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Abstract: We introduce and prove a Separation Principle, similar in form to the familiar
Uncertainty Principle of quantum mechanics, which separates the position and direc-
tion of any two phase points on distinct unfoldings of (non-parallel) trajectories on a
polygonal billiard table with pockets. Applying this principle, we demonstrate that the
number of orbit types (that is, classes of trajectories, up to parallelism) on a polygonal
billiard table with area A and pockets of area a is strictly bounded above by π2

2 · A
a

.
More generally, the same bound applies to any compact polyhedral surface with pockets
at its vertices. If the boundary is empty (so that billiard trajectories are just geodesics),
the bound is reduced by a factor of two to π2

4 · Aa . We believe the Separation Principle
will also have fundamental applications to other problems in the theory of billiards and
related dynamical systems.
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1. Introduction

We consider billiard trajectories which “live” on a Euclidean polygonal table with a
pocket at each vertex. (Later we will generalize our results to compact polyhedral
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surfaces.) By a pocket we mean a closed disk of small radius ε, centered at the
vertex, which trajectories must not enter. A distinguishing feature of billiards with pock-
ets is that all trajectories which do not terminate in a pocket are periodic [4].

In [2], Delman, Galperin, and Troubetzkoy proved that the number of orbit types
(that is, classes of trajectories, up to parallelism) on a billiard table with pockets is fi-
nite. Furthermore, for a rational polygon – one in which all vertex angles are rational
multiples of π – they proved in [3] that this number is proportional to A

a
, where A is the

area of the polygon or surface and a = πε2 is the area of a pocket.
Unfortunately, the above estimate, aside from being restricted to rational polygons,

is unsatisfactory on several other counts. The constant of proportionality, c, is actually
obtained as the product of π and three other constants: c = π · c1 · c2 · c3. The three
constants c1, c2 and c3 depend on the shape of the polygon, and two of them are unstable
with respect to small perturbations of this shape. The first, c1, bounds the ratio between
the period of a trajectory and its length; it varies stably with the shape of the polygon.
However, c2 is the least common multiple of the denominators of the fractions expressing
the angles, which varies wildly with small perturbations of the polygon (within the class
of rational polygons) due to changes in the denominators. As for c3, it is the coefficient
in Masur’s theorem [7] that the number of generalized diagonals of period less than or
equal to T is bounded above by a multiple of T 2. It is also unstable with respect to the
angles of the polygon. Moreover, the existence of c3 was proven nonconstructively in
[7], and the best estimates of it are huge (see Vorobets [8], Theorem 4.1).

In contrast, in the current paper we show that the number of orbit types on any poly-
gon (rational or not) with pockets, indeed on any polygonal surface with pockets, is
bounded proportionally – with a constant of proportionality independent of the polygon
or surface – to the ratio of areas A/a, where A is, as before, the area of the polygon or
surface and a = πε2 is the area of a pocket. Moreover, the constant of proportionality
is just π2

2 , which is less than 5!
The earlier proof for rational polygons relies on the fact that every trajectory lies on

a compact surface of area 2c2A (obtained by considering reflections of the polygon in
all sides, with appropriate identifications; see [6] or the fine survey article [5]) which is
invariant under the billard flow. (For example, the invariant surfaces for a square are tori
consisting of four copies of the square, while those for an equilateral triangle are tori
consisting of six copies.) Since a trajectory which misses all pockets must remain at a
distance greater than ε from every vertex, it can be shown that a strip of width greater
than 2ε around such a trajectory is embedded in this invariant surface, which limits the
length of the trajectory to less than 2c2A

2ε = c2A
ε

. The remainder of the proof consists
of bounding the period of a trajectory as a function of its length, which brings in the
constant c1, and applying Masur’s theorem, here using the fact that every periodic orbit
type corresponds to a generalized diagonal. (See [3].) Thus, in essence, the proof for
rational polygons is based on the fact that a trajectory in a rational polygon with pockets
cannot be too long. For a non-rational polygon this is not true, since its invariant domains
consist of Riemann surfaces which are not compact. The proof of the current, general
result relies instead on the finite volume of phase space.

Our proof, which is self-contained (except for use of the fact that all trajectories are
periodic) and elementary, makes strong use of a fundamental theorem, which we call the
“Separation Principle” and regard as the main result of this paper. The Separation Princi-
ple, which formally resembles the familiar Uncertainty Principle of quantum mechanics,
states that two phase points which lie either on unfoldings of non-parallel trajectories or
on distinct unfoldings of the same trajectory cannot be close together in both position and
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direction: if the distance between the points is small, the angle between their directions
must be large, and vice-versa. Precisely, it is not possible both that the distance is less
than 2ε and the angle is less than 2ε

Lmin
, where Lmin is the minimum length of the two

trajectories involved.
It follows that each trajectory may be surrounded by a regular neighborhood, or

“tube”, whose cross-section is a rectangle of width 2ε and height 2ε
L

, where L is the
length of the trajectory, and the tubes around non-parallel trajectories will be disjoint.
We thus obtain pairwise disjoint tubes of volume 4ε2 around any representative col-
lection of non-parallel trajectories in the phase space of the system. Dividing the total
volume of phase space, 2πA, by the volume of a tube gives the advertized bound.

