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Incremental Accumulation of Oriented Quantities

Integration is a means of understanding and computing the
incremental accumulation of oriented quantities such as:

displacement
velocity
work

Although it might surprise you at first, area and volume
are also best understood as oriented quantities.

To see this, it might help to visualize volume as liquid in a
tank: it can go up or down.
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Canonical Example: The Oriented Area
Bounded by the Graph of a Function

As another example, let f be continuous on an interval.

It seems evident that the region bounded by the graph of
f and the x-axis along this interval has a well-defined area.

I

y=f(x)

To see this area as a quantity that accumulates with
changes in x , we must view it an oriented quantity: just as
with displacement, any accumulation can be reversed.

We will now justify that this region has a well-defined
oriented area. Then we will see how to compute it with
ease for many functions by first understanding its
derivative.
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The Oriented Area Bounded
by the Graph of a Constant Function

First consider a constant function f (x) = c . The oriented
area bounded by the graph of f from a to b is (b − a)c.
Note that this quantity is:

0 if a = b or c = 0.
Positive if a < b and c > 0
Negative if a < b and c < 0
Negative if a > b and c > 0
Positive if a > b and c < 0

x-axis
+

+_

_

ba
ba

ab
ab

The magnitude of the oriented area is to oriented area as
distance is to displacement and as speed is to velocity.
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The Oriented Area Bounded
by the Graph of a Function

Now consider any function that is continuous on an
interval, along with two points a and b in that interval.
Let us focus first on the case that a < b and f is positive
and increasing on [a, b].
For each positive integer n, consider the partition of [a, b]
into n subintervals of equal length ∆x = b−a

n . (∆x clearly
depends on n, but it is cumbersome to incorporate n into
the notation.)

y=f(x)

a=x x x x =b
0 1 2 n

...
Dx Dx Dx Dx Dx DxDx =

(b-a)/n
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The Region Bounded by the nth

Lower Piece-wise Constant Approximation

On each interval [xi , xi+1], consider the minimum value of
f ; in this case, it will be f (xi ).
The oriented area bounded by the graph of the constant
function gi (x) = f (xi ) is f (xi )∆x .
The region bounded from a to b by the graph of the
piecewise constant function g(x) = gi (x) for x ∈ [xi , xi+1]
is contained in the region bounded by the graph of f .

y=f(x)

a=x x x x =b
0 1 2 n

...
Dx Dx Dx Dx Dx DxDx =

(b-a)/n
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The Oriented Area bounded by the nth

Lower Piece-wise Constant Approximation

y=f(x)

a=x x x x =b
0 1 2 n

...
Dx Dx Dx Dx Dx DxDx =

(b-a)/n

Its oriented area is Ln =

f (x0)∆x + f (x1)∆x + f (x2)∆x + · · ·+ f (xn−1)∆x

=
n−1∑
i=0

f (xi )∆x .
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The Region Bounded by the nth

Upper Piece-wise Constant Approximation

On each interval [xi , xi+1], consider the maximum value of
f ; in this case, it will be f (xi+1).
The oriented area bounded by the graph of the constant
function hi (x) = f (xi+1) is f (xi+1)∆x .
The region bounded from a to b by the graph of the
piecewise constant function h(x) = hi (x) for x ∈ [xi , xi+1]
clearly contains the region bounded by the graph of f .

y=f(x)

a=x x x x =b
0 1 2 n

...
Dx Dx Dx Dx Dx DxDx =

(b-a)/n
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The Oriented Area Bounded by the nth

Upper Piece-wise Constant Approximation

y=f(x)

a=x x x x =b
0 1 2 n

...
Dx Dx Dx Dx Dx DxDx =

(b-a)/n

Its oriented area is Un = ?
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The Oriented Area Bounded by the nth

Upper Piece-wise Constant Approximation

y=f(x)

a=x x x x =b
0 1 2 n

...
Dx Dx Dx Dx Dx DxDx =

(b-a)/n

Its oriented area is Un =

f (x1)∆x + f (x2)∆x + f (x3)∆x + · · ·+ f (xn)∆x

=
n∑

i=1

f (xi )∆x .
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The Limits as n→∞

As we let n→∞, Ln increases and Un decreases. (Why?)

Clearly Lm ≤ Un for any m and n.

By the continuity of the real number system, limn→∞ Ln

and limn→∞ Un must exist.

In fact, these limits are the same, as we will see in a
moment.

Since the region bounded by the function f contains the
region bounded by each lower piece-wise constant
approximation and is contained in the region bounded by
each upper piece-wise constant approximation, its area
must be this common limit.
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limn→∞ Ln = limn→∞ Un =
The Oriented Area of the Region bounded by f

y=f(x)

a=x x x x =b
0 1 2 n

...

