Alternating Knots & Montesinos Knots Satisfy the (Classical) L-space Surgery Conjecture

Charles Delman

Joint work with Rachel Roberts

March 28, 2017
GEAR Seminar, UIUC
Contents

1 Background
 - Foliations
 - Heegaard-Floer Homology
 - Knots & Surgery
 - Conjectures

2 Results & Methods
 - Results
 - Methods
Foliations

A *foliation* is a decomposition of a manifold into *leaves* of lower dimension. Locally, we have charts $\mathbb{R}^m \times \mathbb{R}^n$, with transitions that preserve the horizontal levels $\mathbb{R}^m \times \{y\}$.

We consider foliations of smooth 3-manifolds with 2-dimensional C^1-embedded leaves (co-dimension 1).
Taut Foliations

Definition

A co-dimension 1 foliation of a 3-manifold is *taut* if there is a circle transversely intersecting every leaf.

Remark: A closed manifold admitting a taut foliation is universally covered by \mathbb{R}^3, hence is irreducible and has infinite fundamental group.

Definition

A 3-manifold is *foliar* if it admits a taut, co-orientable (co-dimension 1) foliation.
Heegaard-Floer Homology

An homology theory for rational homology 3-spheres.

- Introduced by P. Ozsváth & Z. Szabó.
- $\widehat{HF}(M)$ is a vector space over \mathbb{F}_2.
- $\text{Rank}(\widehat{HF}(M)) \geq |H_1(M, \mathbb{Z})|$.
- If equality holds, M is an L-space.
- L-spaces include lens spaces.

Theorem (Eliashberg–Thurston, Ozsváth–Szabó, Kazez-Roberts)

M admits a taut, co-orientable foliation \Rightarrow M is not an L-space

Does the converse hold for irreducible 3-manifolds?
(Ozsváth–Szabó, Boyer-Gordon-Watson, Juhasz?)
A (classical) knot is an \((n - 2)\)-sphere embedded in an \(n\)-sphere, in particular, for \(n = 3\).

\[
\text{Knot in } S^3
\]

(alternating)

Note that a \textit{regular neighborhood} (“fattening up”) of a knot is a solid torus.
Dehn Surgery

- Remove a solid torus (a “fattened up” knot) from S^3 and glue in a solid torus by a homeomorphism of T^2.
- The result depends only on the curve to which the meridian is glued.
- l longitudes and m meridians, l, m relatively prime, give Dehn surgery coefficient $\frac{m}{l} \in \mathbb{Q} \cup \frac{1}{0}$.
- Coefficient $1/0$ is trivial surgery (yielding S^3 back).
Two Interesting Types of Knots

- In particular, we consider two classes of knots:
 - Alternating knots
 - Montesinos knots:

\[M(1/3, 2/5, 3/5, -1) \]

- The pretzel knots are a subset of the Montesinos knots:

\[(3,3,3) \text{-Pretzel Knot} \]
Terminology

Definition

A knot k is *persistently foliar* if every manifold obtained by non-trivial Dehn surgery on k is foliar.

Definition

A knot k is an *L-space knot* if some non-trivial surgery on k yields an L-space.

Corollary

If a knot is persistently foliar, it is not an L-space knot.
Conjectures [D-Roberts]

Restricting attention to surgery on knots $k \subset S^3$, we conjecture the following:

L-space Knot Conjecture If k does not admit a non-trivial reducible or L-space surgery, then k is persistently foliar.

More generally,

L-space Surgery Conjecture A manifold obtained by Dehn surgery on k is foliar if and only if it is irreducible and not an L-space.
Results

Theorem (D-Roberts)

All alternating knots satisfy the L-space surgery conjecture. In particular, every non-torus alternating knot is persistently foliar.

Remark: For torus knots, the result follows from the classification of their foliar (Boyer, Eisenbud-Hirsch-Neumann, Jenkins-Neumann, Raimi) and L-space (Hedden) surgeries.

Theorem (D-Roberts)

All Montesinos knots satisfy the L-space surgery conjecture. In particular, every Montesinos knot that is not an L-space knot is persistently foliar.

Remark: The result for L-space knots follows from work of Baker, Lidman, Hedden, Moore, and Roberts.
Finite Depth Spines

- Build a spine (Casler) from a finite succession of transversely intersecting surfaces.
- Locally:

 Surface neighborhood

 Double point neighborhood

 Triple point neighborhood
Smoothing Instructions

- Successively introduce *smoothing instructions* at singular points to obtain a *branched surface* (continuous tangent plane field):

 - Surface neighborhood
 - Double point neighborhood
 - Triple point neighborhood

- Eventually obtain a transversely orientable laminar branched surface for which the complement of an I-bundle neighborhood is a taut sutured manifold.
Alternating Knots & Montesinos Knots Satisfy the (Classical) L-space Surgery Conjecture