A refinement of this bound is obtained by considering the reverse of each trajectory,
by which we mean the trajectory that traverses the same trace in the opposite direction.
The traces in phase space of a trajectory and its reverse are disjoint if they don’t coin-
cide, in which case they are sufficiently separated that the tubes surrounding them are
also disjoint. We will call a trajectory which coincides with its reverse auto-reversing;
a trajectory is auto-reversing if and only if it reflects of some side of the polygon at
right angles. Because of the existence of auto-reversing trajectories (see, for example,
[1]) we cannot reduce the bound by a factor of two by introducing reverse trajectories
to the calculation (thereby obtaining two tubes for each class of parallel trajectories).
Instead, if k denotes the number of auto-reversing trajectories and l denotes the number
of remaining trajectories, up to parallelism, then k + 2l < π2

2 · Aa .
More generally, we may consider billiards on any compact polyhedral surface with

pockets at its vertices. The Separation Principle and all other results carry over to this
context without significant modification. In particular, if the boundary of the surface is
empty (so that billiard trajectories are just geodesics), then the number of orbit types
is strictly bounded above by π2

4 · A
a

, because there are no auto-reversing trajectories
on such a surface. For clarity of exposition, we introduce and prove all results in the
familiar setting of polygons, leaving it to the reader to observe that nothing particular to
this setting is required in the proofs.

2. Definitions and Results

2.1. Bound on the Number of Orbit Types (Theorem 2). Let Q be a polygon. A billiard
trajectory on Q is a path which is geodesic on the interior of Q and, at points of ∂Q,
satisfies the “billiard law” that each angle of incidence equals the corresponding angle of
reflection. We imagine, of course, that each trajectory is the path of a particle bouncing
off the sides of Q as it travels (at a constant speed, whose specific value we ignore). The
image of the trajectory is called its trace. In this article, all polygons will be Euclidean.
(See Fig. 1.)

Let Qε denote the billiard table obtained from Q by removing a pocket (that is, the
intersection of Q with a closed disk) of radius ε centered at each vertex. The radius ε

is assumed to be sufficiently small so that each pocket is disjoint from all other pockets
and from all sides of Q except the two which meet at its center; if ε meets these con-
ditions, we will say that Q admits pockets of radius ε. A billiard trajectory terminates
on Qε if it enters a pocket. Whenever we refer to a trajectory on Qε, we shall mean a
non-terminating trajectory.

Notation. Throughout this paper, A denotes the area of Q (or a more general polyhedral
surface, where that is the context), and a = πε2, the area of the disks whose intersections
with Q form the pockets of Qε.
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Fig. 1. Billiard trajectory

Fig. 2. A pair of equivalent trajectories

Recall that, as shown in [4], all trajectories on Qε are periodic. The period of a tra-
jectory is the least number of reflections required before the billiard particle returns to
a previously occupied position with the same direction.

The bi-infinite sequence of sides which a trajectory hits, up to translation and in-
version, will be called its code. The code of a periodic trajectory is obviously periodic.
Two trajectories will be considered equivalent if they have the same code. A pair of
equivalent trajectories is shown in Fig. 2. An equivalence class of trajectories is called
an orbit type.

It is very important that we may restrict our attention to trajectories of even period. To
see both the justification and reason for doing so, consider a trajectory with odd period.
Nearby equivalent trajectories switch sides after one period, rather than returning to their
original position; therefore, these trajectories have period double that of the original, as
illustrated by the example in Fig. 2. Moreover, the transverse orientation of a trajectory
with even period is preserved. Preservation of transverse orientation is crucial to our ar-
guments. A trajectory will be called generic if its period is even. It can be easily shown,
using the method of unfolding described in the next section, that equivalent generic
trajectories have the same period.
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Fig. 3. Parallel legs on non-equivalent trajectories

Remark. Replacing a trajectory with a sufficiently close equivalent trajectory is possible
because our pockets are closed.

Remark. Equivalent trajectories with distinct traces are parallel in the sense that the
interior segments, or “legs”, on these trajectories corresponding to the same part of the
code are parallel. Note that legs from two non-equivalent trajectories or different legs
of the same trajectory may be parallel in direction (see Fig. 3), but only equivalent tra-
jectories admit a one-to-one correspondence pairing parallel legs with endpoints on the
same sides of the polygon.

The reverse of a trajectory is the trajectory which traverses the same trace in the op-
posite direction. Note that a trajectory and its reverse are equivalent. We call a trajectory
auto-reversing if it coincides with its reverse (that is, the particle returns at some time
to its initial position with the opposite direction). It is easy to see that a trajectory is
auto-reversing if and only if it reflects off some side of the polygon at right angles.

With these definitions, we are now prepared to state our bound, which we catalogue
as the second theorem of the paper, as its proof depends on the Separation Principle to
be introduced in the next section:

Theorem 2. Given a compact Euclidean polygon Q, let k be the number of equiva-
lence classes of auto-reversing trajectories on Qε, and let l be the number of remaining
equivalence classes of trajectories. Then

k + 2l <
2πA

4ε2 =
π2

2
· A
a
.

In particular, the total number of orbit types on Qε is strictly less than π2

2 · Aa .

2.2. Separation Principle (Theorem 1). Some additional concepts and terminology are
required to formulate the Separation Principle. Very important is the standard technique
of unfolding a trajectory, in which an initial point of the trajectory (by which we mean
both a position and a direction) is chosen in a polygon Q0 congruent to Q, and the
trajectory is represented as a straight line in the plane (called its unfolding) by reflecting
in the sides hit by the billiard particle to obtain a succession of polygons Q1,Q2,Q3,

. . . , as well as Q−1,Q−2,Q−3, . . . , as the trajectory is followed in the reverse direc-
tion.
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Fig. 4. The unfolding of a trajectory, with its corridor, showing one period

The collection of polygons {Qk}k∈Z is called the corridor of the unfolding. The cor-
ridor of a ray or segment contained in an unfolding, or of any union of such rays or
segments, is the minimal collection of polygons which contains it.

Note that the polygons in a corridor may overlap. These overlapping polygons should
be viewed as lying in different copies of the plane. Precisely, the corridor should be
thought of as the Riemann surface, branched at some of its vertices, obtained from the
disjoint union of its polygons by identifying their common edges. (See Fig. 4.)

