Session

A SET OF CS1 LABS UTILIZING GRAPHICAL OBJECTS AND
INHERITANCE

Peter Andrews, Duane Broline, William Slough, Nancy Van Cleave’

Abstract — Thirteen weekly CSI labs utilizing C** have
been developed, implemented, and tested in a Linux student
lab environment. Of particular interest is the emphasis on
mathematics and the early and extensive use of objects and
graphics, including simple animation. Many basic concepts
(e.g., objects, files, and functions) are introduced and
expanded over several weeks, and important themes recur
throughout a series of labs (e.g., file processing and bar
charts, classes and inheritance). Included are preview, lab,
and follow-up exercises, check-off and grade sheets, weekly
topics and hints for instructors, additional programming
exercises that are extensions of the lab material, and a
student reference manual. The labs are available online at
www. ein.edu/~mathcs/mat2 170/index.himl. They are
intended for a lab session that runs approximately 100
minutes weekly.

Index Terms — C**, CSI Laboraiories, Graphics, Objects
INTRODUCTION

Our CS1 course is required by math, math education,
computer science, and pre-engineering majors. Hence, while
striving to uphold high standards to facilitate transfer of the
engineering students, we must also find ways to present the
material so this wide spectrum of students can successfully
complete the course. To this end, we have developed our
own series of computer laboratories that are challenging and
thorough, and which directly engage our students in the
learning process.

It is difficult to find CS1 C™ based laboratories which
stimulate student critical thinking skills, are well integrated
both with the course and as a series, and which provide a
variety of activities appealing to a broad range of student
interests while maintaining a high standard of rigor. We
have designed, implemented, and tested in a Linux
environment, thirteen CS1 labs. Each lab provides pre-lab
and in-lab exercises as well as follow-up programming
assignments. Our lab sessions are scheduled for 100
minutes, one day per week. The majority of students can
complete most of the labs in that time period. Other support
materials include references to corresponding reading in
Cohoon and Davidson’s C** Program Design textbook [1],
lab check-off sheets, lists of topics and hints for the
instructor, and gradesheets to accompany each lab. The
textbook does have a lab manual [2] to accompany it, but we

chose to create our own labs in order to incorporate more
graphics and tailor the exercises to our preferences.

Of particular interest with respect to these labs is the
extensive use of graphics (introduced by Week 4), including
simple animation (Week 6), that helps capture student
attention and imagination in order to improve the learning
experience. We have utilized and extended Cohoon and
Davidson’s EzWindows graphics library, available through
their website: www.mhhe.com/c++programdesign, which
provides such graphics primitives as RectangleShape,
CircleShape, and Label classes. Animation s
accomplished by erasing, repositioning, and redrawing
shapes. This simplicity is what enables students to do
nontrivial graphics in their first semester of C™
programming. We have had students create programs which
bounce a rectangle off the four sides of a window, calculate
and trace trajectorics on the screen, and display various
Lissajous curves. Most students are impressed with the new
abilities they are able to acquire in a relatively short time.
This simple graphics package allows us to make assignments
both accessible to and exciting for the average student while
still engaging the better students and providing them with
easy avenues for extending themselves. For example, one
pair of students who introduced their Lissajous program with
a flashing French flag

LAB SUBDIVISIONS

Each lab consists of nine parts — five for students, three for

the instructor, plus a Makefile for the particular lab.

Specifically, we provide:

e references to corresponding reading in textbook

® preview exercises

® preview submission
exercises)

e lab exercises (including multiple programs and header

files)

follow-up programming exercises

lab check-off sheet

list of topics and hints for the instructor

gradesheet for each lab

makefile (unique to the particular lab)

sheet (a subset of preview

Students are expected to complete the preview before
lab, and are required to hand in the preview submission sheet

! Bastern 1L University, Math Dept, 600 Lincoln Ave, Charleston, II. 61920, cfpga@eiu.edu, cfdmb@eiu.edu, cfwas@eiu.edu, cfnkv@eiu.edu

0-7803-6669-7/01/$10.00 © 2001 IEEE

October 10 - 13, 2001 Reno, NV

31° ASEFE/IEEE Frontiers in Education Conference

1

at the beginning of the lab, along with their solution to the
follow-up programming assignment from the previous
week’s lab. This ensures students are familiar with the lab
exercises and have had an opportunity to think about
possible solutions before sitting down at a computer (or at
least have been encouraged in this direction).

During lab, students work in groups of two or three.
Over the course of the last few years we have tried several
different administrative regimes. In some sections we have
allowed groups to form early and remain relatively static, in
others we have required students to change partners for each
lab, affording them an opportunity to work at least once with
most of the other students in the class. At times we have
asked group members to work in parallel, each using their
own computer although sitting next to their partner(s). We
have also required each group to work collectively on a
single computer, taking turns with the typing and checking
then sharing files at the end of the lab. There does not seem
to be a single best option among these choices. Each of
these schemes has its strengths and weaknesses.

