
MAT 4900: History of Math. Name:
Final Exam
Due by 5 p.m. on Friday, December 15, 2017.

Note: Electronic signatures and submissions are acceptable and encouraged, but not required;
however, I will be out of town after Wednesday, December 13, (leaving sometime that afternoon)
so if you wish to hand it in after that, you will need to do so electronically.

You are expected to work on this exam alone and to refrain from talking about the exam
to anyone except the professor until the time and date when it is due. You may use your own
notes and any published materials that you like. (Cite sources appropriately.)

Your signature below attests to a pledge that you have done the exam according to the
above instructions. Your exam must be signed!

Signature:
Solutions must be typeset.

1. Using only straightedge and compass, construct (by hand, not using a computer) a trian-
gle with the same area as the pentagon below. (You need not, however, use a collapsible
compass, as the ancient Greeks would have required!)



2. As Nathaniel noted, Sanskrit prosody may have well been the first occurrence of the
sequence we now associate with the name Fibonacci. Let’s see why! It is not difficult.
The problem is to partition a line of n syllables into groups of one or two syllables each.
(Similar considerations arise in musical rhythm as well, usually with groups of two or
three beats.)

Let Pn denote the number of distinct such partitions. You may find it helpful to visualize
them with dots and dividing lines. For example, the figure illustrates that P4 = 5.

Observe that the first group may either contain one syllable (or beat or whatever), in
which case there remain n− 1 syllables to be partitioned, or the first group may contain
two syllables, in which case there remain n − 2 syllables to be partitioned. Using this
observation, show that Pn = Pn−1 +Pn−2. Since P1 = 1 and P2 = 2, it follows that Pn is
the (n+ 1)st Fibonacci number, if we count 1 as the first, 1 as the second, 2 as the third,
and so on.

3. The golden ratio may be described as follows: For simplicity, let the shorter side of a
rectangle have length 1 and the longer side have length ρ. If the ratio between the sides
is such that, when a square of side one is cut from the rectangle, the smaller rectangle
remaining has sides in the same ratio as the larger one, then ρ is the golden ratio. A
rectangle with sides in this ratio is called a golden rectangle.

(a) Show that this geometric description leads to the equation ρ2 − ρ− 1 = 0.

(b) Solve this equation, and construct a golden rectangle with straightedge and compass.

(c) Show also that ρ = 1 + 1
ρ . (This equation will be useful below.)

4. An interesting and beautiful connection between the Fibonacci sequence and classical
mathematics is that the limit of the ratio of successive terms in the Fibonacci sequence
is the golden ratio, as Nathaniel also discussed. For this purpose it is best to let the first
term of the sequence be 1, so that this ratio is always defined. Thus, define the Fibonacci
sequence (an)∞n=0 recursively as follows: a0 = a1 = 1 and, for n ≥ 2, an = an−1+an−2. For
n = 0, 1, 2, 3, . . ., define bn = an+1

an
. Thus, (bn)∞n=0 is the sequence of ratios of successive

terms of the Fibonacci sequence.

Nathaniel showed the following assertions in his talk, so I am just asking you to recall
the arguments here, which should be easy.

(a) Prove that, for n ≥ 1, bn = 1 + 1
bn−1

.

(b) Let b = limn→∞ bn, assuming this limit exists, which is a major assumption! Not-
ing that, clearly, limn→∞ bn = limn→∞ bn−1 = b (since bn−1 just follows one step
behind), prove that b = ρ. (You may use the properties of limits proven in calculus;
you don’t need to go back to epsilons and deltas!)



I think the argument above is the most intuitive and straightforward way to understand
why limn→∞ bn = ρ. However, not every sequence has a limit, of course, so this argument
is not justified without a proof that limn→∞ bn actually exists. It only shows that if the
sequence (bn) has a limit as n→∞, that limit must be ρ.

(c) As an illustration of the importance of this point, show that, although the solution
to the equation x = 2x − 1 is clearly x = 1, the sequence defined recursively by
a0 = 1 and an+1 = 2an − 1 does not converge to 1.

(d) To fill the gap noted above, we will now show directly that limn→∞ bn = ρ by
showing that limn→∞ bn − ρ = 0. First, it should be obvious that all terms in the
Fibonacci sequence are positive. As a consequence it is clear that, for all n ≥ 0,
bn ≥ 1. (Technically, one should prove those things by induction, but we’ll let it go!)
We now proceed in three small steps:

i. Using the fact that ρ = 1
1+ρ , prove that for all n ≥ 1, |bn − ρ| ≤ 1

ρ |bn−1 − ρ|.
Hint: |bn − ρ| = |(1 + 1

bn−1
)− (1 + 1

ρ)| = |ρ−bn−1

ρbn−1
|.

ii. Prove that for all n ≥ 1, |bn − ρ| ≤ 1
ρn |b0 − ρ| = 1

ρn |1− ρ|. (Hint: induction on
n!)

iii. Conclude that limn→∞ bn − ρ = 0.

5. The figure on the following page is a spiral of Archimedes. Using straightedge and com-
pass, construct a 60◦ angle and, with the aid of the spiral, trisect it.
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