We will need to consider the following situation: two points, each on a trajectory
in Q (possibly the same trajectory) are joined by a piecewise smooth path (which we
assume to obey the billiard law at the boundary of Q), and we wish to unfold the path and
trajectories simultaneously. The corridors of the path and the two trajectories combine
to form a connected Riemann surface, as in Fig. 5. This construction leads us naturally
to define the following generalization of a corridor.

Definition 1. A covering of Q is a connected Riemann surface obtained by identifying
the common edges of a collection of polygons, each of which is obtained from a copy of
Q by a sequence of reflections in edges. Every point (resp., set of points) in a covering
corresponds to a unique point (resp., set of points) in the polygon Q; we will say that it
covers this point (resp., set of points).
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Fig. 5. Two trajectories, γ1 and γ2, joined by a path, ρ, in Q and their unfoldings in a covering, Q̃, of Q

We will sometimes wish to consider the set of points in the plane lying under some
geometric object on this Riemann surface. Usually, it will be clear from the context when
we are doing so, obviating the need for additional terminology; if there is any ambiguity,
we will refer to this set as the projection of the object. (See Fig. 6.)

Notation. A covering of Q will be denoted by Q̃. Points in Q̃ which cover p ∈ Q will
be denoted by p̃, p̃ ′, p̃ ′′, etc. The projection of p̃ onto the plane will be denoted by p̄.

Notation. The segment in the plane with endpoints p̄1 and p̄2 will be denoted p̄1p̄2.
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Fig. 6. The projection of a covering onto the plane

Definition 2. The distance in Q between two points p1 and p2 is the Euclidean length of
the shortest path in Q joining p1 to p2. More generally, the distance between two points
p̃1 and p̃2 in a covering Q̃ of Q is the length of the shortest path in the Riemann surface
Q̃ (meaning that it may pass from one polygon to another only by passing through a
shared edge) joining p̃1 to p̃2. (See Fig. 7.)

Notation. We denote the distance in Q̃ between p̃1 and p̃2 by |p̃1p̃2|.
Notation. Let V = {vi}ni=1 be the set of vertices of Q. If Q̃ is a covering of Q, denote
the set of vertices of Q̃ by Ṽ .

It is easy to see that the shortest path on a covering between two points p̃1 and p̃2 is
the union of segments with endpoints in the set Ṽ ∪{p̃1, p̃2}.Also observe that projection
from a covering onto the plane preserves path length.

Definition 3. The length of a periodic trajectory is the (Euclidean) distance traveled by
the billiard particle over the course of one period.
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Fig. 7. Paths realizing the shortest distance between two points

The phase space of the billiard system on Q, denoted �(Q), is the quotient space
of the unit tangent bundle over Q \ V obtained by identifying the points with the same
position on a side of Q whose directions are reflections of each other in that side. (In
other words, we identify position-direction pairs describing states which may be held
simultaneously by a billiard particle.) We represent a phase point � ∈ �(Q) by an or-
dered pair (p, ϕ), where p ∈ Q is the position of � and ϕ ∈ S1 = [0, 2π ]/0∼2π is its
direction in a chosen system of polar coordinates. Thus, the phase space may be thought
of as the cylinder (Q\V )× [0, 2π ] with appropriate identifications. With this geometric
structure, it is a singular Euclidean 3-manifold whose singular points comprise a sub-
manifold of dimension one (the points with position on a side of Q \ V and direction
parallel to that side); hence, its volume is well-defined and is, clearly, 2πA.

The phase space of unfoldings on a covering Q̃, which we will denote by �(Q̃), is
by construction the trivial bundle (Q̃ \ Ṽ )× S1. We represent a phase point �̃ ∈ �(Q̃)

by an ordered pair (p̃, ϕ̃), where p̃ ∈ Q̃ is its position and ϕ̃ ∈ S1 is its direction in a
chosen system of polar coordinates. Two unfoldings in a common covering Q̃ will be
considered distinct if their corresponding trajectories in �(Q̃) have distinct traces. In
particular, unfoldings which are reverses of each other are distinct.

Notation. If �̃1 = (p̃1, ϕ̃1) and �̃2 = (p̃2, ϕ̃2) are phase points written in a common
system of coordinates, then we write �p̃ = |p̃1p̃2| and �ϕ̃ = |ϕ̃2 − ϕ̃1| (with the
convention, of course, that −π ≤ ϕ̃2 − ϕ̃1 ≤ π ).

We are now prepared to state the Separation Principle:

Theorem 1 (Separation Principle). Let γ̃1 and γ̃2 be distinct unfoldings in a common
covering of generic trajectories γ1 and γ2, respectively, in Qε. Suppose that γ1 and γ2
either have identical traces or are not equivalent. Let �̃1 = (p̃1, ϕ̃1) and �̃2 = (p̃2, ϕ̃2)

be phase points of γ̃1 and γ̃2, respectively, written in a common system of coordinates.
Let L be the minimum of the lengths of γ1 and γ2. Then either
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�p̃ > 2ε or �ϕ̃ >
2ε

L
.

Remark. The well known Uncertainty Principle of quantum mechanics states that the
position and velocity of a single particle cannot both be known with arbitrary preci-
sion. In our case, there are two particles whose position and velocity (direction) are in
question, not one, and there is no uncertainty of measurement involved. Rather, the Sep-
aration Principle states that the two particles cannot be arbitrarily close in both respects.
Nonetheless, we feel the formal analogy between the two principles is compelling.

Remark. In informal terms, what the Separation Principle says is that, in phase space,
non-equivalent trajectories on a table with pockets must be somewhat spaced apart from
each other, and each individual trajectory must be spaced out so it does not pass by itself
too closely; moreover, the spacing increases with the size of the pockets.