Charles Delman
Joint work with Rachel Roberts

Background
Foliations
Heegaard-Floer Homology
Knots & Surgery Conjectures

Results & Methods
Results
Methods

I-bundle Neighborhood

Surface neighborhood
Double point neighborhood
Triple point neighborhood
- **Arrow-diamond** notation at a double point with one distinguished sector:
There are 12 possible smoothings at a triple point:
Work in the Knot *Exterior*

- Work in the knot exterior: $S^3 \setminus K$
- Introduce a “tube” around K: $T = \partial N(K) \subset S^3 \setminus K$
- T is part of the spine.
- Convention: Outward normal to T points into knot complement, out of $N(K)$.
Meridional Cusps \rightarrow Persistence

Goal:

- Build spine having meridional intersections with T.
- Smooth to branched surface Σ with even (>0) number of meridional branch curves with outward sink direction on T.
- After any rational Dehn surgery, these yield an even number of longitudinal sutures, so a meridional disk fully decomposes $N(K')$ (as a taut sutured manifold).
Meridional Cusps → Persistence (continued)

- Thus, as long as the other components of $\mathcal{N}(\Sigma)^c$ are taut sutured manifolds, we obtain a taut co-orientable foliation in every manifold produced by (non-trivial) surgery.

- This is what we mean by *persistence*.

- Antecedent: “Swallow-follow” closed (branched) surface. (Menasco; Oertel)
Method 1: Decomposition by Spheres & Spanning Surfaces

- Decompose K into tangles along transverse spheres.
- Decompose further along spanning surfaces for the tangles.
- Similar to Murasugi sum, but surfaces on each side need not match.

With suitable choices, we obtain persistence, and every component of $\mathcal{N}(\Sigma)^c$ is a taut sutured manifold.
Example: Branched Surfaces in the Complement of $T(1/3)$

- Branched surfaces ↔ paths in the Farey diagram.
- From outside the tangle, we see a twisted band.
Channel Branched Surface: Level Set Sequence
Channel Branched Surface

Alternating Knots & Montesinos Knots Satisfy the (Classical) L-space Surgery Conjecture

Charles Delman
Joint work with Rachel Roberts

Background
Foliations
Heegaard-Floer Homology
Knots & Surgery Conjectures

Results & Methods

View from above

View from below

Triple point

Meridional cusp

Interior view
Combining Rational Tangles: the Enveloping Surface

The $(3, 3, 3)$ pretzel knot, $K(1/3, 1/3, 1/3)$, is persistently foliar!
Application of Method 1

- Method 1 works well for Montesinos knots, since they decompose into rational tangles.
- Method 1 shows all Montesinos knots to be persistently foliar except for some “small” pretzel knots.
Method 2: Decomposition of a Spanning Surface

May be viewed as a generalization of Gabai’s theory:

Sutured manifold decomposition of a Seifert surface

Generalized surface decomposition of a spanning surface
Some Differences; Application

Generalized decomposition of a spanning surface provides much greater flexibility:

- Persistence.
- Initial spanning surface need not be orientable!
- Boundary of decomposing surface can cross over T from one side of S to the other an odd number of times!

Method 2 shows all non-torus alternating knots and all remaining pretzel knots that are not L-space knots to be persistently foliar.
Local Models and Notation Conventions: Type A

With positive twist:

(Source)

(Sink)
Alternating Knots & Montesinos Knots Satisfy the (Classical) L-space Surgery Conjecture

Charles Delman
Joint work with Rachel Roberts

Background
Foliations
Heegaard-Floer Homology
Knots & Surgery Conjectures

Results & Methods
Results
Methods

Local Models and Notation Conventions: Type A
Alternating Knots & Montesinos Knots Satisfy the (Classical) L-space Surgery Conjecture

Charles Delman
Joint work with Rachel Roberts

Local Models and Notation Conventions: Type B

With positive twist:

Background
Foliations
Heegaard-Floer Homology
Knots & Surgery Conjectures

Results & Methods
Results Methods
Local Models and Notation Conventions: Type C

With positive twist:
The \((-2, 5, 5)\) Pretzel Knot is Persistently Foliar
The \((-2, 5, 5)\) Pretzel Knot is Persistently Foliar
The $(-2,5,5)$ Pretzel Knot is Persistently Foliar
The $(-2, 5, 5)$ Pretzel Knot is Persistently Foliar

Charles Delman

Joint work with Rachel Roberts
The \((-2, 5, 5)\) Pretzel Knot is Persistently Foliar
The $(-2, 5, 5)$ Pretzel Knot is Persistently Foliar
The $(-2,5,5)$ Pretzel Knot is Persistently Foliar
Sample Disk Decompositions in the Alternating Setting
Questions?
Alternating Knots & Montesinos Knots Satisfy the (Classical) L-space Surgery Conjecture

Charles Delman
Joint work with Rachel Roberts

Background
Foliations
Heegaard-Floer Homology
Knots & Surgery Conjectures

Results & Methods
Results
Methods

Thank you!