b). Critically, the assumptions underlying the split-half method were neither explicated nor satisfied. Internal consistency coefficients may be biased, either too low or too high, when those assumptions are violated, as they undoubtedly are in multidimensional tests like the WISC-V_{CDN} (Brown, 2015; Brunner et al., 2012; Raykov & Marcoulides, 2011). Given this reality, Geisinger (2013, p. 41) concluded that split-half reliability “should be seen primarily as a historical approach to estimating reliability . . . [and] there is simply no reason to use these procedures today.” This opinion seems to be widely shared among measurement experts (Evers et al., 2013; Raykov & Marcoulides, 2011).

As an alternative to split-half and alpha internal consistency reliability estimates, model-based reliability estimates that make fewer and more realistic assumptions have been developed (Dunn, Baguley, & Brunsden, 2014; Reise, 2012). Critically, model-based estimates properly estimate reliability for multidimensional tests where item scales and factor loadings differ (Brunner et al., 2012; Hancock & Mueller, 2001). The omega (ω) family of coefficients (McDonald, 1999; Zinbarg, Revelle, Yovel, & Li, 2005) are the principal model-based reliability coefficients reported in current research. They replace the classical test theory hypothesis of true and error variance with the factor analytic conceptualization of common and unique variance. Especially for multidimensional tests like the WISC-V_{CDN}, omega “provides a better estimate for the composite score and thus should be used (Chen et al., 2012, p. 228).

There are several omega variants. The most general omega coefficient is omega total (ω), which is an “estimate of the proportion of variance in the unit-weighted total score attributable to all sources of common variance” (Rodriguez, Reise, & Haviland, 2016, p. 224). High ω values indicate a highly reliable multidimensional total composite
score. \(\omega \) can also be computed for each subscale score using the same logic. That is, the proportion of variance in each unit-weighted subscale score that can be attributed to a blend of general and group factor variance. Called omega subscale (\(\omega_s \)), high values indicate a highly reliable multidimensional group composite score. Akin to coefficient alpha, \(\omega \) and \(\omega_s \) both reflect the systematic variance attributable to multiple common factors but neither can distinguish between the precision of the general factor versus the precision of the group factor (Brunner et al., 2012). There is no universally accepted guideline for coefficient alpha values sufficient for high-stakes decisions about individuals, but values in the .80–.90 range are commonly recommended (Thordike & Thordike-Christ, 2010; Wasserman & Bracken, 2013). Given their similarity, omega coefficients should meet the same standard as alpha coefficients.

The distinction between general and group factor variance can be made with omega hierarchical coefficients because they reflect variance attributable to a single factor independent of all other factors and are therefore measures of the precision with which a score assesses a single construct. When applied to the general factor, omega hierarchical (\(\omega_h \)) is the ratio of the variance of the general factor compared to the total test variance and "reflects the percentage of systematic variance in unit-weighted total scores that can be attributed to the individual differences on the general factor" (Rodriguez et al., 2016, p. 224). Called omega hierarchical subscale (\(\omega_{hs} \)) when applied to group factors, this index identifies the proportion of variance in the group factor score that is solely accounted for by its intended construct. If \(\omega_{hs} \) is low relative to \(\omega_s \), most of the reliable variance of that group factor score is due to the general factor, which precludes meaningful interpretation of that group factor score as an unambiguous indicator of the target construct (Rodriguez et al., 2016). In contrast, a robust \(\omega_{hs} \) coefficient suggests that most of the reliable variance of that group factor score is independent of the general factor, and clinical interpretation of an examinee’s strengths and weaknesses beyond the general factor can be conducted (Brunner et al., 2012; DeMars, 2013; Reise, 2012). There is no empirically based guideline for acceptable levels of omega hierarchical coefficients for individual clinical decisions, but it has been suggested that they should, at a minimum, exceed .50, although .75 would be preferred (Reise, 2012).

Goals

Given the foregoing discussion, the evidence provided by Wechsler (2014b) regarding the reliability and validity of the WISC-V\(^{CDN} \) is open to question. However, competent psychological practice demands strong supportive evidence of reliability and validity before any test, including the WISC-V\(^{CDN} \), can be used to make high-stakes decisions about vulnerable children (AERA, APA, & NCME, 2014). Consequently, the factor structure of the WISC-V\(^{CDN} \) was exhaustively analyzed to identify an appropriate scoring structure; and modern model-based estimates of reliability for the WISC-V\(^{CDN} \) were computed for a variety of models.

