A Data Structure for Fast Near-Optimal Rectilinear Steiner Tree Generation

Nancy Van Cleave
Eastern Illinois University

Abstract. We present a simple and efficient data structure to represent a useful class of
Rectilinear Steiner Trees, as well as the near-optimal results obtained when this structure is used
with a slightly modified version of Saab and Rao’s adaptive heuristic algorithm, Stochastic
Evolution. Empirical results for up to 100 points give an average improvement of more than
11% over Rectilinear Minimal Spanning Trees -- an improvement unequaled by other
algorithms.

1. Introduction

Rectilinear Steiner trees have a variety of applications which make them attractive for study.
Especially of interest is their use in the global routing phase of VLSI chip design, as well as in
routing utilities along streets and in buildings. Many heuristics, and a few optimal algorithms for
small sets of about 20 points, have been suggested. Many of these algorithms are based on
minimal spanning trees or geometric methods. [See for example HVW90, Hw79, KaRo090,
KoSh85, LPV92, Ri89, and YaWi72].

B
eb
e—0(q
A A
| ¢° e
(a) RMST (b) SRSST

Figure 1. Rectilinear Spanning Trees

Shortest rectilinear Steiner spanning trees (SRSST) are similar to rectilinear minimal spanning
trees (RMST), except we may add extra vertices to shorten the Steiner tree. These extra points,
called Steiner points, are used to eliminate overlaps which can occur in minimal spanning trees.
See figure 1. Let us formally define the problem as follows:

Definition. The rectilinear Steiner problem is that of connecting a set of points in
the plane with a connected collection of vertical and horizontal lines with minimal
overall length.

F. K. Hwang [Hw76] proved the following relation between SRSSTs and RMSTs. It is used
often to guarantee the performance of algorithms based on minimal spanning trees.

Page 1



Theorem 1. (Hwang) A minimal spanning tree over a set of points is no longer
than 1.5 times the length of the shortest rectilinear Steiner spanning tree over the
same set of points.

We wish next to consider the class of Steiner trees which have at most one line per point and
introduce a simple representation based on the intersection points of the lines in these trees.
Then we shall describe how this representation may be used in an implementation of the
Stochastic Evolution algorithm [SaRa91] for the Steiner problem, and finally, discuss our results.

2. A Special Class of Steiner Trees

We can use the following theorem [JLV96] to prune our search space of a multitude of possible
Steiner trees without deleting every optimal tree.

Theorem 2. There exists a rectilinear shortest Steiner spanning tree over a set of
n points composed of at most n lines.

By imposing the restriction the n points must have unique coordinates (i.e., no two points in the
set may lie on the same horizontal or vertical line), we can concentrate solely on trees which have
exactly n lines, one associated with each point and connecting it to the rest of the Steiner tree.
We are able to force any arbitrary set of points to meet this restriction by perturbing the
coordinates by some epsilon in order to obtain n unique coordinates.

3. A Steiner Tree Representation

Often, minimal spanning trees are represented by a list of point pairs giving the direct
connections between points. An example of this is shown in figure 2. These pairs merely
indicate that some connection is to be made between the points, but do not tell us how the
connection is to be made. Since shortest paths in the rectilinear metric are not unique, these pairs
do not specify a particular tree, but a set of many trees over the points.

C
A <A,B>
T <B,C>
<B,D>
B <D,E>
oD

E®

Figure 2. Graphical and Connection List Representations of an MST

Page 2



We note if we process such a tree in a depth-first manner, assigning a direction to the single line
through each point, we find these connection pairs may also be used to denote the intersections of
the lines in the Steiner tree. See figure 3. By requiring the pairs to be ordered, arbitrarily
choosing the horizontal component as the first in the ordered pair, we derive a representation
which uniquely defines each Steiner spanning tree unambiguously.

—————®C C
A.— AT
BY o
B
E E o—
<A B> <B,A>
<C,B> <B,C>
<D,B> <B,D>
<D,E> <E.D>

Figure 3. Graphical and Intersection Pair Representations of Steiner trees
over the same set of points.

Exactly two such representations are derivable (in linear time) from any RMST connection pairs
list [Va92], and either of them may be used as the initial feasible solution required by the
Stochastic Evolution algorithm.

4. The Stochastic Evolution Algorithm

Simulated Annealing (SA) and Stochastic Evolution (SE) algorithms are classified as
combinatorial optimization techniques. Both are general purpose, but while SA is tunable to a
particular problem, SE is an adaptive heuristic which rewards itself for finding better solutions.
SA is modeled after the physical annealing process for solids where the material to be annealed is
heated to a sufficiently high temperature (until the particles are arranged randomly), then slowly
cooled to a ground state. The general SE algorithm is very similar to SA in that they both
iteratively generate a new state from the current state. However, SA moves from one
configuration to a neighboring configuration based on a simple move, eventually settling on a
solution. On the other hand, the SE algorithm keeps track of the best solution found during the
iterations, while moving from one configuration to the next which is derived by a compound
move, but which is not necessarily an immediate neighbor of the previous configuration.