2.3. Generalization to Polyhedral Surfaces. Let us now consider the more general situ-
ation of billiards on a Euclidean polyhedral surface, that is, a surface which is the union
of Euclidean polygonal faces with certain pairs of edges identified. A billiard trajectory
on a polyhedral surface is a trajectory which is (locally) geodesic on the interior and
obeys the billiard law at the boundary; as in the polygonal case, if a trajectory hits a
vertex (either in the interior or on the boundary) it terminates. Since the geometry on
each face is that of the Euclidean plane, it is easy to see that when a trajectory passes
through an interior edge, its angle of refraction equals its angle of incidence. Given a
polyhedral surface S, let Sε denote the surface obtained by removing from each face of
S a pocket of radius ε centered at each vertex. If S is compact, the result of [4] applies:
every non-terminating trajectory on Sε is periodic.

All of the concepts previously discussed extend naturally to this more general setting
with only minor modifications. Indeed, the only significant changes are as follows: In the
process of unfolding, we begin with a copy of the face containing the initial point, and if
the trajectory passes to an adjacent face, we attach a copy of the new face (in the plane),
identifying the common edge crossed by the trajectory. If the trajectory comes to an
edge on the boundary of the surface, we reflect the polygon containing the correspond-
ing point of the unfolding along the corresponding edge. More generally, a covering of a
polyhedral surface S is defined as a connected Riemann surface obtained by identifying
the common edges of a collection of polygons, each a copy of a face of S, such that any
one of these polygons is obtained from any other by a sequence of the operations just
described. For billiards on a surface in which a pair of faces shares more than edge, the
code of a periodic trajectory must indicate on which face the trajectory travels between
two consecutive edges when ambiguity would otherwise arise. An example of such a
surface is a doubled polygon, that is a polyhedron with two faces. In this case, since the
faces alternate, a single assignment of either “+” or “−” to the code, indicating on which
of the two faces the trajectory lies when leaving the first edge in the code, is sufficient.
(The sign would, of course, switch with each cyclic permutation.) Note that trajectories
whose codes have the same sequence of edges but different signs are not equivalent.

The phase space of the billiard system on S, denoted �(S), is the quotient space
of the unit tangent bundle over S \ V obtained by identifying the points with the same
position on an edge of the boundary of S whose directions are reflections of each other
in that edge; in particular, if ∂S = ∅, the phase space is just the unit tangent bundle over
S \ V . If S is compact with area A, then �(S) has finite volume 2πA.
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The separation principle remains true in this broader context, from which our bound
on the number of trajectories again follows:

Theorem 1 (Separation Principle, general statement). Let S be any compact Euclid-
ean polyhedral surface. Let γ̃1 and γ̃2 be distinct unfoldings in a common covering of
generic trajectories γ1 and γ2, respectively, in Sε. Suppose that γ1 and γ2 either have
identical traces or are not equivalent. Let �̃1 = (p̃1, ϕ̃1) and �̃2 = (p̃2, ϕ̃2) be phase
points of γ̃1 and γ̃2, respectively, written in a common system of coordinates. Let L be
the minimum of the lengths of γ1 and γ2. Then either

�p̃ > 2ε or �ϕ̃ >
2ε

L
.

Theorem 2 (General statement). Given a compact Euclidean polyhedral surface S, let
k be the number of equivalence classes of auto-reversing trajectories on Sε, and let l be
the number of remaining equivalence classes of trajectories. Then

k + 2l <
π2

2
· A
a
,

where A is the area of S and a = πε2.

In particular, the total number of orbit types on Sε is strictly less than π2

2 · Aa .

Since a trajectory with no reflections at the boundary cannot coincide with its reverse,
we obtain in the case ∂S = 0 a bound on the number of trajectories having the smaller
coefficient of proportionality π2

4 .

Corollary. For any compact Euclidean polyhedral surface S such that ∂S = ∅, the
number of orbit types on Sε is strictly less than

π2

4
· A
a
.

Remark. It might be tempting to try to use the smaller bound for a surface without
boundary to improve the bound in the general case; however, this fails. If one doubles a
surface to eliminate the boundary, the area doubles but the number of trajectories does
not: each trajectory on the original surface lifts to two trajectories on the doubled surface
(which are reflections of each other in the obvious inversion), but exactly in the case of an
auto-reversing trajectory, these lifts are equivalent. Thus the bound cannot be improved
by this approach, but, rather, exactly the same result is obtained.

3. Propositions and Preliminary Lemmas

For completeness, we include the proof of the proposition that two equivalent generic
trajectories have the same period, thus fully clarifying the nature of equivalence, and
also that a trajectory is auto-reversing if and only if it has a right angle reflection. We then
continue with some elementary lemmas which play a vital rule in proving the Separation
Principle and Theorem 2. As all of these results are intuitively believable, the reader may
wish to read only the statements and move on to the proof of the Separation Principle
before coming back, if desired, for the technical details.
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Proposition 1. Equivalent generic trajectories have the same period.

Proof. Let γ1 and γ2 be equivalent. Without loss of generality, we may choose initial
points �1 and �2 for γ1 and γ2, respectively, which lie on a common side e of Q and
have the same direction. Let γ̃1 and γ̃2 be unfoldings of γ1 and γ2 having initial points
�̃1 and �̃2 covering �1 and �2, respectively, with positions p̃1 and p̃2 lying on a common
edge ẽ. Since γ1 and γ2 are equivalent, the unfoldings γ̃1 and γ̃2 clearly share the same
corridor. Furthermore, since the diameter of Q is finite, in order for γ̃1 and γ̃2 to share a
common corridor their traces must be parallel.