Method

Participants

Participants were the WISC-V\(^{CDN} \) standardization sample of children aged 6 years–16 years of age. Norming was conducted in 2013–2014 and included 880 children, stratified by age, sex, race and ethnicity, parent education level, and geographic region. The sample appeared to be representative of English-speaking Canadian children (see Wechsler, 2014b for full details).

Instruments

The WISC-V\(^{CDN} \) is a norm-referenced, individually administered intelligence battery appropriate for children aged 6 through 16 years. According to the WISC-V\(^{CDN} \) manual, CHC theory as well as neurodevelopmental research and clinical utility were considered in its development and these frameworks can be utilized in the interpretation of WISC-V\(^{CDN} \) scores.

The WISC-V\(^{CDN} \) contains 10 primary and 6 secondary subtests (\(M = 10, SD = 3 \)). The 5 CHC factor index scores (\(M = 100, SD = 15 \)) are computed from the 10 primary subtests: Similarities (SI) and Vocabulary (VO) create the Verbal Comprehension Index (VCI); Block Design (BD) and Visual Puzzles (VP) subtests create the Fluid Reasoning Index (FR); Digit Span (DS) and Picture Span (PS) subtests create the Working Memory Index (WMI); and Coding (CD) and Symbol Search (SS) subtests create the Processing Speed Index (PSI). The Full Scale IQ (FSIQ; \(M = 100, SD = 15 \)) is computed using only 7 primary subtests: SI, VO, BD, MR, FW, DS, and CD. The 6 secondary subtests are proposed to load onto the same factors as the primary subtests: Information (IN) and Comprehension (CO) on the VC factor; Picture Concepts (PC) on the FR factor; Arithmetic (AR) and Letter-Number Sequencing (LN)
on the WM factor; and Cancellation (CA) on the PS factor.

Wechsler (2014b) provides considerable information on the reliability and validity of WISC-VCDN scores. For example, the average split-half reliability of the FSIQ for the total standardization sample was .96, whereas the average reliability of factor index scores ranged from .88 (PSI) to .93 (FRI). The reliability of subtest scores ranged from .81 (SS) to FW (.94). Concurrent validity was supported by a comparison of WISC-VCDN scores to other cognitive and achievement tests. Convergent and discriminant validity was supported by studies of WISC-VCDN scores among clinical groups. Factorial validity evidence was presented via a series of CFA with the final structural model adhering to a CHC framework (illustrated in Figure 1).

Analyses

Correlations, means, and standard deviations of the 16 WISC-VCDN primary and secondary subtests for the total standardization sample were extracted from Table 4.1 of Wechsler (2014b). All CFA were conducted with Mplus 7.4 (Muthén & Muthén, 2015) from covariance matrices using the maximum likelihood estimator. Latent variable scales were identified by setting a reference indicator in higher-order models and by setting the variance of latent variables in bifactor models (Brown, 2015). Parameter estimates were constrained to equality in models with only two indicators per factor (Gignac, 2007).

Models

The evaluated models were duplicates of those specified by Wechsler (2014b, p. 50) and are identified in Table 1. Bifactor variants of simple structure models were also included to allow a comparison of alternative models not tested by Wechsler (2014b). Global model fit was evaluated with the chi-square likelihood ratio, comparative fit index (CFA), Tucker-Lewis index (TLI), standardized root mean square residual (SRMR), root mean square error of approximation (RMSEA), and Akaike’s information criterion (AIC). Given the large sample size, it was expected that the chi-square likelihood test of exact fit would be rejected (Brown, 2015). Accordingly, global approximate fit measures that consider absolute (SRMR and RMSEA) and relative (CFI, TLI) fit as well as parsimony (RMSEA, AIC) were relied on to assess alternative models (Gignac, 2007; Loehlin & Beaujean, 2017). Based on prior research and expert suggestions (Hu & Bentler, 1999), good model fit required TLI/CFI ≥ .95 as well as SRMR and RMSEA ≤ .06. The AIC was used to compare the global fit of alternative models, with the lowest AIC value indicating the best model (Akaike, 1987). Meaningful differences between well-fitting models were also evaluated using ΔCFI/TLI > .01, ΔRMSEA > .015 (Chen, 2007; Cheung & Rensvold, 2002; Gignac, 2007), and ΔAIC > 10 (Burnham & Anderson, 2004). Given that global fit indices are averages that can mask areas of local misfit (McDonald & Ho, 2002), potentially invalidate a model, parameter estimates were scrutinized to ensure that they made statistical and substantive sense (Brown, 2015).

