MAT 2443: Exam 1
Name:
February 5, 2013.
No calculators, notes, or books are allowed. You may have only writing implements (including a ruler or other drawing aids) and blank paper.
Each numbered question is worth 20 points; any lettered parts of a question have the same value.

1. Coordinate Geometry.
(a) Calculate the distance from the point $(1,1,1)$ to the origin $(0,0,0)$.
(b) Calculate the distance from the point $(1,1,1)$ to the x-axis.
(c) Calculate the distance from the point $(1,1,1)$ to the $x y$-plane.
(d) Write an inequality describing the solid in \mathbb{R}^{3} consisting of the points that lie on or inside the sphere of radius 2 with center at $(1,1,1)$. (That is, write an inequality whose solution is this set of points.)

2. Vector Geometry

(a) Calculate the acute angle between the planes $x+y=0$ and $y+z=1$.
(b) Calculate the distance between the parallel planes $x+y+z=0$ and $x+y+z=\sqrt{3}$.
(c) Calculate the angle between the x-axis and its orthogonal projection onto the plane $x+y+z=0$.
(d) Let $\mathbf{u}=(1,1,0), \mathbf{v}=(0,1,1)$, and $\mathbf{w}=(1,0,1)$. Calculate the oriented volume of the parallelepiped determined by the ordered triple $(\mathbf{u}, \mathbf{v}, \mathbf{w})$.

3. Lines $\&^{3}$ Planes

(a) Consider the lines given by the equations below:

- $l: x=y=z$
- $m: x=1-y, z=0$

Do these lines intersect? If not, are they parallel?
(b) Find an equation for the plane through the origin that is perpendicular to the line parametrized by $x=t, y=2 t, z=1+3 t$.
4. Find an equation for the plane that passes through the three points $(1,01),(0,1,1)$, and $(0,0,2)$.
5. Consider the surface defined as the solution to the equation $y^{2}-x^{2}=z$.
(a) Write equation for the trace in the $y z$-plane of the cross-section perpendicular to the x-axis at $x=0$. Sketch it on the grid provided below.
(b) Write equation for the trace in the $x z$-plane of the cross-section perpendicular to the y-axis at $y=0$. Sketch it on the grid provided below.
(c) Write equations for the traces in the $x y$-plane of the cross-sections perpendicular to the z-axis at $z=-1, z=0$, and $z=1$. Sketch and label them on the grid provided below.
(d) Sketch the surface using the axes provided.

(a)

(b)

(c)

(d)