When all students in a group complete specially marked
exercises, they must show and/or explain their solution to the
instructor and obtain his or her signature on the Check-Off
sheet. This gives the instructor a chance to visit with each
group and to clarify any problems that may arise. It avoids,
to some extent, the scenario where a handful of students
monopolize the instructor, leaving the rest of the class to
fend for themselves. It also is a deterrent to those students
who might be tempted to skip exercises in order to finish lab
as quickly as possible. The first few weeks of the semester
we often help in each other’s labs in order to prevent groups
from becoming stuck too long on problems and to answer the
plethora of inevitable questions beginners have.

Each week a follow-up programming exercise is
included which ties together concepts both from previous
weeks and from the current set of exercises. This reinforces
basic ideas, and allows students the “ah ha!” experience of
seeing the patterns in programming begin to emerge as they
apply tools and concepts (they either have already learned or
are in the process of acquiring) to a problem which is new
but that contains ¢lements they have just seen in lab or have
seen in prior weeks.

For example, Week 5 combines the graphics objects
learned the previous week with an introduction to loops.
The first program in the exercises acquaints the students with
a few common implementation and logic mistakes that cause
infinite loops. The second program creates tables of values
(for the summation of terms of a geometric sequence) and
has students determine the closed formulae for these
summations. The third program begins with five squares
drawn on a diagonal from upper left to lower right. Students
must increase the number of squares drawn to ten, modify
the program so the squares decrease in size, then modify it
once again so the squares are drawn until they disappear.
The last lab exercise works with nested loops which create

0-7803-6669-7/01/$10.00 © 2001 IEEE

Session

stacks of concentric circles in alternating colors along a
diagonal. Students modify the program so the stacks are
drawn first horizontally, then vertically. Once they’ve
worked out the details of how to draw the nested circles
vertically, they must then move each circle horizontally so as
to touch its neighbors on the left and right in a diminishing
line. The follow-up exercise is to create an 8 X 8§
checkerboard with immobile playing pieces. As soon as the
student realizes the relationship to the nested circles
exercise, the coding is straightforward.

We have developed several additional programming
assignments for individual projects that expand and enhance
the lab exercises. Also provided is a student lab manual
which contains informal descriptions of some of the classes
that are used in the labs, both those provided in EzZWindows
and those that were developed by the authors. These include
the necessary library name, constructor or initialization
information, messages (with header information such as
return type and type, order, and default value of parameters),
operators and auxiliary functions (if any). For those
developed locally, we also included the messages cach
derived class inherited from its parent class.

In addition, the student reference manual contains short
descriptions of standard library functions such as those found
in ctype, cmath, and iomanip, as well as a table of the
ASCII Character Set collating sequence. The last pages give
information on accessing the Linux lab server remotely using
telnet, pico, and g++ to create, compile, and ¢xecute non-
graphical programs.

THEMES

Whenever possible, throughout the series of labs, concepts
introduced in one or more of the lab programming exercises
of one week, are expanded upon the next week by involving
some programming by the student. By the third week
students are expected to do a significant portion of the
programming associated with the concept. Thus, students
have an opportunity to become familiar with new
terminology, have seen the implementation of the concept,
and ultimately have a reference source to consult when the
time comes for them to do their own coding.

One of the difficulties of a first programming class is the
terminology associated with an entire discipline with which
most students are not familiar. As they simultaneously
attempt to grasp both the new words and the foreign notions
presented in lecture, and to understand the more
comprehensive textbook descriptions, all the new terms and
concepts can become jumbled together. By easing into the
harder concepts, then reinforcing what students have learned
by revisiting the topics in later labs, we enable students to
understand and retain more than if they get a single
assignment which covers the concept, then go on to the next

October 10 - 13, 2001 Reno, NV

31° ASEFE/IEEE Frontiers in Education Conference

2

topic.
below.

Some of the more interesting themes are presented

INPUT FILES

Over a five week period, we present the concepts of input
files, reading from files by either the extraction operator or
the get message, obtaining file names from the user, and
checking for errors on opening the file. File input is first
seen by the students, in two Week 6 programs, as complete
code not requiring any modification by them. File names are
hardcoded into the program so the students quickly see the
tediousness of the necessary editing and recompiling to
change input file names. The loop that reads strings until the
file is exhausted is also provided for them.

The next week, the code for setting up an input file is
again part of what is given to them in the lab exercises, but
we progress to obtaining the filename from the user and to
using the get message in order to obtain a character at a time
from the file. In Week 9’s follow-up the students themselves
must supply the code to get the filename and successfully
open an input file. By this point, if they are at a loss, we can
suggest they’ve seen this before and point them to previous
labs to find the code. Finally in Week 10’s follow-up, the
students must provide their own code for continuing to
prompt for and get a file name from the user until they obtain
one corresponding to a file which can be opened
successfully.

