Calculus for Elementary & Middle School Teachers Computing Derivatives & Integrals Part 2

> Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamental Theorem of Calculus

Calculus for Elementary & Middle School Teachers Computing Derivatives & Integrals Part 2

Charles Delman

October 23, 2016

Calculus for Elementary & Middle School Teachers Computing Derivatives & Integrals Part 2

> Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamental Theorem of Calculus

1 Distance as the Area Under the Graph of the Velocity

2 The Area Under the Graph of a Function

3 The Fundamental Theorem of Calculus

The graph of velocity as a function of time.

Estimate of distance traveled for $t = 8 \& \Delta t = 1$, using the velocity at the beginning of each interval.

・ロン ・ 理 と ・ ヨ と ・ ヨ と … ヨ …

Under the Graph of the Velocity

The Fundamenta Theorem of Calculus

Estimate of distance traveled for $t = 8 \& \Delta t = .5$, using the velocity at the beginning of each interval.

・ロト ・ 雪 ト ・ ヨ ト

Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamenta Theorem of Calculus

Estimate of distance traveled for $t = 8 \& \Delta t = 1$, using the velocity at the end of each interval.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamenta Theorem of Calculus

Estimate of distance traveled for $t = 8 \& \Delta t = .5$, using the velocity at the end of each interval.

・ロト ・ 雪 ト ・ ヨ ト

э

As $\Delta t \rightarrow 0$, these estimates converge to the *area* under the graph of v = gt from t = 0 to t = 8.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

In general, as $\Delta t \rightarrow 0$, the distance fallen between times 0 and t is the area under the graph of $v = g\tau$ from $\tau = 0$ to $\tau = t$. We can derive the general formula from the area formula for a triangle with base t and height gt: $s = \frac{1}{2}gt^2$.

・ロト・日本・日本・日本・日本・日本・日本

The Area Bounded by the Graph of a Function

Calculus for Elementary & Middle School Teachers Computing Derivatives & Integrals Part 2

> Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamental Theorem of Calculus

- Now consider any function that is *continuous* on an interval, along with two points *a* and *b* in that interval.
- Let us focus first on the case that a < b and f is positive and increasing on [a, b].
- For each positive integer *n*, consider the *partition* of [a, b] into *n* subintervals of equal length $\Delta x = \frac{b-a}{n}$. (Δx clearly depends on *n*, but it is cumbersome to incorporate *n* into the notation.)

The Region Bounded by the *n*th Lower Piece-wise Constant Approximation

Calculus for Elementary & Middle School Teachers Computing Derivatives & Integrals Part 2

> Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamental Theorem of Calculus

- On each interval $[x_i, x_{i+1}]$, consider the minimum value of f; in this case, it will be $f(x_i)$.
- The area bounded by the graph of the constant function $g_i(x) = f(x_i)$ is $f(x_i)\Delta x$.
- The region bounded from a to b by the graph of the piecewise constant function g(x) = g_i(x) for x ∈ [x_i, x_{i+1}] is contained in the region bounded by the graph of f.

The Area bounded by the *n*th Lower Piece-wise Constant Approximation

Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamental Theorem of Calculus

Its area is $L_n =$

 $f(x_0)\Delta x + f(x_1)\Delta x + f(x_2)\Delta x + \cdots + f(x_{n-1})\Delta x$

$$=\sum_{i=0}^{n-1}f(x_i)\Delta x.$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

The Region Bounded by the *n*th Upper Piece-wise Constant Approximation

Calculus for Elementary & Middle School Teachers Computing Derivatives & Integrals Part 2

> Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamental Theorem of Calculus

- On each interval [x_i, x_{i+1}], consider the maximum value of f; in this case, it will be f(x_{i+1}).
- The area bounded by the graph of the constant function $h_i(x) = f(x_{i+1})$ is $f(x_{i+1})\Delta x$.
- The region bounded from *a* to *b* by the graph of the piecewise constant function *h*(*x*) = *h_i*(*x*) for *x* ∈ [*x_i*, *x_{i+1}*] clearly contains the region bounded by the graph of *f*.

