October 6, 2010.
Constructions, Definitions, Incidence Theorems, ξ^{3} Models
Each question is worth 10 points.
Constructions. Construct the following using only straightedge and compass. Show all construction marks clearly.

1. The bisector of $\angle A B C$.

2. A ray $\overrightarrow{A^{\prime} C^{\prime}}$ such that $\angle A^{\prime} B^{\prime} C^{\prime} \cong \angle A B C$. (Use whichever side of line $\overleftrightarrow{A^{\prime} B^{\prime}}$ is most convenient.)

3. The circle passing through points P, Q, and R.
Q.
P.

Definitions. Define the following terms.
4. Given points A and B, define segment $A B$.
5. Given points O and P, define the circle with center O and radius $O P$.
6. Define what it means for a pair of angles to be supplementary. You may assume that the following terms have been defined: angle, side of an angle, ray, opposite ray.
7. Define what it means for an angle to be a right angle.

Propositions. Give complete, well-organized proofs of the following propositions.
8. Proposition 2.1 If l and m are distinct lines that are not parallel, then l and m have a unique point in common.
9. Proposition 2.2 There exist three distinct lines that are not concurrent.

Models.

1. Consider the following interpretation of incidence geometry: Let A, B, C, and D be the distinct sets $\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}$, and $\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$, respectively. The points of the model are A, B, C, and D. The lines of the model are the sets $\{A, B\},\{A, C\},\{A, D\},\{B, C\},\{B, D\},\{C, D\}$. Point P and line l are incident if (and only if) $P \in l$.
Verify, with clear and complete proofs, that this interpretation is an affine plane. That is, verify that it satisfies the three axioms of incidence geometry and also the Euclidean Parallel Postulate.