FUNCTIONS

The same technique is applied to functions. From Week 3
throughout the rest of the semester, students use predefined
classes and send messages to objects. In Week 3, they are
shown classes for a psuedo-random number generator, an
ordered pair, and strings. The intent at this point is just to
familiarize them with the concepts of classes and message
passing to objects.

In Week 4 they’re introduced to the graphics classes
we’ll be using for the rest of the semester, and practice
sending messages to objects of these classes as well as to the
classes they saw the previous week. The next few weeks, for
the classes they already studied in the previous weeks, they
learn about and practice using more messages in the context
of learning about control structures. In Week 6 we include a
user-defined function, sleep, which delays execution of the
program to slow down the display of graphics. Students get
to see its prototype, its definition, and how it is used in the
exercise program.

In Week 7 we review what we have learned about
functions and messages thus far in the semester, and
introduce the ctype, cmath, and iomanip libraries. The
students’ previous exposure to messages, their reference
manuals, and their experience with functions in mathematics
help prepare them to understand and quickly utilize these

0-7803-6669-7/01/$10.00 © 2001 IEEE

Session

library functions. After this week, students will incorporate
these libraries repeatedly in their programs.

We begin utilizing header files in Week 8, giving
students only the compiled version of the implementation file
so they are guided to focus on the function interfaces. Here,
we introduce the concept of testing, and have them determine
which of several function provided in the lab exercises
contain logic errors. This must be done through testing
alone since they don’t have access to the source code.

In Week 9 they write function definitions, for example,
Max and Min with both two and three parameters. This is
where the early investment in using messages pays off as
they are already familiar with the concept of return types,
parameter types, importance of parameter order, and default
parameters from a user’s point of view.

The next week, they explore reference and value
parameters, as well as function templates. In Week 11 they
implement member functions, now a fairly small step from
using them and writing stand-alone functions, and then are
expected to write functions for the remainder of the semester.

FILE PROCESSING / BAR CHARTS / SCALING

This is an interesting theme that allows students to see how
solutions to previous, related problems can be utilized to
solve new problems they encounter. Thus the practice of
programming can be seen more clearly as a building process
rather than as a series of unrelated programming exercises
which focus on a single concept that appears to be disjoint
from all other assignments.

For the Week 6 follow-up exercise, students must
complete a skeleton program in order to obtain statistics
about a textfile, such as counts of short, medium and long
words, average word length, and the length of the longest
word in the file. Once these statistics are obtained, they must
then open a graphics window and display a bar chart with
three bars, appropriately scaled and labeled, displaying the
percentage of words in each category (short, medium, and
long).

Week 7’s follow-up requires students to scale and
translate a Lissajous curve from abstract Cartesian
coordinates to a graphics window.

Processing a file and displaying information graphically
is again seen in Week 10 when the follow-up requires
students to make two passes through an input file of positive
integers. The first pass finds the largest value and counts the
entries; the second displays a bar in a chart representing ecach
number scaled so the largest has height equal to the height of
the window. Having done a simpler bar chart before and
encountering scaling for the third time allows students to
tackle this program with some degree of confidence.

In Week 12, students approximate the arca under the
graph of a non-negative function in a manner similar to a
Riemann Sum. They must sum the arcas of rectangles all
having the same width, but with height determined by the

October 10 - 13, 2001 Reno, NV

31° ASEFE/IEEE Frontiers in Education Conference

3

function, under a given curve. By this point in the semester
they use vectors to store the heights of the rectangles and
complete a function which displays the bars (rectangles) in a
graphics window, again scaling them to fit.

INHERITANCE

Inheritance is approached in a similar fashion, albeit by
necessity in a more accelerated form. Having worked with
RectangleShapes since Week 4, we use them to
demonstrate the power of inheritance to our students
in Week 11. The first class we derive is
FramedRectangleShape, which provides a frame around a
RectangleShape by the addition of data members for frame
width and color, and an additional rectangle which underlies
the RectangleShape in order to provide the frame around
it. Students can easily see the need for a new Draw()
member function which utilizes the RectangleShape’s
Draw() to display the inner, framed rectangle. Since no
Erase() function is provided, the students become involved
in a discovery learning experience when they see the results
of using the inherited Erase(), and are pleased to find they
are able to write the necessary member function for the
derived class.

This rather gentle introduction to inheritance is
extended by deriving two more classes. From
FramedRectangleShape we derive the Board class, which
adds blocks that alternate in color, i.¢., a checkerboard with a
border (frame) around it. The additional information
associated with this class is the number of blocks on one side
of the board (so we could play checkers or tic-tac-toe), and
the two colors used for the blocks.

