Name:
March 28, 2014.
No calculators, notes, or books are allowed except for one index card. You may have only writing implements (including a ruler or other drawing aids) and blank paper.
Each numbered question is worth 20 points; any lettered parts of a question have the same value.

1. What point on the curve $\mathbf{r}(t)=\left(e^{-\frac{t}{2}}, e^{t}, e^{-\frac{t}{2}}\right)$ is closest to the origin $(0,0,0)$?
2. Let $F: \mathbb{R} \rightarrow \mathbb{R}^{3}$ and $G: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be differentiable functions, and suppose that $F(0)=(1,0,0)$, $F^{\prime}(0)=(1,1,1), G(0)=(0,1,0)$, and $G^{\prime}(0)=(1,1,0)$. Evaluate $(F \times G)^{\prime}(0)$ (where the function $F \times G$ is defined in the obvious way by $F \times G(t)=F(t) \times G(t))$.
3. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does not exist.
4. What is the curvature at the point $(2,0,0)$ of the curve in which the elliptic cylinder $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ intersects the surface $z=y^{3}$?
5. (a) Write the equation of the tangent plane to the surface $z=e^{x y}$ at the point $(1,1, e)$. You may use either local differential coordinates $(d x, d y, d z)$ at $(0,0,1)$ or the ambient spacial coordinates (x, y, z), whichever you prefer. If you use local differential coordinates, indicate with a sketch or briefly describe in words what these coordinates represent.
(b) If $x^{2}+y^{2}+z^{2}=3$, calculate $\frac{d z}{d x}$ and $\frac{d z}{d y}$ at the point $(1,1,1)$.
