Two
Elementary Area Theorems: Pythagorean Theorem \& Area of a Circle

Charles Delman

Two Elementary Area Theorems: Pythagorean Theorem \& Area of a Circle

Charles Delman

August 26, 2016

Why the Pythagorean Theorem is true

Two
Elementary Area
Theorems:
Pythagorean
Theorem \&
Area of a
Circle
Charles
Delman

$$
a^{2}+b^{2}=c^{2}
$$

The area of a circle

Two
Elementary Area Theorems: Pythagorean Theorem \& Area of a Circle

Charles Delman

- The area of a circle is clearly proportional to the square of its radius.
- That is, $A=k r^{2}$.
- Clearly, $k<4$. Why?

■ And $k>2$. Why?

In fact, dissection of the regular dodecagon shows that $k>3$.

Two
Elementary
Area
Theorems:
Pythagorean
Theorem \&
Area of a
Circle
Charles
Delman

The area of a circle of radius r is $A=\pi r^{2}$

Two

- In fact, $k=\pi$ (as you probably remember).

■ Remember that π is defined in terms of linear measurements; it is the ratio of circumference to diameter.

- Thus, we have another deep relationship between length and area!

$$
\frac{C}{2 r}=\pi=\frac{A}{r^{2}}
$$

- Why does π, the ratio of circumference to diameter, also turn out to be the ratio of the area of the circle to the area of a square on the radius?
■ Is it just a miracle, or can we understand the reason?

Why $A=\pi r^{2}$

Two
Elementary Area Theorems: Pythagorean Theorem \& Area of a Circle

Charles Delman

- As the number of sides, n, increases, the area of the inscribed n-gon approaches the area of the circle.

Why $A=\pi r^{2}$, continued

Two
Elementary Area
Theorems:
Pythagorean
Theorem \&
Area of a Circle

Charles Delman

- Each triangle has area $\frac{1}{2} b h$.

Why $A=\pi r^{2}$, continued

Two
Elementary Area Theorems: Pythagorean Theorem \& Area of a Circle

Charles Delman

- So the area of the inscribed polygon is $\frac{n}{2} b h$. (There are n triangles.)

Why $A=\pi r^{2}$, continued

Two
Elementary Area
Theorems:
Pythagorean Theorem \& Area of a Circle

Charles Delman

- $n b$ is the perimeter of the polygon.
- As $n \rightarrow \infty, n b \rightarrow C$, the circumference of the circle, and $h \rightarrow r$, the radius of the circle. Remember that $C=2 \pi r$.

Why $A=\pi r^{2}$, conclusion

Two
Elementary Area Theorems: Pythagorean Theorem \& Area of a Circle

Charles Delman

- Thus, as $n \rightarrow \infty$, the area of the inscribed polygon, $\frac{(n b) h}{2}$, approaches $\frac{2 \pi r \cdot r}{2}=\pi r^{2}$.

