MAT 2550, Inverse Maps and Their Matrix Representations

April 15, 2020

To be handed in. Due by 5 p.m. on Friday, April 17, 2020.

Note: A possible answer to part (b) is "none of the above," in which case neither a right nor a left inverse exists and there is nothing "appropriate" to do for part (c).

- 1. Let λ be the linear map $\mathbb{R}^3 \to \mathbb{R}^2$ given by orthogonal projection onto the x, y-plane: $(x, y, z) \mapsto (x, y)$.
 - (a) Provide the matrix for λ in terms of the standard bases for \mathbb{R}^3 and \mathbb{R}^2 .
 - (b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
 - (c) Provide, as appropriate, a matrix, in terms of the standard bases for \mathbb{R}^2 and \mathbb{R}^3 , for a left inverse, a right inverse, or the unique inverse of λ .
- 2. Let λ be the linear map $\mathbb{R}^2 \to \mathbb{R}^2$ given by rotation about the origin by 30°.
 - (a) Provide the matrix for λ in terms of the standard basis for \mathbb{R}^2 .
 - (b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
 - (c) Provide, as appropriate, a matrix, in terms of the standard basis for \mathbb{R}^2 , for a left inverse, a right inverse, or the unique inverse of λ .
- 3. Let λ be the linear map $\mathbb{R}^3 \to \mathbb{R}^3$ given by rotation about the z-axis by 45°.
 - (a) Provide the matrix for λ in terms of the standard basis for \mathbb{R}^3 . [Hint: The z-coordinates do not change under this transformation; think of it as if you are looking from above at the xy-plane and rotating it about the origin.]
 - (b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
 - (c) Provide, as appropriate, a matrix, in terms of the standard basis for \mathbb{R}^3 , for a left inverse, a right inverse, or the unique inverse of λ .
- 4. Let λ be the linear map $\mathbb{R}^3 \to \mathbb{R}^3$ given by orthogonal projection onto the plane $\{(x, y, z) : x = y\}$.
 - (a) Provide the matrix for λ in terms of the standard basis for \mathbb{R}^3 . [Hint: Break the transformation down into the composition of three transformations: first rotate the plane x = y about the z-axis into the xy- or xz-plane (your choice), then project orthogonally onto that plane (which just requires changing the remaining coordinate to 0), then rotate back.]
 - (b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
 - (c) Provide, as appropriate, a matrix, in terms of the standard basis for \mathbb{R}^3 , for a left inverse, a right inverse, or the unique inverse of λ .
- 5. Let λ be the linear map $\mathbb{R}^3 \to \mathbb{R}$ given by orthogonal projection onto the x-axis: $(x, y, z) \mapsto x$.
 - (a) Provide the matrix for λ in terms of the standard bases for \mathbb{R}^3 and \mathbb{R} . (The standard basis for \mathbb{R} is just the number 1.)

- (b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
- (c) Provide, as appropriate, a matrix, in terms of the standard bases for \mathbb{R}^2 and \mathbb{R} , for a left inverse, a right inverse, or the unique inverse of λ .
- 6. Let λ be the linear map $\mathbb{R}^3 \to \mathbb{R}^3$ given by orthogonal projection onto the line $\{(x, y, z) : x = y \& z = 0\}$.
 - (a) Provide the matrix for λ in terms of the standard basis for \mathbb{R}^3 . [Hint: Two steps. First project onto x = y using your answer to Exercise 2, then project orthogonally onto z = 0 (which is just the *xy*-plane). Drawing a picture will help you see that this composition does the right thing.]
 - (b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
 - (c) Provide, as appropriate, a matrix, in terms of the standard basis for \mathbb{R}^3 , for a left inverse, a right inverse, or the unique inverse of λ .
- 7. Let λ be the linear map $P_3 \to P_2$ given by $\lambda(f) = f'$. (Here f denotes a polynomial function.)
 - (a) Provide the matrix for λ in terms of the standard bases for P_3 and P_2 .
 - (b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
 - (c) Provide, as appropriate, a matrix, in terms of the standard basis for P_3 , for a left inverse, a right inverse, or the unique inverse of λ .
- 8. Let λ be the linear map $P_3 \to P_1$ given by $\lambda(f) = f''$.
 - (a) Provide the matrix for λ in terms of the standard bases for P_3 and P_1 .
 - (b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
 - (c) Provide, as appropriate, a matrix, in terms of the standard basis for P_3 , for a left inverse, a right inverse, or the unique inverse of λ .
- 9. Let λ be the linear map $P_3 \to P_3$ given by $\lambda(f) = f + f''$.
 - (a) Provide the matrix for λ in terms of the standard basis for P_3 .
 - (b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
 - (c) Provide, as appropriate, a matrix, in terms of the standard basis for P_3 , for a left inverse, a right inverse, or the unique inverse of λ .
- 10. Let λ be the linear map $P_3 \to P_2$ given by $\lambda(f) = f' + f''$.
 - (a) Provide the matrix for λ in terms of the standard bases for P_3 and P_2 .
 - (b) Is λ injective (but not surjective), surjective (but not injective), or bijective?
 - (c) Provide, as appropriate, a matrix, in terms of the standard basis for P_3 , for a left inverse, a right inverse, or the unique inverse of λ .