From Board, we derive GameBoard, along with the
associated class Piece, used to represent a marker or
checker. Along the way, students are required to complete
various member functions, but one draw back of our labs is
that they do not develop any class from the design stage
through to implementation.

The last evolutionary step in this inheritance series from
RectangleShape is a FractalBoard, also derived from the
Board class. Previously, students had completed the Board
member function GetBlockColor(), which alternated two
colors (traditionally red and black, but potentially any of the
eight colors provided in EzWindows) based on the block’s
position (row and column) in the board. For the new
FractalBoard class, students rewrite GetBlockColor() so
that it calculates the Julia number of the block, based on its
row and column, and returns the associated color (one of
eight). Students are quite pleased with themselves when they
are able to produce fractals similar to samples they’ve seen
in textbooks and on websites. It is also easy for them to see
the effects of resolution on the smoothness of the curves, just
as they did in the program to calculate the area under a
curve.

0-7803-6669-7/01/$10.00 © 2001 IEEE

Session

GRAPHICS

Graphics and animation, even with a limited number of
colors, is the sugar that makes the work of learning to
program palatable for some students. Hence we’ve
incorporated graphics in as many laboratories as possible.
Hidden within this entertaining aspect of the course is the
practice of learning to think logically and working with
mathematical and the usual CS1 programming concepts.

We begin using simple graphics in Week 4, where
students are initiated to the libraries and messages. They
create and display a variety of shapes in a range of sizes,
colors, and positions. Here, the students are rewarded for
using messages correctly by the appearance of the requisite
forms in the graphing window. Moreover, hand calculations
are not necessary to reveal most errors. Figures either
appear where they are supposed to or they don’t!

The following weck, concentric circles are used to allow
students to observe the behavior of nested loops, and to
practice modifying these loops to change the orientation of
the output. Because of the alternating colors, and some
(common) mistakes which produce interesting results (such
as a strobing marquee), students are kept attentive while
trying to solve the different exercises.

In Week 6 as we study selection statements, the students
are led to the problem of bouncing a rectangle off the sides
of the graphing window. Most are excited when they
accomplish this, especially given they are only six weeks into
their first programming course.

In the following weeks, students become adept at using
graphics to represent information (see section on bar charts
above). Although it is a challenge, the Week 7 follow-up
exercise of displaying a Lissajous curve brings much
satisfaction to students when they first see the curve appear
on their screen, created by the program which they
themselves wrote. We also make the individual
programming projects (usually two per semester) graphics
based as well. A few examples are the problems of
displaying a tower of squares, displaying the trajectory of a
banana given the angle of release and its initial velocity, and
creating and displaying a fractal. Most students find these
types of problems to be more interesting than, say, purely
mathematical or business-oriented problems, yet they
exercise the same skills.

CONCLUSION

This series of thirteen labs represents a cohesive and
comprehensive approach to introducing students to
programming in C**, Basic concepts and themes are used
and reviewed throughout the series, reinforcing the most
important objectives. In order to keep pace with the
material, students must devote time and thought to the lab
previews, which helps prepare them for and enriches their in-

October 10 - 13, 2001 Reno, NV

31° ASEFE/IEEE Frontiers in Education Conference

4

lab experience. It quickly becomes obvious they cannot
proceed without this preparation, so it puts the responsibility
on their shoulders to spend the necessary time outside of lab
working on these details.

Although the labs are not perfect, there are many facets
to recommend them. They seem to strike a good balance
between teaching basic programming skills, while
incorporating the object-oriented aspects of C*. While
students do not receive much practice in designing classes,
they do understand the concept of member data and
functions, are able to implement these given a design, and
are able to utilize classes in their own programs.

The use of graphics to enhance student attentiveness and
interest also seems to work well with these labs. For visual
learners, it is a definite bonus to be able to actually see the
results of their programs in pictorial form rather than as
simply textual output.

Overall these labs form a solid basis for an introductory
course in C** programming for a wide range of students. It
covers the usual basics from assignment statements and
arithmetic operations to classes, objects, and member
functions. If you are interested in obtaining files that are not
online, please feel free to contact any of the authors.

REFERENCES

[1] Cohoon, James P., and Jack W. Davidson, C** Program
Design: An Introduction to Programming and Object-
Oriented Design, McGraw-Hill, 1999.

[2] Cohoon, James P., and Jack W. Davidson, Laboratory
Manual with Lecture Notes for use with C** Program
Design: An Introduction to Programming and Object-
Oriented Design, McGraw-Hill, 1999.

0-7803-6669-7/01/$10.00 © 2001 IEEE

Session

October 10 - 13, 2001 Reno, NV

31° ASEFE/IEEE Frontiers in Education Conference

S

