Session

OPEN PROTOCOLS FOR WEB-BASED EDUCATIONAL MATERIALS

Terence Ahern’, Nancy Van Cleavé®, Brooks York’

Abstract — Using computers to deliver instructional
material should be an excellent match of technology to
education. Countless products meant to enhance or replace
the classroom experience are currently available, yet few of
them are being utilized in spite of the drive to increase the
use of educational technology. Factors behind this under-
utilization are complex, but include cost, lack of flexibility,
lack of teacher training and support, and the proprietary
nature of the products. Some companies in the electronic
gaming industry have separated game content from the
engine or delivery mechanism, thus saving development time
and expense. Ultilization of the Internet as an educational
tool, especially for distance learning, is taken for granted.
Thus, any computer-based instructional tool should have the
Sfollowing characteristics in order to have maximum utility at
minimum expense: (1) be cross-platform, (2) separate
content from delivery, (3) provide creation, editing, and
delivery capabilities and (4) use open standards. Our work
shows the feasibility of meeting all these requirements with
XML and Java.

Index Terms — Computers and Education, Educational
Technology, Open Protocols, Web-based Education,

INTRODUCTION

Given the proliferation of expensive proprictary educational
software, it is natural to ask whether an open protocol model
would be feasible as an alternative, particularly for course
authoring systems. Using computers to deliver instructional
material should be an excellent match of technology to
education since they, unlike textbooks, can provide
interactive multimedia hypertext presentations. However,
countless commercial products meant to enhance or replace
the classroom experience are currently available, yet few of
them are being utilized in spite of the drive to increase the
use of educational technology [1].
Several factors account for this lack of utilization [2],
including:
e cost of proprictary systems, individual CD’s, site
licenses, maintenance, upgrading, personnel, etc.
¢ lack of availability for particular configurations or
machine types (notably, non-uniform legacy computers
in disadvantaged and under-funded public schools)

e Jack of flexibility in the software to tailor it to the
specific and changing needs of a particular classroom,
teacher, or student

e steep learning curves with little investment in teacher
training and support

e lack of time and energy for instructors to invest in
technology; discovering how to integrate technology
into education

e limited classroom usefulness in general

In the next section we discuss the issues behind these
problems and why they need to be taken into account when
designing educational software, what choices are available
for consideration, and the relative merits of these choices.
We conclude that section with a list of requirements for
educational software. In the sections following, we then
describe how we fulfill these requirements with XML and
Java, and thus prove the feasibility of our approach.

RELEVANT EDUCATIONAL & TECHNOLOGICAL
ISSUES

Consideration of the problems surrounding the use of
computers and other technology in education is important if
we are to increase the use of technology in public
classrooms, provide quality education to all students, and
develop effective distance learning programs which may be
utilized as readily by deployed military personnel as by
corporate America. These issues cut across disciplines,
having their roots in the fields of both Education and
Technology. The concerns relevant to our research, owing
to their impact on decisions related to solutions of the
aforementioned problems, are presented below.

PROPRIETARY VS OPEN SYSTEMS

Several of the problems listed in the introduction stem from
the proprietary nature of current educational products and
softwarc. When using a proprietary or closed-system design,
only the group implementing the product, application, or
system has total knowledge of the inner workings of the
software and generally does not release these to the public at
large. This prevents, or at least severely hampers, third party
vendors from developing add-ons or extensions to the
system.

! Terence Ahern, Texas Tech University, College of Education, Lubbock TX, dwtca@TTACS.TTU.EDU
2 Nancy Van Cleave, Eastern II. University, Math Dept. 331 OM, 600 Lincoln Ave, Charleston, II. 61920, cfnkv@eiu.edu

3 Brooks York, Austin, TX
0-7803-6669-7/01/$10.00 © 2001 IEEE

October 10 - 13, 2001 Reno, NV

31° ASEFE/IEEE Frontiers in Education Conference

An approach at the other end of the spectrum is to base
the development of instructional tools on an open-system
model where the protocols and data representations are
published publicly and are thus available to all parties. This
allows anyone to develop a tool that can utilize a specific
protocol, which in turn may extend the usefulness of the
system. Often these modifications and improvements are
made available to other users with no charge or for an
amount much less than similar proprietary software.
Examples of these two stratagems are MS Windows
(proprietary) and the Linux (open) operating systems.

In general, open systems provide less functionality and
offer fewer administrative-type tools (especially in their carly
stages of development) than proprictary systems but usually
are less expensive and require less server and system
administration support [3].

SEPARATING CONTENT FROM DELIVERY

Some companies in the electronic gaming industry have
separated game content from the game engine or delivery
mechanism, thus saving development time and expense.
New games are created by designing new content (creatures,
weapons, scenarios), then adding it to the pre-existing
presentation engine, which may be refined or updated to
allow for new advances in technology. This separation of
content from delivery system is an important concept since
the reuse of code decreases development time and final cost.