After one period, starting from initial phase point �̃1, a billiard particle traveling on
γ̃1 has position and direction represented by a phase point �̃′1 which again covers �1. In
particular, the edge ẽ ′ containing p̃ ′1 must cover e, and it must be both parallel to ẽ and
oriented in the same direction if the corresponding endpoints are taken in the same order.
(Note: At this point we require the fact that transverse orientation is preserved after a
period.) Since the traces of γ̃2 and γ̃1 are parallel, after traveling the same distance (that
is, the length of γ1) from p̃2 in direction ϕ̃2, a particle on γ̃2 will be characterized by a
phase point with position on ẽ ′ which covers �2. Thus, γ2 has completed a whole number
of periods; therefore, the period of γ2 is less than or equal to that of γ1. Reversing the
roles of γ1 and γ2, we see that their periods are the same. ��
Proposition 2. Let γ be a trajectory, and let −γ be the reverse of γ . If γ has no right
angle reflection, then the traces of γ and−γ in phase space are disjoint. If γ does have
a right angle reflection, then the traces of γ and −γ coincide.

Proof. If γ does have a right angle reflection, it is clear that γ and −γ coincide. Con-
versely, the traces of γ and −γ intersect in phase space if and only if there are times
t1 < t2 such that γ (t1) and γ (t2) have the same position and opposite directions. Fol-
lowing γ backwards from t2 and forwards from t1, we observe that for any real value �t ,
γ (t1+�t) and γ (t2 −�t) continue to have the same position and opposite directions;
in particular, γ attains two opposite directions at time tave = t1+t2

2 . This is only possible
if γ reflects from an edge at right angles at time tave. ��

The first six of the lemmas which follow concern the distances between points in
a covering. The seventh places a lower bound on the length of a trajectory in Qε, an
important consideration in the formulation and proof of the Separation Principle.

Lemma 1. Let Q̃ be a covering of Q. Let p̃ ∈ Q̃ be a point on the trace of an unfolding
of a trajectory in Qε, and let ṽ ∈ Ṽ . Then |p̃ ṽ| > ε.

Proof. Let ρ̃ be the shortest path from p̃ to ṽ. Without loss of generality, assume ṽ is
the only vertex on this path. (If not, then ṽ is further from p̃ than any other vertex on the
path, in particular, the one closest to p̃.)

First suppose that segment p̃ ṽ intersects an edge of Q̃; let ẽ be the edge closest to ṽ.
Then ṽ is a vertex of a polygon containing ẽ; hence, the pocket centered at ṽ is disjoint
from ẽ. It follows that |p̃ ṽ| > ε. (See Fig. 8a.) On the other hand, if no edge intersects
p̃ ṽ then this segment lies in a single polygon. Since p̃ lies outside the pocket centered
at ṽ, it again follows that |p̃ ṽ| > ε. (See Fig. 8b.) ��

An immediate and useful consequence of Lemma 1 is that if p̃1 and p̃2 lie on traces
of unfoldings of trajectories in Qε and the shortest path between them contains a vertex,
then |p̃1p̃2| > 2ε.
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Fig. 8. |p̃ ṽ| > ε

Fig. 9. The distance from v̄ to γ̄ is greater than ε

Lemma 2. Let Q̃ be a covering of Q. Let γ̃ be an unfolding on Q̃ of a trajectory on Qε,
and let ṽ be a vertex of Q̃. If the trace of γ̃ contains a point p̃ such that the shortest path
from p̃ to ṽ is a segment, then the (orthogonal) distance from v̄, the projection of ṽ, to
γ̄ , the projection of the trace of γ̃ , is greater than ε.

Proof. Let q̄ be the foot of the perpendicular from v̄ to γ̄ , and let q̃ be the point on γ̃

lying above q̄. For t ∈ [0, 1], let r̃(t) be the point on γ̃ at distance t |p̃ q̃ | from p̃ in the
direction of q̃, and let s̃(t) be the point on p̃ ṽ at distance t |p̃ ṽ| from p̃ in the direction of
ṽ. Let ρ̃(t) be the shortest path in Q̃ from r̃(t) to s̃(t), and let t0 be the smallest value of
t for which ρ̃(t) contains a vertex. (The value t0 exists since the set of values t ∈ [0, 1]
for which ρ̃(t) contains a vertex is clearly non-empty, since ρ̃(1) contains s̃(1) = ṽ, and
closed.)

Let w̃ be a vertex of ρ̃(t0). Its projection, w̄, lies inside or on the triangle with vertices
p̄, q̄ and v̄. Furthermore, r̄(t0)w̄ ‖ q̄v̄. It follows from Lemma 1 that |q̄v̄| ≥ |r̄(t0)w̄| > ε.
(See Fig. 9.) ��

Lemma 3. Let Q̃ be a covering of Q. Let γ̃1 and γ̃2 be unfoldings on Q̃ of trajectories
on Qε such that γ̄1 ‖ γ̄2 but γ̃1 and γ̃2 do not share the same corridor. If the traces of γ̃1
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Fig. 10. The distance between γ̄1 and γ̄2 is greater than 2ε

and γ̃2 contain points p̃1 and p̃2, respectively, such that the shortest path from p̃1 to p̃2
is a segment, then the distance between γ̄1 and γ̄2 is greater than 2ε.

Proof. By reversing the direction of one of the trajectories, if necessary, we may assume
without loss of generality that the projections of points forward from p̃1 and p̃2 on their

respective trajectories lie on the same side of line
←→
p̄1p̄2. For t ∈ [0,∞), let r̃1(t) and

r̃2(t) be the points on γ̃1 and γ̃2 at distance t from p̃1 and p̃2, respectively, in the forward
direction. Let ρ̃(t) be the shortest path in Q̃ from r̃1(t) to r̃2(t). For some value of t ,
ρ̃(t) contains a vertex, else γ̃1 and γ̃2 would share the same corridor. (Every edge which
intersected γ̃1 would also intersect γ̃2, and vice-versa.)