The Area Bounded by the *n*th Upper Piece-wise Constant Approximation

Calculus for Elementary & Middle School Teachers Computing Derivatives & Integrals Part 2

> Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamental Theorem of Calculus

Its area is $U_n =$

$$f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + \cdots + f(x_n)\Delta x$$

$$=\sum_{i=1}^n f(x_i)\Delta x.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

The Limits as $n \to \infty$

Calculus for Elementary & Middle School Teachers Computing Derivatives & Integrals Part 2

> Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamental Theorem of Calculus

- As we let $n \to \infty$, L_n increases and U_n decreases. (Why?)
- Clearly $L_m \leq U_n$ for any *m* and *n*.
- By the continuity of the real number system, $\lim_{n\to\infty} L_n$ and $\lim_{n\to\infty} U_n$ must exist.
- In fact, these limits are the same, as we will see in a moment.
- Since the region bounded by the function f contains the region bounded by each lower piece-wise constant approximation and is contained in the region bounded by each upper piece-wise constant approximation, its area must be this common limit.

$\lim_{n\to\infty} L_n = \lim_{n\to\infty} U_n =$ The Area of the Region bounded by f

Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamenta Theorem of Calculus

• The difference between L_n and U_n , in this case, is $(f(b) - f(a))\Delta x_n$.

• As $n \to \infty$, $\Delta x_n \to 0$; hence this difference goes to 0.

Other Approximations

Calculus for Elementary & Middle School Teachers Computing Derivatives & Integrals Part 2

> Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamenta Theorem of Calculus

- Furthermore, all other approximations, such as the midpoint approximation, are squeezed between L_n and U_n as well.
- These other approximations converge more quickly than L_n and U_n .
- But we can often calculate the area exactly in another way.
- To do this, we need to look at the rate at which area varies, and find a function that varies at that rate.

Area as a Variable Quantity

Calculus for Elementary & Middle School Teachers Computing Derivatives & Integrals Part 2

> Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamental Theorem of Calculus

- Consider the area bounded by the graph of a continuous function *f* from an initial input *a* to *x*.
- This area is a function of x: call it A = F(x).
- We will first compute F'(x) and use it to compute F(x).
- Note that to do this we must view the area bounded by f as a quantity that varies with the ending point of the interval, x, just as we viewed distance as a quantity that varied with time.
- Recall that

$$F'(x) = \lim_{\Delta x \to 0} \frac{\Delta A}{\Delta x}.$$

Bounding the Derivative of the Area

Calculus for Elementary & Middle School Teachers Computing Derivatives & Integrals Part 2

> Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamental Theorem of Calculus Let f(x̃) be the minimum value of f on the interval form x to x + Δx, and let f(x̂) be the maximum value of f on the interval form x to x + Δx.

• Then $f(\check{x})\Delta x \leq \Delta A \leq f(\hat{x})\Delta x$; hence,

$$f(\check{x}) \leq \frac{\Delta A}{\Delta x} \leq f(\hat{x}).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Computing the Derivative of the Area Using the Squeeze Theorem

Calculus for Elementary & Middle School Teachers Computing Derivatives & Integrals Part 2

> Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamental Theorem of Calculus Since \check{x} and \hat{x} are between x and $x + \Delta x$, $\check{x} \to x$ and $\hat{x} \to x$ as $\Delta x \to 0$.

Since f is continuous, $\lim_{\tilde{x}\to x} f(\tilde{x}) = \lim_{\tilde{x}\to x} f(\hat{x}) = f(x)$.

Combining the two previous observations, we obtain

$$\lim_{\Delta x \to 0} f(\check{x}) = \lim_{\Delta x \to 0} f(\hat{x}) = f(x).$$

Thus, by the Squeeze Theorem,

$$F'(x) = \lim_{\Delta x \to 0} \frac{\Delta A}{\Delta x} = f(x)!$$

 The fact that F' = f and the initial condition F(a) = 0 completely determine the function F. Any function whose derivative is f will compute the area as long as you subtract its value at a so it agrees with F.

The Fundamental Theorem of Calculus

Calculus for Elementary & Middle School Teachers Computing Derivatives & Integrals Part 2

> Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The Fundamental Theorem of Calculus To summarize, if you want to compute the area under the graph y = f(x) from x = a to x = b:

- Find any function G such that G' = f.
- The desired area is G(b) G(a).
- That's it! This powerful result is called the *Fundamental Theorem of Calculus*.
- Let's use our knowledge of derivatives to find some areas bounded by curves!

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