The SteinerSE algorithm is given in figure 4. The procedure requires an initial feasible
configuration, G, as well as values for the control parameters InitialMaxOver and MaxCount.

Page 3



During each iteration of the loop, if a configuration is found with a shorter length than Best,
Count is decremented by MaxCount, thereby increasing the number of iterations. Hence, as
long as improvements are made, the algorithm rewards itself with more time to search for even
better configurations.

SteinerSe (Config, Best, InitialMaxOVer, MaxCount)

PRE: C : an initial feasible configuration
given as intersection pairs
InitialMaxQOver : initial maximum negative gain
MaxCount : approximate number of iterations
before improvement if found
POST: Best : configuration of least cost found
by the algorithm
/1 Initializations
Best=C
Count=0

MaxOver = InitialMaxOver

/I Iteratively search for better solution
REPEAT
// Greate new solution
PreCost = Length (C)
Perturb (C, MaxOver)
PostCost = Length (C)
Update (MaxOver, PreCost, PostCost, InitialMaxOver)
if PostCost < Length (Best) then
/1 if improved, save best and reward counter
Best=C
Count = Count - MaxCount
else
// increment counter
Count = Count + 1
UNTIL Count > MaxCount

Figure 4. General Stochastic Evolution Algorithm

This continues until Count finally exceeds MaxCount. Thus MaxCount, the iteration bound,
represents the fewest iterations needed before we encounter an improvement over the best
configuration found so far. If MaxCount is chosen too small, the algorithm may not have time
to find even a local minimum. If MaxCount is too large, time will be wasted looking for better
configurations which do not exist.

InitialMaxOver is the initial maximum increase in length allowed while still accepting (moving

to) a new configuration. As we iterate, if we do not find a better configuration we increase the
value of MaxOver, allowing even greater increases in length until we finally locate a better

Page 4



solution or we exceed MaxCount. Once an improvement over Best is found, MaxOver is reset
to InitialMaxOver in the procedure Update.

5. Perturbing Configurations

We defind a configuration to be the intersection pairs discussed in Section 3, and must consider
how to generate a neighboring configuration. We could randomly choose an intersection pair to
be replaced, but we must keep in mind removing such a pair from the Steiner tree causes the tree
to be disconnected. This creates two subtrees, one of which may contain a single point in the
case where we disconnect a leaf.

Hence, we may not replace pairs haphazardly, but must choose a replacement pair which
reconnects the subtrees. To accomplish this, we must determine which points (and their
associated lines) are in each of the subtrees. We may then randomly pick a horizontal line from
one group and a vertical line from the other to reconnect the trees, using their intersection point
to replace the pair chosen for deletion.

—8C Yo
A — | A
B ° B.

E Ee
<A,B> <A,B>
<C,B> <C B>
<D,B> <C,E>"
<D,E> <D,E>

Figure 5. Steiner tree configuration and a random neighbor.

For example, suppose we have the tree and intersection pairs shown on the left in figure 5, and
we randomly choose to replace the third intersection pair, < D, B >. This splits the tree into two
subtrees, the first composed of the lines associated with A, B, and C; the second with D and E.
Hence, the first group of points has two horizontal lines (one each associated with A and C), and
one vertical line (with B). The second group has one horizontal (with D) and one vertical line
(with E).

Now, suppose we randomly choose a horizontal line from the first group, say the line associated
with C. We must then choose to connect C with E as it is the only vertical line in the second
group. Thus we have the new configuration shown on the right in figure 5. We see this change
in the configuration did not yield a very good tree, although it is feasible.

Page 5



In Stochastic Evolution we use a compound move in an attempt to find an even better solution
than our current best so far. Here we step through the ordered intersection pairs of the
configuration and create replacement pairs for each one, randomly choosing horizontal and
vertical lines from the two subtrees. At each step, the resulting configuration is evaluated and if
the tree is shortened, or the change in tree length is less than a randomly generated number
between one and the maximum allowable negative gain, that move is accepted. Otherwise, the
resulting configuration is ignored and we continue to the next pair, still using the current
configuration. Of course subsequent configurations will depend on earlier accepted moves since
the configuration will change during the procedure and we wish to generate a feasible solution.

Since our algorithm keeps track of the best configuration found so far, it can do no worse than
the original configuration: the minimal spanning tree itself. Hence we have the following
theorem which is an extension of Theorem 1.

Theorem 3. The SteinerSE Algorithm produces a tree which is no longer than
1.5 times optimal.