Let t0 be the smallest such value. (It is possible, of coure, that t0 = 0.) Then ρ̃(t0) is
a segment containing a vertex. The projection of this vertex lies in the “strip” bounded
by γ̄1 and γ̄2, and by Lemma 2, its distance from each of them is greater than ε. The
conclusion follows. (See Fig. 10.) ��

Observe that even if the projections onto the plane of two unfoldings are not paral-
lel, the unfoldings themselves, which lie on a Riemann surface, may not intersect. The
following lemma shows that if this situation occurs for unfoldings which lift trajectories
on Qε, then points lying on them must be more than 2ε apart.

Lemma 4. Let Q̃ be a covering of Q. Let γ̃1 and γ̃2 be unfoldings on Q̃ of trajectories
on Qε such that γ̄1 � ‖ γ̄2 but γ̃1 and γ̃2 do not intersect. Then |p̃1p̃2| > 2ε for all points
p̃1 and p̃2 on γ̃1 and γ̃2, respectively.

Proof. Given two points, p̃1 and p̃2, let ρ̃ denote the shortest path between them in Q̃,
and let ρ̄ denote its projection onto the plane. Let q̄ be the point at which lines γ̄1 and
γ̄2 intersect, and let q̃1 and q̃2 be the lifts of q̄ to the traces of γ̃1 and γ̃2, respectively.

If ρ̃ contains a vertex, then |p̃1p̃2| > 2ε by the observation following Lemma 1. On
the other hand, suppose ρ̃ contains no vertex. For t ∈ [0, 1], let r̃1(t) be the point on the
trace of γ̃1 between p̃1 and q̃1 and at a distance of t |p̃1q̃1| from p̃1. (Hence r̃1(0) = p̃1
and r̃1(1) = q̃1.) Similarly define r̃2(t) on the trace of γ̃2, and let ρ̃(t) be the shortest
path from r̃1(t) to r̃2(t).

Since q̃1 �= q̃2, |̃q1q̃2| �= 0; hence, for some value t < 1, ρ̃(t) contains a vertex. Let
t0 be the smallest such value. Then ρ̃(t0) is a segment whose length is clearly less than
or equal to that of ρ̃. (See Fig. 11.) It follows that |p̃1p̃2| > 2ε. ��

Lemma 5. Let Q̃ be a covering of Q. Let ṽ and w̃ be any two (distinct) vertices of Q̃. If
Q admits pockets of radius ε, then |̃v w̃| > 2ε.

Proof. Without loss of generality, assume that the shortest path from ṽ to w̃ contains no
vertices in its interior. If this path intersects an edge of Q̃, then the distance from ṽ to
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Fig. 11. Segment ρ̃(t0)

the point of intersection with the edge nearest ṽ must be greater than ε, since this edge
is in the same polygon as ṽ and, hence, must be disjoint from the pocket centered at ṽ.
Similarly, the distance from w̃ to the point of intersection with the edge nearest ṽ must
be greater than ε. On the other hand, if segment ṽ w̃ intersects no edge, then ṽ and w̃ lie
in the same polygon, so the pockets centered at ṽ and w̃ must be disjoint. In either case,
it is clear that |̃v w̃| > 2ε. ��
Lemma 6. Let Q̃ be a covering of Q. Let ṽ be a vertex of Q̃, and let p̃ be a point on any
edge of Q̃ not containing ṽ. If Q admits pockets of radius ε, then |̃v p̃| > ε.

Proof. Similar to that of the preceding lemma. ��
Lemma 7. Let γ be any trajectory on Qε. Let L be the length of γ . Then L > 2ε.

Proof. Let � be a phase point of γ whose position lies on an edge e of Q. Let γ̃ be an
unfolding of γ , and let �̃ and �̃′ be phase points of γ̃ which cover � and whose positions
are distance L apart. Then p̃ and p̃ ′ are corresponding points of parallel edges ẽ and ẽ ′,
respectively, covering e. Let ṽ be a vertex whose distance to segment p̃ p̃ ′ is minimal,
and let ρ̃ be the segment parallel to p̃ p̃ ′, and joining points of ẽ and ẽ ′, which passes
through ṽ. (See Fig. 12.)

Case 1. Vertex ṽ is an endpoint of edge ẽ or ẽ ′. Then ρ̃ joins a pair of corresponding
endpoints of ẽ and ẽ ′. It follows from Lemma 5 that L > 2ε.

Case 2. Vertex ṽ does not lie on edge ẽ or ẽ ′. Then it follows from Lemma 6 that the
segments on ρ̃ joining ṽ to ẽ and ẽ ′ have length greater than ε; hence, L > 2ε. ��

4. Proof of the Separation Principle

The idea of the Separation Principle grew out of the proof of the first theorem of [2].
Although the proof given here is completely self-contained, the reader may find it in-
structive and motivational to consult the proof of the earlier theorem.
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Fig. 12. The length of a trajectory on Qε is greater than 2ε

Proof of the Theorem 1 (Separation Principle). Let L1 and L2 be the lengths of γ1 and
γ2, respectively, and assume without loss of generality that L1 ≤ L2, so L = L1. The
proof divides into two cases.

Case 1. �ϕ̃ = 0 or �ϕ̃ = π . Since π > 2ε
L

by Lemma 7, we may assume that �ϕ̃ = 0;
we will prove that �p̃ > 2ε. Since �ϕ̃ = 0, the projections onto the plane of the traces
of γ̃1 and γ̃2 are parallel.

Let ρ̃ be the shortest path from p̃1 to p̃2. If ρ̃ contains a vertex then, as previously
observed, �p̃ > 2ε, and we are done. On the other hand, suppose ρ̃ is a segment con-
taining no vertex. By Lemma 3, it suffices to prove that γ̃1 and γ̃2 do not share the same
corridor, since clearly |p̃1p̃2| is at least as great as the distance between γ̄1 and γ̄2. Thus
the result in this case follows from:

Claim. The unfoldings γ̃1 and γ̃2 do not share the same corridor.