Dx
f(a)

f(b)

Dx Dx Dx Dx Dx DxDx =
(b-a)/n

The difference between Ln and Un, in this case, is
(f (b)− f (a))∆xn.

As n→∞, ∆xn → 0; hence this difference goes to 0.
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Oriented Area in General

A similar argument shows this is the case on intervals on
which f is decreasing.

It also causes no difficulty if f (x) ≤ 0 for some inputs x or
if b < a. Some of the approximating constant pieces may
bound negative areas, but all of the relationships and
reasoning extend to the general case.

There is also no need to subdivide the interval from a to b
into equal subintervals; any subintervals will do as long as
their maximum length goes to 0 as n→∞.

For less tractable – but continuous – functions, such as
f (x) = x sin(πx ) on an interval containing 0, the domain
cannot be divided into finitely many intervals of increase
or decrease. For such functions, more refined arguments
are needed. Nonetheless, all of the results above hold.
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Other Approximations

y=f(x)

a=x x x x =b
0 1 2 n

...
Dx Dx Dx Dx Dx DxDx =

(b-a)/n

Furthermore, all other approximations, such as the
midpoint and trapezoidal approximations, are squeezed
between Ln and Un as well.

These other approximations (especially the trapezoidal)
converge more quickly than Ln and Un.

But we can often calculate the area exactly.
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Extension of these Methods to Other Measures;
Properties of Measure

The methods we used to define the oriented area bounded
by a curve extend naturally to other measures such as the
oriented volume bounded by a surface.

They also extend more generally to physical quantities
such as work.
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Oriented Area as a Variable Quantity

Consider the oriented area bounded by a continuous
function f from an initial input a to x .

This oriented area is a function of x : call it A = F (x).

We will first compute F ′(x) and use it to compute F (x).

Note that to do this we must view the oriented area
bounded by f as a quantity that varies with the ending
point of the interval, x , just as we viewed velocity as a
quantity that varied with time.

Recall that

F ′(x) = lim
∆x→0

∆A

∆x
.
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Bounding the Derivative of the Oriented Area

Let f (x̌) be the minimum value of f on the interval form x
to x + ∆x , and let f (x̂) be the maximum value of f on
the interval form x to x + ∆x .

a x x x x+Dx{
Dx

A=F(x)
DA

Then f (x̌)∆x ≤ ∆A ≤ f (x̂)∆x ; hence,

f (x̌) ≤ ∆A

∆x
≤ f (x̂).
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Computing the Derivative of the Oriented Area
Using the Squeeze Theorem

Since x̌ and x̂ are between x and x + ∆x , x̌ → x and
x̂ → x as ∆x → 0.

Since f is continuous, limx̌→x f (x̌) = limx̂→x f (x̂) = f (x).

Combining the two previous observations, we obtain

lim
∆x→0

f (x̌) = lim
∆x→0

f (x̂) = f (x).

Thus, by the Squeeze Theorem,

F ′(x) = lim
∆x→0

∆A

∆x
= f (x)!

The fact that F ′ = f and the initial condition F (a) = 0
completely determine the function F .
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The Riemann Integral: Formal Definition

The general concept that captures all of these examples and
more is the Riemann Integral:

Definition

Let f be a function defined on the interval from a to b. For
each positive integer n, let ∆x = b−a

n . Let x∗i be any point
between xi−1 and xi The Riemann integral of f from a to b,

denoted by
∫ b
a f (x)dx , is the following limit, if it exists and has

the same value for all choices of x∗i :∫ b

a
f (x)dx = lim

n→∞

n∑
i=1

f (x∗i )∆x

Remark: The interval from a to b is directed: a can be greater
than b; ∆x can be negative.
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Existence of the Riemann Integral

If the Riemann integral of f from a to b exists, then f is
Riemann integrable on the interval from a to b.

A sum
∑n

i=1 f (x∗i )∆x is called an nth Riemann Sum.

If f (x̌i ) is the minimum value of f (x) between xi−1 and xi ,
then

∑n
i=1 f (x̌i )∆x is the nth lower Riemann Sum.

If f (x̂i ) is the maximum value of f (x) between xi−1 and
xi , then

∑n
i=1 f (x̂i )∆x is the nth upper Riemann Sum.

For a function to be Riemann integrable on an interval, it
suffices that the upper and lower Riemann sums converge
to the same limit as n→∞.

Continuity of f on an interval is sufficient to guarantee
that f is Riemann integrable on this interval. (Weaker but
more complicated conditions also suffice.)
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Fundamental Properties of The Riemann Integral

The value of the Riemann integral is clearly the oriented
area bounded by the graph of f from a to b. But it
provides a general concept and notation that is valuable in
situations where we don’t necessarily want to picture this
quantity as an oriented area.