6. Empirical Results

Two variations of the SteinerSE algorithm were tested in Randhawa [Ra95] on data sets
generated randomly from a uniform distribution on a fixed size grid. Kahng and Robins
[KaRo090] determined such instances are statistically indistinguishable from the pin locations of
actual VLSI layouts, and are in fact the standard testbed for Steiner tree heuristics [Ri89]. The
results of these tests are shown in Table 1 below.

Table 1. SteinerSE Statistics
(Execution time is in seconds)
Ave. Percent
Set size MST cost Time Improvement
over MST
10 50 1.5 10.8
15 70 6 9.9
20 125 21 11.1
25 125 30 10.9
30 120 39 12,3
35 120 57 10.9
50 70 91 11.7
100 40 550 11.1
Overall
Average: 1.1

Page 6



In the case of 5, 7, and 10 point data sets [Va92], SteinerSE found all but one of the known
optimal solutions and was off by less than 1% of the tree length in that case.

Table 2 gives a comparison of reported results from the original papers when available. Of
course the other algorithms are presumed to have been executed on the general case, not point
sets with unique coordinates.

Table 2. Comparison of Several
Reported Results
Researchers method % improved

Lee et al Prim 9
Hwang Prim 9
Bern et al Kruskal 9
Ricahrds line-sweep 4
(Hanan)

Lewis et al line-sweep 8.4
Smith et al geometric 8
Ho et al edge-flip 9
Kahng et al 1-Steiner 10.9
SteinerSE comb. opt. 11.1

We see SteinerSE obtains the best average improvement. Hence we have an algorithm which
yields excellent results with the benefits of being simple to understand and implement.

7. References

BeCa85

HVWI0

Hw76

Hw79

JLV96

Bern, M., and M. de Carvalho. “A Greedy Heuristic for the Rectilinear Steiner
Tree Problem. Technical Report, UC Berkeley, CS Department (1985).

Ho, J.-M., G. Vijayan, and C. K. Wong. “New Algorithms for the Rectilinear
Steiner Tree Problem.” IEEE Transactions on Compute Aided Design, 9:2
(1990), 185-193.

Hwang, F. K. “On Steiner Minimal Trees with Rectilinear Distance.” SIAM
Journal of Applied Math., 30 (1976), 104-114.

Hwang, F. K. “An O(nlogn) Algorithm for Sub-optimal Rectilinear Steiner
Trees.” IEEE Transactions on Circuits and Systems, CAS-26:1 (1079), 75-77.

Joyce, P., F. D. Lewis, and N. Van Cleave. “The Feasible Solution Space for
Steiner Trees.” Eighth SIAM Conference on Discrete Mathematics, June 1996.

Page 7



KaRo090

KoSh85

LBH76

LPVI1

LPV92

Ra95

Ri89

SaRa91

SLL30

Va92

YaWi72

Kahng, A., and G. Robins. “On a New Class of Iterative Steiner Tree Heuristics
with Good Performance.” Technical Report, UCLA CS Dept., #CSD-900014
(May 1990)

Komlos, J., and M. Shing. “Probabilistic Partitioning Algorithms for the
Rectilinear Steiner Problem.” Networks, 15 (1985), 413-423.

Lee, J., N. Bose, and F. K. Hwang. “Use of Steiner’s Problem in Suboptimal
Routing in Rectilinear Metric.” [IEEE Transactions on Circuits and Systems,
CAS23:7 (July 1976), 470-476.

Lewis, F. D., W. C. Pong, and N. Van Cleave. “A Linecar-time Heuristic for
Rectilinear Steiner Trees.” First Great Lakes Symposium on VLSI, 1991.

Lewis, F. D., W. C. Pong, and N. Van Cleave. “Optimum Steiner Tree
Generation.” Second Great Lakes Symposium on VLSI, 1992.

Randhawa, R. S. “Random Methods for Rectilinear Steiner Tree Problem with
Applications in VLSI Design,” Master’s Thesis, CS Dept., TTU, Lubbock (1995).

Richards, D. “Fast Heuristic Algorithms for Rectilinear Steiner Trees.”
Algorithmica 4 (1989), 191-207.

Saab, Y. and V. Rao. “Combinatorial Optimization by Stochastic Evolution.”
IEEE Transactions on Computer Aided Design, 10:4 (1991), 525-535.

Smith, M., D. Lee, and J. Lievman. “An O(nlogn) Heuristic Algorithm for the
Rectilinear Steiner Minimal Tree Problem.” Eng. Optimization 4 (1980), 179-
192.

Van Cleave, N. “The Rectilinear Steiner Problem™ Ph.D. Dissertation, CS Dept.,
University of Kentucky, Lexington (1992).

Yang, Y. Y., and O. Wing. “Optimal and Suboptimal Solution Algorithms for the
Wiring Problem.” Proceedings of the IEEE International Symposium on Circuit
Theory (1972), 154-158.

Page 8



