
MAT 4860: Selected Solutions to Problems II

1.2.16 Suppose A ⊂ Z is a non-empty subset that is bounded below. Then A has a smallest
elements.

Proof. By the Greatest Lower Bound Property, A has a greatest lower bound a0. We
claim that a0 is the smallest element of A. Since a0 is the greatest lower bound, a0 + 1 is
not a lower bound; thus, there is an element a ∈ A such that a0 ≤ a < a0 + 1. It follows
that a − 1 < a0; hence, there is no integer between a0 and a. Therefore, a0 = a, and a0
is the smallest element of A.

Remark. A similar argument shows that any non-empty set of integers that is bounded
above has a largest element. (Prove it! )

1.4.1 To create a bijection from (a, b] to (c, d], for any real numbers a < b and c < d, let
f : (a, b] → (c, d] be defined by f(x) = c + d−c

b−a(x − a). To prove f is bijective (which is
pretty obvious in any case), just solve for the inverse function.

2.1.7 To show that limn→∞ xn = 0 ⇔ limn→∞ |xn| = 0, note that |xn − 0| = |xn| = ||xn|| =
||xn| − 0|. Thus, ∀ε > 0, ∃N ∈ N : |xn − 0| < ε⇔ ∀ε > 0, ∃N ∈ N : ||xn| − 0| < ε.

2.1.10 The sequence
(
n+1
n

)
is monotone and bounded, and its limit is 1.

Proof. For any n ∈ N, n+1
n = 1 + 1

n > 1 + 1
n+1 = (n+1)+1

n+1 , so
(
n+1
n

)
is monotonic and

(strictly) decreasing. Therefore, it converges to infn∈N
{
n+1
n

}
. We claim inf

{
n+1
n

}
= 1.

Clearly, for all n ∈ N, 1 < 1 + 1
n ; furthermore, as a consequence of the Archimedean

Property of the real numbers, for any ε > 0, 1 + 1
n < 1 + ε for some n, so 1 is the greatest

lower bound.

Remark. A similar argument shows that
(
n−1
n

)
→ 1, a fact which is useful for the next

problem.

2.2.5 n−cos(n)
n → 1.

Proof. Since −1 ≤ cos(n) ≤ 1, n−1
n < n−cos(n)

n < n+1
n . Thus n−cos(n)

n → 1 by the Squeeze
Lemma.

2.2.10 Proof. Let x = limn→∞ xn, and let ε > 0.

Case 1: x = 0. Then
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∣∣∣∣. For a sufficiently large N ∈ N, n ≥ N ⇒ |xn| < εk;

hence,
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That was the easy case. For x > 0 we have to work harder, but once we see the method the
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Notice as well that all of the terms x
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Case 2. x > 0. For sufficiently large N ∈ N, n ≥ N ⇒ |xn − x| < εx
k−1
k ; hence∣∣∣∣x 1

k
n − x

1
k

∣∣∣∣ < ε. (Now you can see why we had to separate out the case x = 0.

2.2.11 Let r > 0. The sequence recursively defined by

xn+1 = xn −
x2n − r

2xn

converges to
√
r, if x1 > 0, and converges to −

√
r, if x1 < 0.

Proof. First we must show the sequence converges. Then we can use the recursive defi-
nition to find the limit.

This is a tricky one! As I worked on it, I realized that this is the sequence given by New-
ton’s method for solving x2 − r = 0. The figure below illustrates both cases. (Check this
for yourself; the figure should be sufficient to remind you how to do Newton’s method.)
Since f(x) = x2 − r is concave upward, we see that for n ≥ 2, (xn) is decreasing and
bounded below by

√
r if x1 > 0 and (xn) is increasing and bounded above by −

√
r if

x1 < 0.
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Since the tail of sequence from n = 2 on is monotonic and bounded in either case, the
sequence converges. Denote its limit by x. Note also that x > 0 if x1 > 0, and x < 0 if
x1 < 0 (why?). Using the recursive relationship, we obtain

x = x− x2 − r
2x

=
x2 + r

2x
⇔ 2x2 = x2 + r ⇔ x2 − r = 0.



Remark. This is a significant result, because it proves that Newton’s method actually
works for this function, no matter what x1 6= 0 is chosen!

Remark. This is also the sequence given by the Babylonian algorithm, devised by the
ancient Babylonians to estimate square roots, which calculates xn+1 by averaging xn and
r
n . (Why does this make sense? There is an elementary explanation.)

2.2.13 (a) If there exists r < 1 and N ∈ N such that, for all n ≥ N , |xn+1|
|xn| ≤ r, then xn → 0.

Proof. We easily prove by induction that 0 ≤ |xN+k| ≤ |xN |rk, for k = 1, 2, 3, . . .. (Do it!)
Thus, the tail of the sequence, and hence the sequence itself, converges by the Squeeze
Lemma. (Here we made use of the Geometric Sequence Theorem, Prop. 2.2.11.)

Part (b) is similar and left to you.

2.2.15 limn→∞
(
n2 + 1

) 1
n = 1.

Proof. We will show that, for any ε > 0, there exists N ∈ N such that
(
n2 + 1

) 1
n < 1 + ε

for n > N . Since clearly 1 <
(
n2 + 1

) 1
n for all n ∈ N, the result follows by definition of

limit.

Now,
(
n2 + 1

) 1
n < 1 + ε ⇔

(
n2 + 1

)
< (1 + ε)n ⇔ (n2+1)

(1+ε)n < 1. We will show that

limn→∞
(n2+1)
(1+ε)n = 0; hence, there must be an N ∈ N such that

(n2+1)
(1+ε)n < 1 if n > N (by

definition of limit). The desired result follows from the ratio test:(
(n+ 1)2 + 1

)
(1 + ε)n+1

(1 + ε)n

(n2 + 1)
→ 1

1 + ε
< 1.

Remark. To show
((n+1)2+1)

(n2+1)
→ 1, distribute (n+1)2, divide numerator and denominator

by n2, and use the algebraic properties of limits (Prop. 2.2.5).

Here is anotherway to write the proof of the general Bolzano-Weierstrass Theorem. It is
a proof by induction. Writing this induction in a more formal way avoids the proliferation of
subscripts, yielding a nicer presentation. To whit: let (xn) = ((x1,n, x2,n, x3,n, . . . xk,n)) be a
bounded sequence in Rk. We must show that (xn) has a convergent subsequence. (Note that
a sequence is convergent if and only each coordinate sequence is convergent. Why?) The case
k = 1 has been proven. Proceeding by induction, assume the theorem holds for k; that is, any
bounded sequence in Rk has a convergent subsequence. Let (xn) = ((x1,n, x2,n, x3,n, . . . , xk,n, xk+1,n))
be a bounded sequence in Rk+1. Since | ((x1,n, x2,n, x3,n, . . . xk,n)) | ≤ | ((x1,n, x2,n, x3,n, . . . , xk,n, xk+1,n)) |
(why?), the sequence ((x1,n, x2,n, x3,n, . . . , xk,n)) is also bounded; hence it has a convergent sub-
sequence ((x1,ni , x2,ni , x3,ni , . . . , xk,ni

)), by inductive hypothesis. Furthermore, the sequence

(xk+1,ni
) is bounded, and therefore it has a convergent subsequence

(
xk+1,nij

)
. Thus, the

subsequence
(
xnij

)
=

(
(x1,nij

, x2,nij
, x3,nij

, . . . , xk,nij
, xk+1,nij

)
)

of (xn) is convergent. (Note

that we used the fact that any subsequence of a convergent sequence is convergent.)