In the educational realm, this sort of partitioning would
allow technology-oriented people to develop and refine the
authoring and presentation mechanisms, while educators
could develop and refine the informational lesson content.
Furthermore, educators would have the ability to share
tutorials and other types of lessons, rather than everyone
constructing their own from the ground up. It also makes
modifying lessons presented in this format much easier since
the educator has full control over the content and how it is
ordered.

Rather than making this division, however, educational
software is currently most often built as an integrated whole.
The integration of data into educational software necessitates
the entire rewriting of both content and engine since they are
inseparable. As there is currently no such delivery engine,
and since educational software in general does not generate a
profit, no on¢ is bothering to develop one.

WEB-BASED EDUCATION AND BROWSERS

With the frenzy over distance learning reaching fever pitch,
use of the Internet as an educational tool is taken for granted.
While it provides access to a vast amount of information,
web-based instructional tools at all levels must still direct the
learner through the material to some extent, otherwise the
acquisition of content suffers as the student become mired in
information overload [4]. Web-based instruction, then, must

0-7803-6669-7/01/$10.00 © 2001 IEEE

Session

guide the learner through what the author has deemed the
important concepts and information, rather than allowing the
student free rein to roam the Internet.

A browser which does not have access to the Internet (or
which is simply used as a stand-alone piece of software),
may still utilize local files on either the user’s computer or
on the server to which it may be connected. Thus, the
browser could be used to provide a platform from which to
launch a presentation engine that orders the information and
controls student access.

CREATING EDUCATIONAL PROTOCOLS

Major problems must be confronted when using an open-
protocol model for educational applications. Programmers
working within the traditional method of courseware
development manage the sequencing of lesson content
through the design of their proprictary delivery algorithms
for how a specific user interacts and navigates the content.
In other words, the software design itself controls access to
the information when the data is an integral part of the
software package. Because the classroom has many distinct
instructional paradigms for content delivery (ranging from
lecture to small-group discussion), the typical protocol
development process is at a great disadvantage as many
protocols (or one if it has an extremely versatile design) are
required to represent the range of classroom instructional
models.

Once a protocol is developed, it must also become part
of the public domain by dissemination in order to be of wide
use. What is needed then is a mechanism by which we not
only create tutorials and other instructional aids which can be
recognized, parsed, and delivered by the presentation engine,
but also a way to associate the appropriate educational
protocol with them.

INSTRUCTIONAL TOOLS REQUIREMENTS LIST

To address all of these problems, any computer-based

instructional tool should satisfy the following requirements:

e utilize open standards and be accessible through the
Internet

® be cross-platform and thus available on a wide variety of
machines and configurations

e gseparate content from the delivery mechanism, allowing
educators to control and share components

e provide creation, editing, and delivery mechanisms
(preferably casy to learn, quick to use, and with a GUI).

In order to satisfy these constraints, the problem was
broken down into three parts and the following solutions
were then developed:

e an open protocol for tutorials based on the Document

Type Definition in XML

October 10 - 13, 2001 Reno, NV

31° ASEFE/IEEE Frontiers in Education Conference

2

e g Java application which incorporates the DTD in order
to produce tutorial files consisting of information
(course) content (such as filenames and URL’s) supplied
by the courseware author, and

e g Java applet which can be used to view the tutorial files
created by the Java application.

The following sections discuss our solution choices in
light of the above criteria, and give further details on their
implementation.

OPEN STANDARDS

The first incarnation of the Internet began in the carly 1970°s
with ARPANET. The original impetus behind the
development of ARPANET was to solve the problem of
allowing all the United States National Laboratories to
continue to communicate and exchange data in the event one
or more of the labs were destroyed in a nuclear war.
Because these labs utilized different hardware, the
communication between them was based on a single shared
communication standard. These published interfaces
(simply put, definitions of relevant data types and how they
are stored) are crucial to this open interchange between
various computers and users.

To integrate scamlessly with other Internet applications,
educational software must take advantage of this openness
and should itself utilize public interfaces. The openness of
published communication standards encourages third party
add-ons and free exchange of content. A prime example of
how openness encourages system extensions is Linux. Many
Linux components come out of Richard Stallman’s GNU
Project and the Free Software Foundation, which are open
forums that encourage additional components for Linux.

DOCUMENT DEFINITION

Extensible Markup Language (XML) is an open standard for
hypertext markup agreed upon by the World Wide Web
Consortium. XML is based on Standard Generalized
Markup Language (SGML), but is intended to be easier to
use. The main reason XML is now preferred in some areas
is because it is not limited to fixed element types like the
hypertext markup language HTML. Instead, XML allows
users to define their own hierarchy of data, which can be
published (shared publicly) by using Document Type
Definitions (DTDs). Once a DTD is created, it is possible to
define custom sets of data that can work in the same way as
other XML files already being used by an application.

