MAT 2443: Exam 2

Name: \qquad
March 19, 2014.
No calculators, notes, or books are allowed. You may have only writing implements (including a ruler or other drawing aids) and blank paper.
Each numbered question is worth 20 points; any lettered parts of a question have the same value.

1. Parametrized Curves. A particle travels along the curve in space defined by $\mathbf{r}_{1}(t)=(\cos t, \sin t, t)$, where position is measured in meters and t represents time, in seconds (after some initial instant). A second particle travels along the vertical straight line defined by $\mathbf{r}_{2}(t)=(0,1,2 t)$.
(a) It should be obvious to you that these particles do not collide. Explain! (Hint: Look at their third coordinates.)
(b) It is known that there is a unique solution to the equation $t=\cos t$, which lies on the interval $(0,1)$; call this solution α. Show that the particles are nearest to each other when $t=\alpha$ seconds.
2. (a) Differentiation. Let $F: \mathbb{R} \rightarrow \mathbb{R}^{3}$ and $G: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be differentiable functions, and suppose that $F(0)=(1,0,0), F^{\prime}(0)=(1,1,1), G(0)=(0,1,0)$, and $G^{\prime}(0)=(1,1,0)$. Evaluate $(F \cdot G)^{\prime}(0)$ (where the function $F \cdot G$ is defined in the obvious way by $F \cdot G(t)=F(t) \cdot G(t)$).
(b) Parametrization and arc length. Write down an integral expression for the circumference (that is, arc length once around) of the ellipse in which the cylinder $x^{2}+y^{2}=1$ intersects the plane $z=x+y$. You need not evaluate this integral.
3. Velocity, speed, orthonormal frame, curvature, \mathcal{E} acceleration. A particle moves along the helical path $\mathbf{r}(t)=(\cos t, \sin t, t)$, where distance is measured in meters and t is time in seconds.
(a) Calculate the speed of the particle, showing it is constant.
(b) Calculate the unit tangent, normal, and binormal vectors, $\mathbf{T}(t), \mathbf{N}(t)$, and $\mathbf{B}(t)$.
(c) Calculate the curvature of the path of the particle, showing that it is constant.
(d) Let $\mathbf{a}(t)=a_{T} \mathbf{T}+a_{N} \mathbf{N}$ be the acceleration of the particle, where a_{T} and a_{N} are its tangential and normal (scalar) components, respectively. Show that $a_{T}=0-$ this should make sense to you, given that the speed is constant, and calculate a_{N}, which is constant, but not zero this should make sense to you, too, since both speed and curvature are constant.
4. Level curves $\&$ limits. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by $f(x, y)=e^{x^{2}+y^{2}}-1$.
(a) Show that the level curves of f are circles centered at the origin.
(b) Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)}{x^{2}+y^{2}}$.
5. Partial derivatives. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by $f(x, y)=e^{x y}$.
(a) Calculate $\frac{\partial}{\partial x} f(0,0)$.
(b) Calculate $\frac{\partial^{2}}{\partial y \partial x} f(0,0)$.

Extra Credit! (5 points) Solutions due by the beginning of class on Monday, March 24.
Prove that there is a solution to the equation $t=\cos t$ on the interval $(0,1)$ and that there is no other solution to this equation, a fact that was used in Problem 1. Illustrate your argument using the graphs of the functions $f(t)=t$ and $f(t)=\cos t$.

Hints: To prove there is a solution on the given interval, use the Intermediate Value Theorem. To show this solution is unique, observe that if $t>1$, then $t-\cos t>0$, since $\cos t \leq 1$. Make a similar argument for $t<-1$. Finally, observe that for $-1 \leq t<0, \cos t$ and t have opposite signs.