Suppose to the contrary that γ̃1 and γ̃2 share the same corridor. Without loss of gen-
erality, choose initial points �̃1 and �̃2, respectively, whose positions lie on a common
edge ẽ.

The trajectories γ1 and γ2 are clearly equivalent. Equivalent trajectories satisfy the
hypothesis of the theorem only if they have the same trace. Furthermore, by assumption
γ1 and γ2 traverse their common trace in the same direction; that is, γ1 = γ2 = γ

(except for the choice of initial point). We may therefore consider the phase point of γ̃1
nearest �̃1 in the forward direction that covers �2; denote this point by �̃ ′2. Because the
two unfoldings are parallel, p̃ ′2 lies on an edge ẽ ′ of Q̃ which is parallel to the edge ẽ

(and also covers e). (See Fig. 13.)
The trace of the unfolding γ̃2 intersects ẽ ′ at a point p̃ ′3 whose distance from p̃ ′2 is

�p̃, the same as the distance from p̃1 to p̃2. Let p̃3 be the translation by vector
−−−→
p̃ ′2p̃2

of p̃ ′3. Then p̃3 is a point of edge ẽ at distance �p̃ from p̃2 and on the opposite side
of p̃2 from p̃1. Let γ̃3 denote the lift of γ parallel to γ̃1 and γ̃2 which passes through

p̃3; the trace of γ̃3 intersects ray
−−−→
p̃ ′2p̃

′
3 at a point p̃ ′4 whose distance from p ′3 is �p̃.
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Fig. 13. Repeatedly laying off p̃1p̃2 on edge ẽ

Furthermore, since every point lying between the traces of γ̃2 and γ̃3 covers the same

point of Q as its translate by the vector
−−−→
p̃2p̃

′
2 , which lies between the traces of γ̃1 and

γ̃2, no vertex lies between γ̃2 and γ̃3. Thus γ̃3 also lies in the corridor containing γ̃1 and
γ̃2, and p̃ ′4 lies on edge ẽ ′. Let p̃4 be the corresponding point on edge ẽ. (See Fig. 13.)

Continuing in this fashion, we obtain an infinite sequence of points p̃1, p̃2, p̃3, p̃4, . . .

on edge ẽ spaced the fixed distance �p̃ apart, which contradicts the obvious fact that
the length of edge ẽ is finite. We conclude that γ̃1 and γ̃2 do not share the same corridor.

Case 2. �ϕ �= 0, π . By Lemma 4, if the traces of γ̃1 and γ̃2 do not intersect, then
�p > 2ε. Thus we have reduced to the case that the traces of γ̃1 and γ̃2 intersect. We
will show in this case that �ϕ > 2ε

L
.

Denote by p̃ the point at which the two unfoldings intersect and, without loss of
generality, assume p̃1 = p̃2 = p̃. Recall that L = L1, the length of γ1, is the minimum
of the lengths of γ1 and γ2. Let n be the period of γ1, and let Q0 be the polygon of Q̃
containing p̃. Consider, in the corridor of γ̃1, the polygons Q0,Q1,Q2, . . . ,Qn, and let
p̃ ′ be the point on γ̃1 at distance L in the forward direction from p̃. Since n is the period
of γ1, Qn is a parallel translate of Q0 by distance L in the direction of γ̃1. Therefore,
there is an unfolding γ̃ ′2 of γ2 through p̃ ′ whose projection onto the plane is parallel to
γ̄2. (See Fig. 14.)

Simple trigonometry shows that the distance between the projections γ̄2 and γ̄ ′2 is
L sin �ϕ < L�ϕ. Furthermore, by the claim proven in Case 1, γ̃2 and γ̃ ′2, being lifts of
the same trajectory, cannot share the same corridor. Finally, segment p̃ p̃ ′ lies in Q̃. Thus,



18 C. Delman, G. Galperin

Fig. 14. Two parallel unfoldings of γ2

Lemma 3 implies that the distance between γ̄2 and γ̄ ′2 is greater than 2ε. Combining this
inequality with the one above, we obtain L�ϕ > 2ε; hence, �ϕ > 2ε

L
. ��

Remark. Given a generic trajectory γ with length L, the argument of Case 2, along with
the fact that sin �ϕ < 1, provides an alternative means of seeing that L > 2ε (see
Lemma 7) in the case that some trajectory (possibly γ itself) intersects γ transversely.
However, there is no guarantee that such a trajectory exists.

5. Proof of Theorem 2

For each trajectory γ in Q, we consider the corresponding trajectory (which we will also
denote by γ , as the context will be clear) in �(Q), the phase space of Q, given by its
position and direction. We think of the directional “axis” of the phase space as vertical
and oriented so that the values of [0, 2π ] increase in the upward direction. Let L be the
length of γ . (This length is independent of whether we regard γ as being in �(Q) or Q,
since its image in �(Q) is horizontal.) As always, we assume that γ is parametrized at
unit speed.

From this point on, we fix ε and assume γ is a non-terminating generic trajectory on
Qε. We will, in a natural way, map a Euclidean solid torus T with core of length L and
cross-section [−ε, ε] × [− ε

L
, ε

L
] into phase space so that its core maps onto γ and its

image forms a neighborhood of γ . Clearly, the volume of T is 4ε2.
For each t ∈ R, let τ(t) be the direction of γ at time t , let β be the upward pointing

unit vector, and let ν(t) be the horizontal unit vector normal to γ at time t such that the
local basis (β, ν(t), τ (t)) is positively oriented. Given a point (t, x, y) ∈ T (where T is
parametrized as [0, L]× [−ε, ε]× [− ε

L
, ε

L
] with each point (0, x, y) identified with the

point (L, x, y)), let r =
√

x2 + y2, the distance of (t, x, y) from (t, 0, 0), the origin of
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the cross-section at t . Define a map f : T → �(Q) by setting f (t, x, y) to be the point
at distance r from γ (t) in the direction of xν(t)+ yβ.