The following important properties of the Riemann
integral are consequences of its definition:

1
∫ b

a
f (x)dx +

∫ c

b
f (x)dx =

∫ c

a
f (x)dx . (

∫ a

a
f (x)dx = 0.)

2
∫ a

b
f (x)dx = −

∫ b

a
f (x)dx .

3 If m ≤ f (x) ≤ M for a ≤ x ≤ b, then

m(b − a) ≤
∫ b

a
f (x)dx ≤ M(b − a).

4 For real numbers λ and µ,∫ b

a
[λf (x) + µg(x)]dx = λ

∫ b

a
f (x)dx + µ

∫ b

a
g(x)dx .

Make sure you can explain them using pictures!
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The Fundamental Theorem of Calculus

Using the properties just mentioned and translating our
reasoning about area into the modern language of
integration, we state our most significant theorem:

Theorem (The Fundamental Theorem of Calculus)

Let f be a function that is continuous on [a, b].

1 Let F (x) =

∫ x

a

f (t)dt, a ≤ x ≤ b. Then F is continuous

on [a, b] and differentiable on (a, b), and F ′(x) = f (x).

2 If G be any anti-derivative for f , then∫ b

a

f (x)dx = G (b)− G (a).

Please take note of the hypothesis: the result does not
apply unless the function f is continuous on [a, b].
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Proof of the Fundamental Theorem of Calculus

1 F ′(x) = lim∆x→0
F (x+∆x)−F (x)

∆x , by the definition of the

derivative, and F (x+∆x)−F (x)
∆x =

R x+∆x
a f (t)dt−

R x
a f (t)dt

∆x , by
the definition of the function F .∫ x+∆x

a f (t)dt −
∫ x
a f (t)dt

∆x
=

∫ x+∆x
x f (t)dt

∆x

by Property (1) of the Riemann integral, as listed
previously. Since f is continuous on [x , x + ∆x ], the
Extreme Value Theorem applies, giving points x̌ and x̂
such that f (x̌) and f (x̂) are absolute minimum and
maximum values on [x , x + ∆x ], respectively. By Property
(2) of the Riemann integral, as listed previously,

f (x̌)∆x ≤
∫ x+∆x

x
f (t)dt ≤ f (x̂)∆x
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Proof of the Fundamental Theorem, Continued

Hence, f (x̌) ≤
∫ x+∆x
x f (t)dt

∆x
≤ f (x̂).

As ∆x → 0, clearly x̌ → x and x̂ → x (since
x ≤ x̌ , x̂ ≤ x + ∆x); furthermore, since f is continuous, as
x̌ → x and x̂ → x , f (x̌)→ f (x) and f (x̂)→ f (x) (by
definition of continuity). Thus, by the Squeeze Theorem,

F ′(x) = lim
∆x→0

∫ x+∆x
x f (t)dt

∆x
= f (x)

2 By definition of F ,
∫ b
a f (x)dx = F (b). Since G ′ = F ′,

F = G + C , where C is a constant. Since F (a) = 0,

C = −G (a). Thus
∫ b
a f (x)dx = F (b) = G (b)− G (a).

Q.E .D.
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An Important Function:
The Anti-Derivative of f (x) = 1

x

Consider the function f (x) = 1
x for x > 0. (On the

interval (0,∞), f is continuous.)

Is there a function F such that F ′(x) = f (x) = 1
x ?

Yes, of course! It is given by F (x) =

∫ x

1

1

t
dt, the oriented

area under the curve y = 1
t between t = 1 and t = x .

We choose 1 for the starting point because we want
F (1) = 0 (for reasons that will become apparent shortly).
Any other fixed positive number a would do, and would
simply give a function that differs from ours by a constant.

That constant would be
∫ 1

a
1
t dt, the oriented area under

the curve between x = a and x = 1.
Since y > 0, F (x) =

∫ x

1
1
t dt is positive if x > 1 and

negative for x < 1.
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Calculating F (x) =
∫ x

1
1
t dt.

A harder question: Is there a formula for F constructed by
adding, subtracting, multiplying, dividing, or composing
algebraic and trigonometric functions?

No!

But we can calculate the values of F (x), for any positive
input x , to any desired degree of accuracy using Riemann
Sums to estimate the Riemann Integral.

First let us see why the function F is so important!

We now turn to Assignment 1, Section 1.
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The Function F is the Natural Logarithm

The transcendental function F is important enough to
have a name, just like the trigonometric functions.

F is called the natural logarithm, abbreviated ln. Why?

Consider: by definition, ln(ab) =
∫ ab

1
1
t dt =∫ a

1

1

t
dt +

∫ ab

a

1

t
dt = ln a +

∫ ab

a

1

t
dt.