Results

Global fit measures for all tested models are reported in Table 2. Models with fewer than four group factors failed to achieve good model fit, whereas models with four and five group factors generally achieved good global fit. For models with four group factors, the bifactor version of the traditional Wechsler model was superior (see Figure 3). For the models with five group factors in a CHC structure, a relaxed bifactor version of model 5a exhibited the best global fit (see Figure 4). The initial bifactor version of model 5a was improper, exhibiting a negative variance estimate for the FR

Table 1. Alternative structural models for the WISC-VCDN with 16 primary and secondary subtests.

<table>
<thead>
<tr>
<th>Model</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
<th>Factor 5</th>
</tr>
</thead>
</table>

Note. SI = Similarities, VO = Vocabulary, IN = Information, CO = Comprehension, DS = Digit Span, LN = Letter-Number Sequencing, PS = Picture Span, AR = Arithmetic, MR = Matrix Reasoning, FW = Figure Weights, PC = Picture Concepts, BD = Block Design, VP = Visual Puzzles, CD = Coding, SS = Symbol Search, and CA = Cancellation. Complex loadings in each model underlined.
factor. When the FR and VS factors were allowed to correlate, the relaxed bifactor CHC model converged appropriately.

Given that evaluating models exclusively on the basis of global fit is insufficient, all models with good fit were also scrutinized for size of parameters, statistical significance of parameters, and interpretability (Bowen & Guo, 2012; Brown, 2015; Kline, 2016). Three models manifested negative error variances (see Table 2), which are statistically improper solutions that signal model misspecification.

Table 2. Fit statistics for WISC-V CDN 16 primary and secondary subtests for the total standardization sample (N = 880).

<table>
<thead>
<tr>
<th>Model</th>
<th>χ²</th>
<th>df</th>
<th>CFI</th>
<th>TLI</th>
<th>SRMR</th>
<th>RMSEA</th>
<th>RMSEA 90% CI</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (g)</td>
<td>1026.8</td>
<td>104</td>
<td>.829</td>
<td>.803</td>
<td>.062</td>
<td>.100</td>
<td>.095–.106</td>
<td>65914</td>
</tr>
<tr>
<td>2 (V-P)</td>
<td>902.2</td>
<td>103</td>
<td>.852</td>
<td>.828</td>
<td>.060</td>
<td>.094</td>
<td>.088–.100</td>
<td>65791</td>
</tr>
<tr>
<td>3 (V-P-PS)</td>
<td>635.3</td>
<td>101</td>
<td>.901</td>
<td>.883</td>
<td>.048</td>
<td>.078</td>
<td>.072–.083</td>
<td>65528</td>
</tr>
<tr>
<td>4a (VC-VS-WM-PS)</td>
<td>364.9</td>
<td>100</td>
<td>.951</td>
<td>.941</td>
<td>.039</td>
<td>.055</td>
<td>.049–.061</td>
<td>65260</td>
</tr>
<tr>
<td>4b Bifactor</td>
<td>214.8</td>
<td>88</td>
<td>.977</td>
<td>.968</td>
<td>.026</td>
<td>.040</td>
<td>.034–.047</td>
<td>65133</td>
</tr>
<tr>
<td>4b (VC-VS-WM-PS)</td>
<td>390.6</td>
<td>100</td>
<td>.946</td>
<td>.936</td>
<td>.039</td>
<td>.057</td>
<td>.052–.064</td>
<td>65285</td>
</tr>
<tr>
<td>4c (VC-VS-WM-PS)</td>
<td>325.8</td>
<td>99</td>
<td>.958</td>
<td>.949</td>
<td>.037</td>
<td>.051</td>
<td>.045–.057</td>
<td>65223</td>
</tr>
<tr>
<td>4d (VC-VS-WM-PS)</td>
<td>305.5</td>
<td>98</td>
<td>.962</td>
<td>.953</td>
<td>.036</td>
<td>.049</td>
<td>.043–.055</td>
<td>65204</td>
</tr>
<tr>
<td>5a (VC-VS-FR-WM-PS)</td>
<td>330.8</td>
<td>99</td>
<td>.957</td>
<td>.948</td>
<td>.038</td>
<td>.052</td>
<td>.046–.058</td>
<td>65228</td>
</tr>
<tr>
<td>5a Bifactor</td>
<td>208.1</td>
<td>87</td>
<td>Covariance matrix not positive definite. Negative variance estimate for Matrix Reasoning subtest.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b Bifactor Modified</td>
<td>231.4</td>
<td>89</td>
<td>Covariance matrix not positive definite. Negative variance estimate for FR factor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b (VC-VS-FR-WM-PS)</td>
<td>277.9</td>
<td>98</td>
<td>.967</td>
<td>.959</td>
<td>.035</td>
<td>.046</td>
<td>.039–.052</td>
<td>65177</td>
</tr>
<tr>
<td>5c (VC-VS-FR-WM-PS)</td>
<td>267.5</td>
<td>97</td>
<td>.968</td>
<td>.961</td>
<td>.035</td>
<td>.045</td>
<td>.038–.051</td>
<td>65168</td>
</tr>
</tbody>
</table>