XML solves the problem of characterizing relevant
types of data files in an open environment through the use of
DTDs, thus providing a protocol that may be shared across
platforms. The DTD defines not only the structure of the
document, but also the type and content of elements allowed

0-7803-6669-7/01/$10.00 © 2001 IEEE

Session

in the document. A DTD can be carried by or associated
with the document itself so the browser can properly
determine the unique structure of the document.

A DTD can also stand alone as a separate file that
defines a whole class of education-oriented documents. For
example, we chose to model a tutorial in this work, and thus
created a DTD which provides the framework or syntax rules
common to all tutorial files. As long as tutorial documents
based on this DTD are validated, i.e., properly follow the
syntax rules contained in the DTD, a browser can determine
how to access and parse them correctly.

A TUTORIAL PROTOCOL

One of the problems with proprietary commercial
educational systems is that they adhere strictly to whatever
instructional methodology paradigm the software designer
chose to implement, rather than what the educator wishing to
use the software might prefer. To avoid this problem, we
elected to base our design on Gagne’s Nine Events of
Instruction [5], a general outline of the instructional design
methodology for direct instruction that is commonly
accepted. It includes:

(1) gaining attention

(2) informing the learner of the objective

(3) stimulating recall of prerequisite material

(4) presenting the stimulus material

(5) providing learning guidance

(6) celiciting the performance

(7) providing feedback about performance correctness

(8) assessing the performance

(9) enhancing retention and transfer

The DTD we designed, seen in Figure 1 below,
specifies items 4, 6, and 8 in the authoring application [6].
The word Syllabus was chosen to designate a single tutorial,
a group of tutorials for one course, or multiple groups of
tutorials for several courses. Thus, a Syllabus is defined as a
Course, which in turn is defined recursively as one or more
Courses or Units. Units and Lessons are also defined
recursively, so Syllabi may include many Courses, Units and
Lessons. A Syllabus, then, can cover a single topic or
organize the elements of an entire school year for an
instructor.

<!--Syllabus DTD Version1.0-->

<!--Brooks York-->

<IELEMENT Syllabus (Course)>

<!ELEMENT Course (name,(CourselUnits)*)>

<!ELEMENT Units (name,(Units|Lesson)* performance?)>

<!ELEMENT Lesson (name, (presentationlpracticelperformancelLesson)*)>
<IELEMENT name (#pcdata)>

<IELEMENT presentation (#pcdata)>

<IELEMENT practice (#pcdata)>

<IELEMENT performance (#pcdata)>

FIGURE. 1
October 10 - 13, 2001 Reno, NV

31° ASEFE/IEEE Frontiers in Education Conference

3

THE SYLLABUS DTD 1IN XML

Presentation, practice, and performance, defined in the
last three lines of the above figure, represent items 4, 6, and
8 from Gagne’s Events, and when applied will be composed
of filenames and URLs representing the content of the
tutorial. The files may be created by any application as long
as they may be viewed from a browser. Hence, instructors
are given the freedom to use software with which they feel
most comfortable.

Given the DTD, the authoring software will utilize it to
organize all the reference files and URLs the author wishes
to use into one Syllabus file (an XML document) which
contains the syntax information as well as the filenames
(including full path information) and URLSs.

Root
"Syllabus"
Course 1
"name"

Unit 2
"name"
Lesson 2
"name"

| presentation 2 | | practice 1 | | performance 1 | |

performance 1

Lesson 1
"name"

| presentation 1 |

URL 2 |

|File1| |URL1| |File2| |File3| |URL3| |URL4|

FIGURE. 2
THE SYLLABUS DTD As A TREE

Figure 2 shows (in the form of a tree) an application of
the DTD to a Syllabus for two Courses. Course 1 has two
Units, Unit 2 has both a Lesson (#2) and a performance (#1).
Note the recursive structure of the tree, and that leaves are
the files / URLSs containing the content of the tutorial.

PROGRAMMING LANGUAGE

While Sun Microsystems currently controls the overall
direction of Java, the use of Java on the Internet is
widespread and does not appear to be slowing. Java can
lend itself to the idea of an open programming language due
to its inherent object-oriented nature. Developers only need
to develop application-programming interfaces (APIs),
which can then be distributed to other people in the
development community.

Since Java and XML are generally accepted in the
Internet community and are extremely flexible to use, they
are a good choice for our document definition and
programming languages.

CROSS-PLATFORM

0-7803-6669-7/01/$10.00 © 2001 IEEE

Session

From its inception, the Internet has connected and resided on
different types of hardware, from Macs to PCs to Cray
computers. The need for a cross-platform solution can easily
be seen as a requirement for distance learning and military
personnel in the field, as well as for the variety of computers
now in our public schools.

