Local Coordinates \& Differentials

Charles Delman

August 27, 2015

The Correspondence Between Numbers and Linear Functions

- The number m completely determines the function defined by the linear relationship $d y=m d x$.
■ Conversely, the linear function $d y=m d x$ completely determines the number $m=\frac{d y}{d x}$. This number is called the slope of the linear function.

$$
d y=m d x \Leftrightarrow m=\frac{d y}{d x}
$$

■ Every real number corresponds to a linear function. Different numbers determine different functions. Every linear function corresponds to a number, its slope.

- That is, there is a one-to-one correspondence between real numbers and linear functions.

$$
m \leftrightarrow \text { function defined by } d y=m d x
$$

Preview: Linear Functions in Higher Dimensions

Local

- In Calculus 3 and in Linear Algebra, we study functions with higher dimensional inputs and outputs.
- You are already familiar with this concept. For example, the area of a rectangle is a function of its length and width: $A=f(I, w)=I w$. Its input is two-dimensional.
- In general, a linear function is a function for which every term in the formula is linear. For example,

$$
f(x, y, z)=(2 x+3 y-z, x+y+5 z)
$$

■ In other words, each output is a linear combination of the inputs.

- Is the area of a rectangle a linear function of its length and width?

Preview: Linear Functions in Higher Dimensions

Local

- In Calculus 3 and in Linear Algebra, we study functions with higher dimensional inputs and outputs.
- You are already familiar with this concept. For example, the area of a rectangle is a function of its length and width: $A=f(I, w)=I w$. Its input is two-dimensional.
- In general, a linear function is a function for which every term in the formula is linear. For example,

$$
f(x, y, z)=(2 x+3 y-z, x+y+5 z)
$$

■ In other words, each output is a linear combination of the inputs.

- Is the area of a rectangle a linear function of its length and width? No!

Linear Functions \& Matrices

Local

- Just as there is a one-to-one correspondence between one-dimensional linear functions and numbers, there is a one-to-one correspondence between higher dimensional linear functions and matrices of real numbers. For example:

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
1 & 1 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 x+3 y-z \\
x+y+5 z
\end{array}\right]
$$

■ You can think of a number as a 1×1 matrix!

Local Linearity

- Linear functions are relatively simple to understand and have many useful properties.
- As you know from Calculus 1, we study more complicated functions using linear functions.
- We do this by studying the linear relationship between changes in input and output at each point where such a relationship applies.
- If a function is differentiable, its derivative gives this relationship.

Local Coordinates:

The ($\Delta x, \Delta y$)-Coordinate System

■ Since the linear relationship between inputs and outputs varies from point to point, it is helpful to view this relationship in local coordinates based at each point $(x, y)=(x, f(x))$.

- Two systems of local coordinates, both with the same scale as the (x, y)-coordinate system, are useful.
- The first is the $(\Delta x, \Delta y)$-coordinate system, in which we graph $\Delta y=f(x+\Delta x)-f(x)$.
- Thus, Δx denotes change in input away from the value x and Δy denotes the corresponding change in the output of f away from the value $y=f(x)$.
■ In other words, $y+\Delta y=f(x+\Delta x)$.
- The graph $\Delta y=f(x+\Delta x)-f(x)$ is just a translation of the graph of f taking a fixed value (x, y) to the origin.

The Graph $\Delta y=f(x+\Delta x)-f(x)$

Local
Coordinates \& Differentials

Charles
Delman

$$
\Delta y=f(x+\Delta x)-f(x)
$$

$$
(x, y)=(x, f(x))
$$

Local Differential Coordinates:
 The ($d x$, $d y$)-Coordinate System

■ The second important local coordinate system is the ($d x, d y$)-coordinate system, in which we graph the linear function $d y=m_{x} \cdot d x$, where $m_{x}=f^{\prime}(x)$ is the slope of the curve $y=f(x)$ at $(x, f(x))$.

- Thus, $d x$ denotes a change in input away from the value x and $d y$ denotes the corresponding linear change in accordance with the rate of change at that point.
- The linear change in output dy from y is called the differential change in f resulting from a differential change in input $d x$ from x.
- For a given change in input, $d y$ and Δy are generally different, unless f is a linear function to begin with. Δy is the actual change in the output of f, whereas $d y$ only approximates it near $(x, y)=(x, f(x))$.

The Graph $d y=m_{x} \cdot d x=f^{\prime}(x) d x$

Local

Coordinates \& Differentials

Charles
Delman
dy

$$
d y=m_{x} \cdot d x=f^{\prime}(x) d x
$$

$$
(x, y)=(x, f(x))
$$

Integration of the Differential Changes Gives the Total Change

Local

■ To integrate means to put together.

- Integration combines the differential changes to obtain the total change.
- Thus, if $y=F(x)$,

$$
\int_{a}^{b} d y=F(b)-F(a)
$$

- That is the content of the Fundamental Theorem of Calculus, interpreted in the language of differentials.
■ To compute integrals exactly, we use substitution or some other method to rewrite the differential form being integrated as the differential $d y=F^{\prime}(x) d x$ of some function F.

Example using Substitution

Local

Charles
Delman
$\int_{-\frac{1}{2}}^{0} \sqrt{2 x+1} d x=\frac{1}{2} \int_{0}^{1} u^{\frac{1}{2}} d u=\frac{1}{2} \int_{0}^{1} d\left(\frac{2}{3} u^{\frac{3}{2}}\right)=\left.\frac{1}{3} u^{\frac{3}{2}}\right|_{0} ^{1}=\frac{1}{3}$,
where $u=2 x+1$; hence $x=\frac{u-1}{2}$ and $d x=\frac{1}{2} d u$.
Note how we change the limits of integration to correspond with the new variable.