Note. CFI = Comparative Fit Index, TLI = Tucker–Lewis Index, SRMR = Standardized Root Mean Square, RMSEA = Root Mean Square Error of Approximation, AIC = Akaike’s Information Criterion, g = general intelligence, V = Verbal, P = Performance, PS = Processing Speed, VC = Verbal Comprehension, VS = Visual Spatial, WM = Working Memory, FR = Fluid Reasoning. *Model numbers and letters correspond to those reported in the WISC–V CDN Manual (plus bifactor variants of simple structure models that were added for this study) and are higher-order models (unless otherwise specified) when more than one first-order factor was specified. **Models with only two indicators were constrained to equality for identification. Best fit indicators in bold. Indices not meaningfully different (ΔCFI and ΔTLI < .01, ΔRMSEA > .015, ΔAIC ≤ 10) from best fit shaded.
(McDonald, 2004). Although negative parameter values can be fixed to a small positive value to achieve a solution, "these remedial strategies are not recommended" (Brown, 2015, p. 167) because the resulting parameter estimates are likely to be biased and "should not be trusted" (Kline, 2016, p. 237). Consequently, those three offending models were removed from further consideration.

All higher-order models with CHC structure and complex loadings were marked by either improper solutions (5b and 5c) or with FR loadings on the general intelligence factor at such high levels (e.g., .99 for models 5d and 5e with attendant nonsignificant variance estimates) as to indicate that those factors were empirically redundant (Bowen & Guo, 2012; Le et al., 2010). Among the bifactor models with five group factors, only a modification of the bifactor version of model 5a generated a proper solution (see Figure 4). Thus, most models with five group factors exhibited good global fit but were invalidated by parameters that were statistically or substantively improper.

Based on global fit and simple structure, the bifactor version of model 4a was the superior model. All parameters were statistically significant, none were out-of-range, and all were substantively meaningful. However, it had two weaknesses: (a) several subtests had weak loadings on their group factor (AR at .09 onto WM and three indicators of VS ranging from .10 to .19) and (b) there was a substantial difference in loading strength between BD and VP subtests (Md = .50) when compared to FR, FW, and PC subtests (Md = .14). Thus, merging the FR and VS factors revealed strain. Of note, the loading of AR on the WM factor was low but statistically significant, whereas its loading was nonsignificant when allowed to load onto VC or PR instead of WM.

Given the parsimony afforded by its simple structure, the bifactor Wechsler model illustrated in Figure 3 was used for variance decomposition and computation of model-based reliability coefficients. Sources of variance from that model are presented in Table 3. The general factor accounted for 33.8% of the total variance and 67.6% of the common variance. None of the group factors accounted for substantial portions of variance. In fact, the general factor accounted for more than twice the total and common variance of all four group factors combined. Two subtests, PC and CA, exhibited low communalities, indicating that they did not substantially contribute to any of the factors. Only two subtests (IN and AR) were good measures of g, whereas three subtests (CD, SS, and CA) were poor measures of g (Kauffman, 1994). CA was an especially poor measure of g, loading at only .15. The other 11 subtests were fair measures of g (i.e., loadings from .50 to .69). All together, the general and group factors accounted for 50% of the total variance leaving another 50% due to specific variance and error.