Once a cross-platform solution is created, it
automatically has built-in flexibility since the software is
able to run on any machine with a browser. This saves time
and energy for the software’s author since the need to write
custom applications for different platforms is eliminated.

Java was created specifically to be cross-platform. This
ability is accomplished with a Java Virtual Machine (JVM)
on each platform on which we wish to run Java. Currently,
JVMs are written in a native language for a specific platform
and are then executed either as a stand-alone application or
from within a web browser.

The user of a Java program only requires an installed
JVM or a web browser (which already has JVM installed) to
run a Java program. Java separates the idea of a stand-alone
program, which is executed from a JVM, and that of a Java
applet, which is executed through a web browser or other
viewing program. From an end-user’s perspective this
separation does not matter since the code will be distributed
in some form of packaging, rather than as raw code. Hence,
use of Java satisfies (as much as is currently possible) the
cross-platform issue.

SEPARATION OF CONTENT FROM DELIVERY

Once the content has been separated from the delivery
mechanism, the creation of educational material can be done
more cheaply and with less development time than if it were
incorporated into the software itself. Application
programmers can modify existing delivery mechanisms to
provide increased functionality, while instructors can
develop and share content material. Owing to the XML
protocol, instructors can easily develop new tutorials that
will work in a given application, or they can modify already
existing tutorials.

XML is used to detail the structure and syntax rules for
the creation of the content file. This content file is what
allows the delivery software to correctly parse the output of
the authoring software. The delivery mechanism must then
be able to parse the XML by using an existing validating or
non-validating XML parser and present the material in an
appealing manner in either a Java application (stand-alone)
or as an applet (for people with web browsers).

CREATION, EDITING, & DELIVERY MECHANISMS

Application users need the ability to compose and modify
content, which is easiest for most users with a graphical user
interface, or GUIL. Our creation and editing tool is written as

October 10 - 13, 2001 Reno, NV

31° ASEFE/IEEE Frontiers in Education Conference

4

a Java application that provides the user a GUI through the
existing Java Swing APIs (Figure 3). This Java application
produces an XML file representing the composition of the
content (i.e., the filenames and URLS).

@ =l svllabus i
¢ [courset
§ = unitt
& [Lessont
§ 1 Presentation
D wny URL.com
[ciFiLE
9 E unitz
% ElLesson2
§ 1 Presentation
[weww URLZ co
[ciFitez
9 = Practice
D wiwi Practice cor
§ [Performance
D Wi ATestcom &
@ 2] Performance

.

Craating a Lssson

PleasaEntera UniMaime

Remiig

@ = Entirsez
€) unitz
D Lesson .

[unita

FIGURE. 3
CREATING AND EDITING A SYLLABUS.

The delivery mechanism is also written in Java, and can
be utilized as an applet (using a browser either locally or
over the Internet), or as an application (stand-alone
software). An example is shown in Figure 4.

FIGURE. 4
VIEWING THE TUTORIAL

CONCLUSION

By successfully meeting each of the criteria — using an open
standard, providing cross-platform compatibility, separating
content from delivery, and providing an authoring and
viewing environment — we have shown the feasibility of an

0-7803-6669-7/01/$10.00 © 2001 IEEE

Session

open protocol for educational material presented either over
the Internet, over a local network, or residing on a local
machine. Further development in this area is needed to stem
the rising tide of proprietary, expensive, and bloated
educational software, and to fill the niche created by the
legacy computers which are currently under-utilized. It is an
idea whose time is at hand.

REFERENCES
[1] The White House, Office of the Vice President, Informution
Technology for the Twenty-first Century: A Bold Investment in
Americd’s Future [online]. www.pub.whitehouse. gov/uri-
res/I2R?urn:pdi://oma.eop.gov.us/1999/1/25/12.text.1, 1998.
Soloway, E., “No One is Making Money in Educational Software,”
Communications of the ACM, Vol. 41, No. 2, 1998, 11-15.
Kinel, j., Givler, I.S., Leiba, B., and Segmuller, W., “Internet
Messaging Frameworks,” IBM Systems Journal, Vol. 37, No. 1, 1998,
4-18.
Edwards, D.M., and Hardman, L., “Lost in Hyperspace’: Cognitive
Mapping and Navigation in a Hypertext Environment,” Hypertext:
Theory into Practice, 1989, 105-125.
Gagne, R., Briggs, L., and Wager, W. Principles of Instructionul
Design. Holt, Rinehart, and Winston, 1988.
York, B., Course Content Authoring und Sequencing Using XML,
Masters Thesis, Computer Science Dept., Texas Tech University,
1999.

[2]
31

[4]

[5]
[6]

October 10 - 13, 2001 Reno, NV

31° ASEFE/IEEE Frontiers in Education Conference

S

