
MAT 2442: Exercises on Power Series,

Particularly Taylor and Maclaurin Series

Taylor and Maclaurin Series are essential mathematical tools. Understanding these power series
makes use of all the aspects of sequences and series we have studied. Some emphasis will be placed on
putting correct bounds on the possible error made in approximating the values of functions and definite
integrals using Taylor and Maclaurin series.

Recall that Taylor’s Theorem gives a nice but somewhat indeterminate formula for the remainder,
Rn(x), when f(x) is approximated by its nth degree Taylor polynomial. Taylor’s formula,

Rn(x) =
f (n+1)(z)(x− a)n+1

(n+ 1)!
,

where a is the center of the Taylor series and z is between a and x, is a natural generalization of the
Mean Value Theorem. (It’s proof is elementary but somewhat involved. A Maclaurin Series is simply
the special case that a = 0.) Observe that the remainders Rn(x) define a sequence, and the Taylor
series converges to f(x) if and only if the limit of this sequence as n→∞ is zero. The following three
problems deal with this issue.

1. Find the interval of convergence of the power series
∞∑

n=1

xn

n
.

2. Find the interval of convergence of the power series
∞∑

n=1

(−1)nx
n

n
.

3. Find the interval of convergence of the power series
∞∑

n=1

xn

3n
.

4. Find the interval of convergence of the power series
∞∑

n=1

xn

n23n
.

5. Find the interval of convergence of the power series
∞∑

n=1

(−1)n xn

n23n
.

6. Explain why limn→∞
xn

n! = 0 for any value of x. (It is not sufficient just to say that n! grows
faster; explain the pattern that emerges as n grows. It might help to start with a simple example,
such as x = 2.)

7. Since f(x) = ex is an increasing function, it is clear that for 0 ≤ z ≤ x, ez ≤ ex. Use this fact and
Taylor’s formula to show that the Maclaurin series for ex converges to ex for every positive value
of x.

8. It should also be clear that for x ≤ z ≤ 0, ez ≤ 1. Use this fact and Taylor’s formula to show that
the Taylor series for ex converges to ex for every negative value of x.

Remark: It should be obvious that a Maclaurin series converges at x = 0.
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9. Use Taylor’s Theorem to prove that sinx =
∞∑

n=0

(−1)n x2n+1

(2n+ 1)!
for any real value of x. (Hint:

| sinx| ≤ 1 and | cosx| ≤ 1 for all values of x.)

10. Take the derivative of the series above to derive the Maclaurin series for cosx.

11. Find the MacLaurin series for f(x) = x2 cosx.

12. Find the MacLaurin series for f(x) = cos(x2).

13. Use long division to calculate the third-degree Maclaurin polynomial (that is, Taylor polynomial
centered at a = 0) for tanx.

14. Use multiplication of series to calculate the third degree Maclaurin polynomial for ex cosx. [Hint:
For the term of each degree, look for the terms in each factor that multiply to that degree as you
go along.]

15. Derive the Maclaurin series for
√

1 + x and use it to calculate
√

1.1 with error at most .01. (You
need not find the radius on which the series converges to

√
1 + x, but if you’d like a bit of a

challenge, see if you can!)

16. Derive the Maclaurin series for
√

4 + x and use it to calculate
√

5 with error at most .01.

17. Derive the Maclaurin series for 1√
1+x

.

18. Approximate 3
√
e with possible error less than .005.

19. Approximate 1
3√e

with possible error less than .005. (You don’t need Taylor’s Theorem for this one,
because the series alternates, but it is worth bounding the error using both methods for practice;
you will get the same answer.)

20. Use the MacLaurin Series for ln(1 + x), evaluated at x = − 1
2 , to calculate ln 2 with possible error

less than .01. [Hint: We discussed this briefly in class on Tuesday. Observe that ln(2) = − ln
(

1
2

)
and that, for any partial sum, the remainder of the series for ln(2) obtained in this way is bounded
above by a convergent geometric series. You won’t need very many terms.]

21. Derive the MacLaurin series for arctanx and determine its radius of convergence. (Hint: You don’t
need to use the formula cn = f(n)(0)

n! or Taylor’s Remainder Formula, although you certainly can
if you want to and might benefit from the practice. There is an easier way: integrate a geometric
series. If f(x) = arctanx, what is f ′(x)?)

22. Approximate
∫ .1

0

sin(θ4)dθ with possible error less than 10−13.

23. Suppose f(x) =
∞∑

n=0

(−1)nx
n

n2
, −1 ≤ x ≤ 1. What is f (3)(0)?

24. Suppose f : R → R is an infinitely differentiable function. Suppose that f(0) = 0, f ′(0) = 1,
f (2)(0) = 2, and f (3)(0) = 3. What is the 3rd-degree MacLaurin polynomial for f?

25. More generally, suppose f (n)(0) = n (following the pattern above). Suppose in addition that
|f (n)(x)| ≤ n for every real number x. Provide the MacLaurin series for f and prove that it
converges to f for all real numbers.
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