The omega coefficients for the bifactor Wechsler model are reported in Table 4. They indicate that the general, VC, VS, and WM unit-weighted factor scores were reasonably reliable (i.e., near the .80–.90 range) in the sense that they reflected the systematic variance attributable to multiple common factors. However, when the systematic variance attributable to a single target factor of interest was indexed via omega hierarchical coefficients, only the general factor exhibited good reliability (ωh = .83), whereas the group factor coefficients were low (ωhs = .15–.48), suggesting that "much of the reliable variance of the subscale scores can be attributable to the general factor, and not what is unique to the group factors" (Rodriguez et al., 2016, p. 225). For example, 85% of the variance of the unit-weighted VCI score was attributable to both general and VC factors, whereas only 23% of the variance of that same unit-weighted VCI score was uniquely attributable to the VC factor. Another perspective on WISC-IV CDN reliability can be obtained by computing omega coefficients for a CHC higher-order model. Accordingly, the oblique results from model 5a were transformed into an orthogonal solution with the Schmid and Leiman (1957) method. Resulting omega coefficients are presented in Table 4. Omega coefficients for the general, VC, and WM unit-weighted factor scores were in the .80–.90 range but omega hierarchical coefficients were all below .50.

These reliability estimates are hypothetical because neither of these models represents the actual scoring structure of the WISC-IV CDN, which creates 5 CHC factors from 10 primary subtests. That oblique structure was also transformed into an orthogonal solution with the Schmid and Leiman (1957) method, with resultant omega coefficients presented in Table 4. Only the omega coefficient for the total score (.89) and omega hierarchical coefficient for the total score (.81) were sufficient for individual decisions. The omega coefficients for the total score in this model are also hypothetical because the WISC-IV CDN FSIQ is actually computed from only 7 subtests, not the 10 subtests needed to obtain factor index scores. When the 3 extraneous subtests were omitted from the primary subtest model, estimates of ω and ωh were .85 and .77, respectively. Thus, the shortened FSIQ was reduced in reliability but still sufficiently precise for high-stakes individual decisions.

Discussion
Standardization sample data from the WISC-IV CDN were analyzed to investigate reliability and structural validity of its scores. Although Wechsler (2014b) preferred a complex higher-order CHC model, the new FR factor in that model was problematic because it
produced negative variance estimates, empirically redundant factors, or low unique reliability estimates. At best, it lacked discriminant validity (Le et al., 2010). An alternative bifactor model with four group factors and one general factor akin to the traditional Wechsler structure was judged to be a good representation of the structure of the WISC-VCDN. Alternatively, a bifactor CHC model with correlated FR and VS factors exhibited good fit but poor discriminant validity and concomitant interpretational confounding (Stromeyer et al., 2015). These results are not surprising, given that previous Wechsler scales as well as the U.S. version of the WISC-V have been found consistent with similar bifactor models (Canivez et al., 2016; Gignac & Watkins, 2013; Gomez, Vance, & Watson, 2017; Gustafsson & Undheim, 1996; Reynolds & Keith, 2017; Styck & Watkins, 2016; Watkins, Canivez, James, James, & Good, 2013).

The merits of bifactor versus higher-order models have recently received considerable attention. Murray and Johnson (2013) found that fit indices are biased in favor of the bifactor model when there are unmodeled complexities (e.g., minor loadings of indicators on multiple factors). Morgan, Hodge, Wells, and Watkins (2015) analyzed simulations of bifactor and higher-order models and confirmed that both models exhibited good model fit regardless of true structure. More recently, Mansolf and Reise (2017) confirmed that bifactor and higher-order models could not be distinguished by fit indices and admitted that there is, at present, no technical solution to this dilemma.

Given that bifactor and higher-order models cannot be confidently differentiated, it seems reasonable to require “a parsimonious, substantively meaningful model that fits observed data adequately well” (MacCallum & Austin, 2000, p. 218) that fulfills the purpose of measurement. Murray and Johnson (2013) suggested that either model would provide a good estimate of general intelligence but “if ‘pure’ measures of specific abilities are required then bifactor model factor scores should be preferred to those from a higher-order model” (p. 420). This logic has been endorsed by other measurement specialists (Brunner et al., 2012; DeMars, 2013; Morin, Arens, Tran, & Caci, 2016; Reise, 2012; Reise, Bonifay, & Haviland, 2013; Rodriguez et al., 2016). Given that scores from the WISC-VCDN will likely be used by psychologists to provide an estimate of

Table 3. Sources of variance for WISC-VCDN standardization sample (N = 880) according to a bifactor Wechsler model.

