Calculus for
Elementary \&
Middle School
Teachers
Computing
Derivatives \& Integrals Part 2

Charles
Delman

Charles Delman

October 23, 2016
Calculus for Elementary \& Middle School Teachers
Computing Derivatives \& Integrals Part 2

Calculus for
Elementary \& Middle School Teachers
Computing
Derivatives \& Integrals Part 2

Charles
Delman

Distance as
the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

The
Fundamental Theorem of Calculus

1 Distance as the Area Under the Graph of the Velocity

2 The Area Under the Graph of a Function

3 The Fundamental Theorem of Calculus

Distance Fallen is the Area Under the Velocity Curve

Calculus for
Elementary \& Middle School Teachers Computing Derivatives \& Integrals Part 2

Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area

The graph of velocity as a function of time.

Distance Fallen is the Area Under the Velocity Curve

Calculus for
Elementary \& Middle School Teachers
Computing
Derivatives \& Integrals Part 2

Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

Estimate of distance traveled for $t=8 \& \Delta t=1$, using the velocity at the beginning of each interval.

Distance Fallen is the Area Under the Velocity Curve

Calculus for
Elementary \& Middle School Teachers
Computing
Derivatives \& Integrals Part 2

Charles Delman

Distance as

the Area
Under the Graph of the Velocity

The Area Under the Graph of a Function

Estimate of distance traveled for $t=8 \& \Delta t=.5$, using the velocity at the beginning of each interval.

Distance Fallen is the Area Under the Velocity Curve

Calculus for
Elementary \& Middle School Teachers Computing Derivatives \& Integrals Part 2

Charles Delman

Distance as

 the Area Under the Graph of the VelocityThe Area Under the Graph of a Function

Estimate of distance traveled for $t=8 \& \Delta t=1$, using the velocity at the end of each interval.

Distance Fallen is the Area Under the Velocity Curve

Calculus for
Elementary \& Middle School Teachers Computing Derivatives \& Integrals Part 2

Charles Delman

Distance as

 the Area Under the Graph of the VelocityThe Area Under the Graph of a Function

Estimate of distance traveled for $t=8 \& \Delta t=.5$, using the velocity at the end of each interval.

Distance Fallen is the Area Under the Velocity Curve

Calculus for
Elementary \& Middle School Teachers Computing Derivatives \& Integrals Part 2

Charles Delman

Distance as the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

As $\Delta t \rightarrow 0$, these estimates converge to the area under the graph of $v=g t$ from $t=0$ to $t=8$.

Distance Fallen is the Area Under the Velocity Curve

Calculus for
Elementary \& Middle School Teachers Computing Derivatives \& Integrals Part 2

Charles Delman

In general, as $\Delta t \rightarrow 0$, the distance fallen between times 0 and t is the area under the graph of $v=g \tau$ from $\tau=0$ to $\tau=t$. We can derive the general formula from the area formula for a triangle with base t and height $g t: s=\frac{1}{2} g t^{2}$.

The Area Bounded

by the Graph of a Function

Calculus for
Elementary \& Middle School

Teachers
Computing
Derivatives \&
Integrals
Part 2
Charles
Delman

■ Now consider any function that is continuous on an interval, along with two points a and b in that interval.
■ Let us focus first on the case that $a<b$ and f is positive and increasing on $[a, b]$.

- For each positive integer n, consider the partition of $[a, b]$ into n subintervals of equal length $\Delta x=\frac{b-a}{n}$. (Δx clearly depends on n, but it is cumbersome to incorporate n into the notation.)

The Region Bounded by the $n^{\text {th }}$ Lower Piece-wise Constant Approximation

Calculus for
Elementary \& Middle School

Teachers
Computing
Derivatives \&
Integrals
Part 2
Charles Delman

■ On each interval $\left[x_{i}, x_{i+1}\right.$], consider the minimum value of f; in this case, it will be $f\left(x_{i}\right)$.
■ The area bounded by the graph of the constant function $g_{i}(x)=f\left(x_{i}\right)$ is $f\left(x_{i}\right) \Delta x$.
■ The region bounded from a to b by the graph of the piecewise constant function $g(x)=g_{i}(x)$ for $x \in\left[x_{i}, x_{i+1}\right]$ is contained in the region bounded by the graph of f.

The Area bounded by the $n^{t h}$ Lower Piece-wise Constant Approximation

Calculus for
Elementary \& Middle School

Teachers
Computing
Derivatives \&
Integrals
Part 2
Charles Delman

Its area is $L_{n}=$

$$
\begin{gathered}
f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n-1}\right) \Delta x \\
=\sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x
\end{gathered}
$$

The Region Bounded by the $n^{\text {th }}$ Upper Piece-wise Constant Approximation

Calculus for
Elementary \& Middle School

Teachers
Computing
Derivatives \&
Integrals
Part 2
Charles Delman

■ On each interval $\left[x_{i}, x_{i+1}\right.$], consider the maximum value of f; in this case, it will be $f\left(x_{i+1}\right)$.

