ently
Knots,

Charles Delman, Eastern Illinois University

Joint work with Rachel Roberts, WUSTL

Theme

Variation

Coda

Persistently Foliar Knots, II

Charles Delman, Eastern Illinois University

Joint work with Rachel Roberts, WUSTL

May 17, 2019

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Work in the Knot Exterior

Persistently Foliar Knots,

Charles Delman, Eastern Illinois University

Joint work with Rachel Roberts, WUSTL

Theme

Variation

Coda

Now:

- Work in the knot *exterior*: $S^3 \setminus K$
- Introduce a "tube" around K: $T = \partial N(K) \subset S^3 \setminus K$
- T is part of the spine.
- Convention: Outward normal to T points into knot complement, out of N(K).

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Meridional Cusps → Persistence

Persistently Foliar Knots,

Charles Delman, Eastern Illinois University

Joint work with Rachel Roberts, WUSTL

Theme

Variation

Coda

Goal:

- Build spine having meridional intersections with T.
- Smooth to branched surface Σ with even (> 0) number of meridional branch curves with outward sink direction on T.
- After any rational Dehn surgery, these yield an even number of longitudinal sutures, so a meridional disk fully decomposes N(K') (as a taut sutured manifold).

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Meridional Cusps \rightarrow Persistence (continued)

Persistently Foliar Knots,

Charles Delman, Eastern Illinois University

Joint work with Rachel Roberts, WUSTL

Theme

Variations

Coda

- Thus, as long as the other components of N(Σ)^c are taut sutured manifolds, we obtain a taut co-orientable foliation in every manifold produced by (non-trivial) surgery.
- This is what we mean by *persistence*.
- Antecedent: "Swallow-follow" closed (branched) surface. (Menasco; Oertel)

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Method 1: Decomposition by Spheres & Spanning Surfaces

Persistently Foliar Knots,

Charles Delman, Eastern Illinois University

Joint work with Rachel Roberts, WUSTL

Theme

Variations

Coda

- Decompose *K* into tangles along transverse spheres.
- Decompose further along spanning surfaces for the tangles.
- Similar to Murasugi sum, but surfaces on each side need not match.

 With suitable choices, we obtain persistence, and every component of N(Σ)^c is a taut sutured manifold.

Application of Method 1

Persistently Foliar Knots, II

Charles Delman, Eastern Illinois University

Joint work with Rachel Roberts, WUSTL

Theme

Variations

Coda

- Method 1 works well for Montesinos knots, since they decompose into rational tangles.
- Method 1 shows all Montesinos knots to be persistently foliar except for some "small" pretzel knots.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Method 2: Decomposition of a Spanning Surface

Persistently Foliar Knots,

Charles Delman, Eastern Illinois University

Joint work with Rachel Roberts, WUSTL

Theme

Variations

Coda

May be viewed as a generalization of Gabai's theory:

Sutured manifold decomposition of a Seifert surface D

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Generalized surface decomposition of a spanning surface

Some Differences; Application

Persistently Foliar Knots,

Charles Delman, Eastern Illinois University

Joint work with Rachel Roberts, WUSTL

Theme

Variations

Coda

Generalized decomposition of a spanning surface provides much greater flexibility:

Persistence.

- Initial spanning surface need not be orientable!
- Boundary of decomposing surface can cross over T from one side of S to the other an odd number of times!

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Method 2 shows all non-torus alternating knots and all remaining pretzel knots that are not L-space knots to be persistently foliar.

Notation Conventions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Local Models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

€ 990

Persistently Foliar Knots, II

Charles Delman, Eastern Illinois University

Joint work with Rachel Roberts, WUSTL

Theme

Variation

Coda

Questions?

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Persistently Foliar Knots, II

Charles Delman, Eastern Illinois University

Joint work with Rachel Roberts, WUSTL

Theme

Variation

Coda

Thank you!

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