<table>
<thead>
<tr>
<th>Subtest</th>
<th>General</th>
<th>Verbal Comprehension</th>
<th>Visual Spatial</th>
<th>Working Memory</th>
<th>Processing Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>b2</td>
<td>b</td>
<td>b2</td>
<td>b</td>
</tr>
<tr>
<td>Similarities</td>
<td>.669</td>
<td>.448</td>
<td>.346</td>
<td>.120</td>
<td>.567</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>.676</td>
<td>.457</td>
<td>.517</td>
<td>.267</td>
<td>.724</td>
</tr>
<tr>
<td>Information</td>
<td>707</td>
<td>.500</td>
<td>.372</td>
<td>.138</td>
<td>.638</td>
</tr>
<tr>
<td>Comprehension</td>
<td>.554</td>
<td>.367</td>
<td>.350</td>
<td>.122</td>
<td>.429</td>
</tr>
<tr>
<td>Block Design</td>
<td>.550</td>
<td>.303</td>
<td>.476</td>
<td>.227</td>
<td>.529</td>
</tr>
<tr>
<td>Visual Puzzles</td>
<td>.611</td>
<td>.373</td>
<td>.506</td>
<td>.256</td>
<td>.629</td>
</tr>
<tr>
<td>Matrix Reasoning</td>
<td>.569</td>
<td>.324</td>
<td>.189</td>
<td>.036</td>
<td>.359</td>
</tr>
<tr>
<td>Figure Weights</td>
<td>.629</td>
<td>.396</td>
<td>.135</td>
<td>.018</td>
<td>.414</td>
</tr>
<tr>
<td>Picture Concepts</td>
<td>.529</td>
<td>.280</td>
<td>.103</td>
<td>.011</td>
<td>.290</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>724</td>
<td>.524</td>
<td>.093</td>
<td>.009</td>
<td>.324</td>
</tr>
<tr>
<td>Digit Span</td>
<td>.621</td>
<td>.386</td>
<td>.497</td>
<td>.247</td>
<td>.633</td>
</tr>
<tr>
<td>Picture Span</td>
<td>.552</td>
<td>.305</td>
<td>.238</td>
<td>.057</td>
<td>.361</td>
</tr>
<tr>
<td>Letter–Number Sequencing</td>
<td>.621</td>
<td>.386</td>
<td>.455</td>
<td>.207</td>
<td>.593</td>
</tr>
<tr>
<td>Coding</td>
<td>.425</td>
<td>.181</td>
<td>.541</td>
<td>.293</td>
<td>.473</td>
</tr>
<tr>
<td>Symbol Search</td>
<td>.464</td>
<td>.215</td>
<td>.616</td>
<td>.379</td>
<td>.595</td>
</tr>
<tr>
<td>Cancellation</td>
<td>.150</td>
<td>.022</td>
<td>.454</td>
<td>.206</td>
<td>.229</td>
</tr>
<tr>
<td>Total Variance</td>
<td>.338</td>
<td>.040</td>
<td>.034</td>
<td>.032</td>
<td>.055</td>
</tr>
<tr>
<td>Common Variance</td>
<td>.676</td>
<td>.081</td>
<td>.068</td>
<td>.065</td>
<td>.110</td>
</tr>
</tbody>
</table>

Note. b = standardized loading of subtest on factor; b2 = variance explained in the subtest; h2 = communality; u2 = uniqueness. g loadings ≥ .70 are considered good (bold), from .50 to .69 are fair (italic), and < .50 are poor (Kaufman, 1994).

Table 4. Omega reliability coefficients for standardization sample (N = 880) from alternative models.