We first prove that for each trajectory γ , the map f is an isometric embedding; hence,
γ is surrounded by a tube in phase space of volume 4ε2. The map f is a local isometry by
construction; therefore, it suffices to prove f is 1-1. The Separation Principal provides
the essential tool for doing so, for it (along with Lemma 7, which shows that the height
of T , 2ε

L
, is less than 2π ) will show that the dimensions of T are sufficiently small that

its image can have no self-intersections.

Lemma 8. The map f is an isometry.

Proof. Suppose that f (t1, x1, y1) = f (t2, x2, y2). Let r1 be the (oriented) straight line
path from (t1, 0, 0) to (t1, x1, y1), and let r2 be the (oriented) straight line path from
(t2, x2, y2) to (t2, 0, 0). Let �i denote f ◦ri , for i = 1, 2. The concatenation of �1 and �2 is
a connected path from �1 = γ (t1) to �2 = γ (t2), since f ((t1, x1, y1)) = f ((t2, x2, y2));
denote this path by �, and its projection onto the positional coordinate by ρ. (We sim-
ilarly denote the projections of �1 and �2 onto the positional coordinate by ρ1 and ρ2,
respectively; ρ is the union of ρ1 and ρ2.) (See Fig. 15.)

Let ρ̃ be an unfolding of ρ; denote its endpoints by p̃1 and p̃2, where p̃1 covers p1,
the position of �1, and p̃2 covers p2, respectively. Let γ̃1 and γ̃2 be unfoldings of γ

with initial phase points �̃1 and �̃2, covering �1 and �2 and having positions p̃1 and p̃2,
respectively. Each path ρi has length less than or equal to ε, so �p̃ ≤ 2ε. Moreover,
�ϕ̃ = |y2 − y1| ≤ 2ε

L
. Thus, by the Separation Principle, as γ̃1 and γ̃2 are unfoldings of

the same trajectory lying in a common covering, γ̃1 and γ̃2 must coincide.
Noting that ρ̃1 is a segment perpendicular to the trace of γ̃1 and ρ̃2 is a segment

perpendicular to the trace of γ̃2, we deduce that the traces of γ̃1 and γ̃2 coincide only
if p̃1 = p̃2 and �ϕ̃ = 0. Thus |y1 − y2| = 0 and |x1 − x2| = �p = 0. Finally, since
�1 = �2 and γ traverses a single period between t = 0 and t = L, t1 = t2. We conclude
that f is 1-1. ��

Next, we show that the tubes around non-equivalent trajectories are disjoint. Once
again, the Separation Principle lies at the crux of the proof.

Lemma 9. Let γ1 and γ2 be non-equivalent trajectories on Qε, with tubular neighbor-
hoods given as the images of maps f1 : T1 → �(Q) and f2 : T2 → �(Q), respectively,
as described above. Then the images of f1 and f2 are disjoint.

Proof. Suppose, to the contrary, that there are points (t1, x1, y1) ∈ T1 and (t2, x2, y2) ∈
T2 such that f1((t1, x1, y1)) = f2((t2, x2, y2)). By a method similar to that used in the
proof of the preceding lemma, we obtain unfoldings γ̃1 and γ̃2 (which must have distinct
traces, since γ1 and γ2 are not equivalent) with initial phase points �̃1 and �̃2, respectively,
such that �p̃ ≤ 2ε and �ϕ̃ ≤ 2ε

L
, in contradiction to the Separation Principle. ��

The fact that 2ε
L

< π suggests that the tubes around reverse trajectories will also
be disjoint. Indeed this is true, and the key ingredient of the proof has already been
incorporated into the Separation Principle. (See the proof of the Separation Principle,
Case 1, which makes direct use of the fact that 2ε

L
< π at the outset.)

Lemma 10. Let γ be a trajectory on Qε which is not auto-reversing. Let −γ denote its
reverse. Then the tubes around γ and −γ are disjoint.
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Fig. 15. The path � from �1 to �2

Proof. Let f+ : T → �(Q) and f− : T → �(Q) be the maps into phase space whose
images are the tubes around γ and −γ , respectively. (T is the solid torus obtained by
identifying the ends of the rectangular solid [0, L]× [−ε, ε]× [− ε

L
, ε

L
], where L is the

common length of γ and −γ .) Suppose that f+(t1, x1, y1) = f−(t2, x2, y2). Proceed-
ing as in the proofs of Lemmas 8 and 9, we obtain unfoldings γ̃1 and γ̃2 with initial phase
points �̃1 and �̃2, respectively, such that �p̃ ≤ 2ε and �ϕ̃ ≤ 2ε

L
. Since γ and −γ have

the same trace, γ̃1 and γ̃2 must coincide (in both trace and direction), which implies that
γ and −γ coincide (in both trace and direction), in contradiction to the hypothesis that
γ is not auto-reversing. ��
The proof of Theorem 2. Applying Lemmas 8, 9 and 10 to a maximal collection of non-
equivalent generic trajectories and their reverses, we obtain a pairwise disjoint family of
tubes, each of volume 4ε2 and one for each trajectory, in the phase space of the billiard
system. Since the volume of the phase space is 2πA, the sum of the number of equiva-
lence classes of auto-reversing trajectories and twice the number of equivalence classes
of trajectories which are not auto-reversing can be no more than 2πA

4ε2 = π2

2 · Aa . ��
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Remark. Clearly the proof above requires no prior knowledge about the cardinality of
the set of trajectories; thus, it is independent of the previous results of [2] and others
regarding the cardinality of this set. (It is of course necessary to know a priori that all
trajectories are periodic.)
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