All Permutations Considered

Andrew Mertz
William Slough
Nancy Van Cleave

Mathematics and Computer Science Department
Eastern Illinois University

September 24, 2005
Overview

- National Public Radio *Weekend Edition* Sunday Puzzle
- A few puzzles
- Common thread – permutations
- Making permutation generation accessible
- Student activities
- Classroom discussion
- Why is this nifty?
NPR Weekend Edition Quiz

- Weekend Edition Sunday Puzzle with Will Shortz
- Variety of word and number puzzles
- http://www.npr.org/programs/wesun/puzzle
- Why puzzles?
 - General interest and appeal
 - No special background needed
 - Many connections to computing
Sample Problem

<table>
<thead>
<tr>
<th>T</th>
<th>E</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>O</td>
<td>R</td>
</tr>
<tr>
<td>A</td>
<td>R</td>
<td>Y</td>
</tr>
</tbody>
</table>

Diagram 1:

Diagram 2:

Diagram 3:
Another Problem
Another Problem

War
Another Problem

War Wag
Another Problem

War Wag Wig
Another Problem

War Wag Wig Wit
ANALOGIESK
The Common Thread: Generating Permutations

- Recursive?
- Iterative?
- Interface?
- Implementation?
- All permutations or one-at-a-time?
Making Permutations Accessible: Usage

...
PermutationChain MyChain("abc");

for (int i = 0; i < 6; i++)
 cout << MyChain.Draw() << endl;
...

CCSC:MW 2005
Making Permutations Accessible: Interface

#include <vector>
#include <string>

class PermutationChain {
 public:
 // constructor
 PermutationChain(const string & s);

 // facilitator
 string Draw();

 private:
 vector<int> Current;
 string TheString;
 bool IsOrdered();
};
Part 1. Generate all permutations of an input string

Part 2. Given a string of size 9, generate all ten 3-letter words from the grid

Part 3. Construct a vector of strings and determine whether they’re all in the dictionary

Part 4. Using PermutationChain and the two functions implemented in parts 1–3, solve the puzzle
Classroom Discussion

- Interface vs. implementation — focus on interface
- Seat-of-the-pants analysis
 - Linear search vs. binary search
 - Generalization: 4×4 grid
 - Space considerations
 - Estimations of time needed
- JUMBLE puzzle
- What other 9-letter words have this property?
Why is this Nifty?

► It’s fun!
► It’s interesting!
► Surprises for students:
 ► Wow; I can actually make a computer do this?
 ► Not all programs run in less than one second!
 ► How many seconds (days? months? years?) for a 4×4?!
► Provides springboard to topics often not seen until later
 ► Permutation generation
 ► Analysis of algorithms — both time and space
 ► Feasible computations