<table>
<thead>
<tr>
<th>Factor Score</th>
<th>Bifactor Wechsler 16 Subtests</th>
<th>CHC 16 Subtests</th>
<th>10 Primary Subtests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ω/ω\textsubscript{G}</td>
<td>ω/ω\textsubscript{CHC}</td>
<td>ω/ω\textsubscript{G}</td>
</tr>
<tr>
<td>General</td>
<td>919</td>
<td>830</td>
<td>918</td>
</tr>
<tr>
<td>Verbal Comprehension</td>
<td>850</td>
<td>230</td>
<td>848</td>
</tr>
<tr>
<td>Working Memory</td>
<td>809</td>
<td>167</td>
<td>.794</td>
</tr>
<tr>
<td>Visual Spatial</td>
<td>.788</td>
<td>.152</td>
<td>.737</td>
</tr>
<tr>
<td>Fluid Reasoning</td>
<td>.683</td>
<td>.483</td>
<td>.643</td>
</tr>
<tr>
<td>Processing Speed</td>
<td>.636</td>
<td>.483</td>
<td>.676</td>
</tr>
</tbody>
</table>

Note. ω and ω\textsubscript{G} = omega of general and group factors, respectively; ω\textsubscript{CHC} = omega hierarchical of general and group factors, respectively. Omega coefficients should exceed ~ .80 for decisions about individuals (Thornthwaite & Thornthwaite-Christ, 2010; Wasserman & Bracken, 2013). At a minimum, omega hierarchical coefficients should exceed .50, although .75 would be preferred (Reise, 2012). Coefficients meeting minimum standards are in bold.
general ability and to identify interventions based on cognitive strengths and weaknesses as operationalized through the factor index scores (Wechsler, 2014b), bifactor model factor scores would be preferred (Murray & Johnson, 2013).

As predicted by Murray and Johnson (2013), all models considered in this study produced reasonable estimates of general ability. However, omega coefficients computed from both bifactor and higher-order models demonstrated that reliable variance of a WISC-VCDN factor index score was primarily due to the general factor, not the group factor (see Table 4). An additional consideration for clinical interpretation is that approximately 50% of the total variance of WISC-VCDN scores was due to error and specific variance. Therefore, to interpret factor index scores “as representing the precise measurement of some latent variable that is unique or different from the general factor, clearly, is misguided” (Rodriguez et al., 2016, p. 225).

“The ultimate responsibility for appropriate test use and interpretation lies predominantly with the test user” (AERA, APA, & NCME, 2014, p. 141). This study demonstrated that psychologists can be reasonably confident in using the FSIQ score for clinical decisions but should be extremely cautious in using the factor index scores to make decisions about individuals. Factor index scores represent a blend of general and group abilities as well as error and usually provide little information beyond that provided by the general factor (Beaujean, Parkin, & Parker, 2014; Canivez, 2016; Cucina & Howardson, 2017). Interpretation of factor index scores should also be informed by external validity evidence (AERA, APA, & NCME, 2014; Hummel, 1998; Wasserman & Bracken, 2013). DeMars (2013) predicted that differential validity would be impaired by scores with low precision. That prediction has been supported in many studies of external validity (Carroll, 2000). For example, there is little evidence to support the proposition that factor score differences validly inform diagnosis or treatment (Braden & Shaw, 2009; Burns, 2016; Kearns & Fuchs, 2013; Kranzler, Benson, et al., 2016; Kranzler, Floyd, Benson, Zaboski, & Thibodaux, 2016; Reschly, 1997; Restori, Gresham, & Cook, 2008). Likewise, multiple studies have found little incremental validity for Wechsler factor index scores beyond the FSIQ when predicting academic achievement (Benson et al., 2016; Canivez, 2013; Canivez, Watkins, James, Good, & James, 2014; Glutting, Watkins, Konold, & McDermott, 2006). Also, the predictive power of FSIQ scores is not diminished by variability among factor scores (Daniel, 2007; McGill, 2016; Watkins, Glutting, & Lei, 2007). The cumulative weight of this reliability and validity evidence suggests that psychologists should focus their interpretive efforts at the general factor level, and exercise extreme caution when using group factor scores to make decision about individuals.

About the authors

Marley W. Watkins, PhD, is a Non-Resident Scholar in the Department of Educational Psychology at Baylor University. His research interests include professional issues, the psychometrics of assessment and diagnosis, and individual differences.

Stefan C. Dombrowski, is Professor and Director of the School Psychology Program at Rider University. His research has focused on such topics as structural validity, prenatal exposures, children’s mental health, and psychoeducational assessment.

Gary L. Canivez, PhD, is Professor of Psychology at Eastern Illinois University. His research interests include psychometric reliability and validity investigations of measures of intelligence, achievement, psychopathology, and test bias.

ORCID

Marley W. Watkins http://orcid.org/0000-0001-6352-7174
Gary L. Canivez http://orcid.org/0000-0002-5347-6534

References