For the second integral, substitute u = t
a , obtaining

ln(ab) = ln(a) + ln(b)

F is a logarithmic function! It follows that for any rational
number r , ln(ar ) = r ln a. (Why?)
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The Natural Exponential

The natural logarithm is differentiable and increasing,
hence injective, on the interval (0,∞).

The natural logarithm is surjective onto R. Why?

Thus ln has a differentiable inverse exp : R→ (0,∞).
On the same gid, graph y = ln x and y = exp x .

The inverse of a logarithmic function is an exponential
function: exp(x + y) = exp(x) · exp(y). Why? Hint:
x = ln u and y = ln v for some real numbers u and v .

Thus for any rational number r , exp(rx) = exp(x)r . Why?

Let e = exp(1). Then for any rational number r ,
exp(r) = er . Why?

More generally, since er agrees with exp(r) for any rational
number r , it is natural to define ex = exp(x) for any real
number x (whether rational or irrational).
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Now let’s do some exercises
to clarify our understanding
of the exponential function!
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Estimating the value of e

Using a little trick with the derivative of the natural
logarithm, along with the continuity and computational
properties of the exponential function, we can express the
number e as limit:

e = e1 = e ln′(1) = e limh→0
ln(1+h)−ln(1)

h = lim
h→0

e
1
h

ln(1+h)

= lim
h→0

(1 + h)
1
h = lim

n→∞

(
1 +

1

n

)n

Using this limit we can estimate e to any degree of
accuracy that we wish. Let’s do it!
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The Derivative of the Natural Exponential Function

To calculate the derivative of the exponential function, we
use implicit differentiation, which works whenever we know
the derivative of the inverse of a function.

Observe that ln(ex) = x . Let
Let u = ex . Taking the derivative of each side, applying
the chain rule to the composition, we obtain 1

u ·
du
dx = 1.

Thus, du
dx = u = ex .

The exponential function is its own derivative! This means
that ex increases at an extraordinary rate:

the bigger it gets, the faster it increases;
the faster it increases, the faster its rate of increase
increases;
the faster its rate of increase increases, the faster the rate
of increase of its rate of increase increases, ...!

Its growth compounds upon itself.
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General Real Exponents and Logarithms

For every positive real number a and every rational
number r , ar =

(
e ln a

)r
= er ln a.

Thus it is natural to define ax = ex ln a for any positive real
number a and any real number x (whether rational or
irrational).

The function expa : R→ (0,∞) defined by expa(x) = ax

is differentiable and bijective, except in the special case
a = 1. (Why?)

Therefore, expa has a differentiable inverse loga. It is easy
to compute that loga = ln

ln a . (That is, loga(x) = ln x
ln a ).
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When a Rabbit Meets Another Rabbit
and They Fall in Love

The exponential function is crucial for modeling quantities
whose rates of growth are proportional to their sizes. For
example, it has many applications to population biology

Suppose there is a population of, say, 100, 000 rabbits
with an unlimited food supply and no predators.

We wish to study how the population will grow over time.

Obviously, the population changes one rabbit at a time.

But with so many rabbits, both the birth of new rabbits
and the death of old rabbits will be very frequent, and the
step of adding one rabbit is very small compared to the
total population. So we can learn a lot by approximating
the population of rabbits as a smooth function of time,
p = F (t).

What differentiable function F best models the rabbit
population?
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Rabbits & More Rabbits & More & More Rabbits

It is reasonable to assume that, given their unlimited food
supply and the absence of predators, the rabbits have a
constant birth rate and a constant death rate. Subtracting
the death rate from the birth rate gives a constant rate of
increase. If we measure time in months, this rate will be in
rabbits per rabbit per month.

Thus, the rate of change in the rabbit population (in
rabbits per month) at any instant is proportional to the
number of rabbits at that instant.

For example, let us suppose the birth rate is 2 rabbits per
rabbit per month and the death rate is .1 rabbit per rabbit
per month. This gives a rate of increase of 1.9 rabbits per
rabbit per month.

So when there are p rabbits, the rate of increase will be
1.9p rabbits per month.
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& More & More & More Rabbits

Translating into a differential equation, we obtain

dp

dt
= 1.9p

Rearranging this equation, we obtain

dp

p
= 1.9dt

Anti-differentiating, we obtain

ln p = 1.9t + C

At t = 0, p = 100, 000, so C = ln(100, 000); hence
p = e1.9t+ln(100,000) = e ln(100,000)e1.9t = 100, 000e1.9t .

p = 100, 000e1.9t
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Doubling Time

How long does it take before the population of rabbits
doubles to 200, 000?

Solving for t in the equation 200, 000 = 100, 000e1.9t

yields t = ln 2
1.9 .

Let’s use Riemann sums to calculate ln 2. (We will do this
in class.)
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