MAT 2550, Inverse Maps and Their Matrix Representations

April 15, 2020

To be handed in. Due by 5 p.m. on Friday, April 17, 2020.
Note: A possible answer to part (b) is "none of the above," in which case neither a right nor a left inverse exists and there is nothing "appropriate" to do for part (c).

1. Let λ be the linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by orthogonal projection onto the x, y-plane: $(x, y, z) \mapsto$ (x, y).
(a) Provide the matrix for λ in terms of the standard bases for \mathbb{R}^{3} and \mathbb{R}^{2}.
(b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
(c) Provide, as appropriate, a matrix, in terms of the standard bases for \mathbb{R}^{2} and \mathbb{R}^{3}, for a left inverse, a right inverse, or the unique inverse of λ.
2. Let λ be the linear map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by rotation about the origin by 30°.
(a) Provide the matrix for λ in terms of the standard basis for \mathbb{R}^{2}.
(b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
(c) Provide, as appropriate, a matrix, in terms of the standard basis for \mathbb{R}^{2}, for a left inverse, a right inverse, or the unique inverse of λ.
3. Let λ be the linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by rotation about the z-axis by 45°.
(a) Provide the matrix for λ in terms of the standard basis for \mathbb{R}^{3}. [Hint: The z-coordinates do not change under this transformation; think of it as if you are looking from above at the $x y$-plane and rotating it about the origin.]
(b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
(c) Provide, as appropriate, a matrix, in terms of the standard basis for \mathbb{R}^{3}, for a left inverse, a right inverse, or the unique inverse of λ.
4. Let λ be the linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by orthogonal projection onto the plane $\{(x, y, z): x=y\}$.
(a) Provide the matrix for λ in terms of the standard basis for \mathbb{R}^{3}. [Hint: Break the transformation down into the composition of three transformations: first rotate the plane $x=y$ about the z-axis into the $x y$ - or $x z$-plane (your choice), then project orthogonally onto that plane (which just requires changing the remaining coordinate to 0), then rotate back.]
(b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
(c) Provide, as appropriate, a matrix, in terms of the standard basis for \mathbb{R}^{3}, for a left inverse, a right inverse, or the unique inverse of λ.
5. Let λ be the linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}$ given by orthogonal projection onto the x-axis: $(x, y, z) \mapsto x$.
(a) Provide the matrix for λ in terms of the standard bases for \mathbb{R}^{3} and \mathbb{R}. (The standard basis for \mathbb{R} is just the number 1.)
(b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
(c) Provide, as appropriate, a matrix, in terms of the standard bases for \mathbb{R}^{2} and \mathbb{R}, for a left inverse, a right inverse, or the unique inverse of λ.
6. Let λ be the linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by orthogonal projection onto the line $\{(x, y, z): x=$ $y \& z=0\}$.
(a) Provide the matrix for λ in terms of the standard basis for \mathbb{R}^{3}. [Hint: Two steps. First project onto $x=y$ using your answer to Exercise 2, then project orthogonally onto $z=0$ (which is just the $x y$-plane). Drawing a picture will help you see that this composition does the right thing.]
(b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
(c) Provide, as appropriate, a matrix, in terms of the standard basis for \mathbb{R}^{3}, for a left inverse, a right inverse, or the unique inverse of λ.
7. Let λ be the linear map $P_{3} \rightarrow P_{2}$ given by $\lambda(f)=f^{\prime}$. (Here f denotes a polynomial function.)
(a) Provide the matrix for λ in terms of the standard bases for P_{3} and P_{2}.
(b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
(c) Provide, as appropriate, a matrix, in terms of the standard basis for P_{3}, for a left inverse, a right inverse, or the unique inverse of λ.
8. Let λ be the linear map $P_{3} \rightarrow P_{1}$ given by $\lambda(f)=f^{\prime \prime}$.
(a) Provide the matrix for λ in terms of the standard bases for P_{3} and P_{1}.
(b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
(c) Provide, as appropriate, a matrix, in terms of the standard basis for P_{3}, for a left inverse, a right inverse, or the unique inverse of λ.
9. Let λ be the linear map $P_{3} \rightarrow P_{3}$ given by $\lambda(f)=f+f^{\prime \prime}$.
(a) Provide the matrix for λ in terms of the standard basis for P_{3}.
(b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
(c) Provide, as appropriate, a matrix, in terms of the standard basis for P_{3}, for a left inverse, a right inverse, or the unique inverse of λ.
10. Let λ be the linear map $P_{3} \rightarrow P_{2}$ given by $\lambda(f)=f^{\prime}+f^{\prime \prime}$.
(a) Provide the matrix for λ in terms of the standard bases for P_{3} and P_{2}.
(b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
(c) Provide, as appropriate, a matrix, in terms of the standard basis for P_{3}, for a left inverse, a right inverse, or the unique inverse of λ.