- The area bounded by the graph of the constant function $h_{i}(x)=f\left(x_{i+1}\right)$ is $f\left(x_{i+1}\right) \Delta x$.
■ The region bounded from a to b by the graph of the piecewise constant function $h(x)=h_{i}(x)$ for $x \in\left[x_{i}, x_{i+1}\right]$ clearly contains the region bounded by the graph of f.

The Area Bounded by the $n^{t h}$
 Upper Piece-wise Constant Approximation

Calculus for
Elementary \& Middle School

Teachers
Computing
Derivatives \&
Integrals
Part 2
Charles Delman

Its area is $U_{n}=$

$$
\begin{aligned}
f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) & \Delta x+f\left(x_{3}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x \\
= & \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
\end{aligned}
$$

The Limits as $n \rightarrow \infty$

Charles Delman

■ As we let $n \rightarrow \infty, L_{n}$ increases and U_{n} decreases. (Why?)

- Clearly $L_{m} \leq U_{n}$ for any m and n.

■ By the continuity of the real number system, $\lim _{n \rightarrow \infty} L_{n}$ and $\lim _{n \rightarrow \infty} U_{n}$ must exist.

- In fact, these limits are the same, as we will see in a moment.
- Since the region bounded by the function f contains the region bounded by each lower piece-wise constant approximation and is contained in the region bounded by each upper piece-wise constant approximation, its area must be this common limit.

$\lim _{n \rightarrow \infty} L_{n}=\lim _{n \rightarrow \infty} U_{n}=$ The Area of the Region bounded by f

Calculus for
Elementary \& Middle School Teachers Computing Derivatives \& Integrals Part 2

Charles Delman

Distance as

the Area Under the Graph of the Velocity

The Area Under the Graph of a Function

■ The difference between L_{n} and U_{n}, in this case, is $(f(b)-f(a)) \Delta x_{n}$.
■ As $n \rightarrow \infty, \Delta x_{n} \rightarrow 0$; hence this difference goes to 0 .

Other Approximations

Calculus for
Elementary \& Middle School Teachers Computing Derivatives \& Integrals
Part 2
Charles Delman

■ Furthermore, all other approximations, such as the midpoint approximation, are squeezed between L_{n} and U_{n} as well.

■ These other approximations converge more quickly than L_{n} and U_{n}.
■ But we can often calculate the area exactly in another way.

- To do this, we need to look at the rate at which area varies, and find a function that varies at that rate.

Area as a Variable Quantity

Charles Delman

- Consider the area bounded by the graph of a continuous function f from an initial input a to x.
- This area is a function of x : call it $A=F(x)$.
- We will first compute $F^{\prime}(x)$ and use it to compute $F(x)$.

■ Note that to do this we must view the area bounded by f as a quantity that varies with the ending point of the interval, x, just as we viewed distance as a quantity that varied with time.

- Recall that

$$
F^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta A}{\Delta x}
$$

Bounding the Derivative of the Area

Calculus for
Elementary \& Middle School Teachers Computing Derivatives \& Integrals Part 2

Charles Delman

- Let $f(\check{x})$ be the minimum value of f on the interval form x to $x+\Delta x$, and let $f(\hat{x})$ be the maximum value of f on the interval form x to $x+\Delta x$.

- Then $f(\check{x}) \Delta x \leq \Delta A \leq f(\hat{x}) \Delta x$; hence,

$$
f(\check{x}) \leq \frac{\Delta A}{\Delta x} \leq f(\hat{x}) .
$$

Computing the Derivative of the Area Using the Squeeze Theorem

Charles Delman

- Since \check{x} and \hat{x} are between x and $x+\Delta x, \check{x} \rightarrow x$ and $\hat{x} \rightarrow x$ as $\Delta x \rightarrow 0$.

■ Since f is continuous, $\lim _{\check{x} \rightarrow x} f(\check{x})=\lim _{\hat{x} \rightarrow x} f(\hat{x})=f(x)$.

- Combining the two previous observations, we obtain

$$
\lim _{\Delta x \rightarrow 0} f(\check{x})=\lim _{\Delta x \rightarrow 0} f(\hat{x})=f(x)
$$

- Thus, by the Squeeze Theorem,

$$
F^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta A}{\Delta x}=f(x)!
$$

- The fact that $F^{\prime}=f$ and the initial condition $F(a)=0$ completely determine the function F. Any function whose derivative is f will compute the area as long as you subtract its value at a so it agrees with F.

The Fundamental Theorem of Calculus

Calculus for
Elementary \& Middle School

Teachers
Computing
Derivatives \& Integrals
Part 2
Charles Delman

To summarize, if you want to compute the area under the graph $y=f(x)$ from $x=a$ to $x=b$:

- Find any function G such that $G^{\prime}=f$.
- The desired area is $G(b)-G(a)$.
- That's it! This powerful result is called the Fundamental Theorem of Calculus.

■ Let's use our knowledge of derivatives to find some areas bounded by curves!

