
MAT 4860: Selected Solutions to Problems

0.3.12 If |A| = n, then |P(A)| = 2n.

Proof. If n = 0, A = ∅, so P(A) = {∅}; |{∅}| = 1 = 20. For the general
case, suppose as inductive hypothesis that if |A| = n, then |P(A)| = 2n. Con-
sider A with |A| = n + 1. Let a0 be any fixed element of A. Then |A\{a0}| = n;
hence, by inductive hypothesis, |P(A \ {a0})| = 2n. Thus, there is a bijection
f : {1, 2, 3, . . . 2n} → P(A \ {a0}).

We construct a bijection from

{1, 2, 3, . . . 2n+1} = {1, 2, 3, . . . , 2n} ∪ {2n + 1, 2n + 2, 2n + 3, . . . , 2n + 2n = 2n+1}
to P(A) as follows. Note that, for every subset B ⊆ A, either B ⊆ A \ {a0},
or a0 ∈ B and B \ {a0} ⊆ A \ {a0}. Furthermore, if a0 ∈ B and a0 ∈ B′, then
B = B′ ⇔ B \ {a0} = B′ \ {a0}. Define g : {1, 2, 3, . . . 2n+1} → P(A) by

g(i) =

{
f(i), if 1 ≤ i ≤ 2n

f(i− 2n) ∪ {a0}, if 2n + 1 ≤ i ≤ 2n+1
.
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0.3.24 (a) By hypothesis, A ⊆ B, and B is countably infinite. Suppose A is not empty
and A is not finite; we claim in this case that A is countably infinite. (Obviously,
A is infinite, by definition of “not finite”! We need only show A is countable.)
We have a bijection f : N → B, which we may represent by setting bn = f(n).
Let n1 be the smallest element of N such that bn1 ∈ A; n1 must exist, since
A 6= ∅ and N is well-ordered. Proceeding recursively, suppose n1, n2, n3, . . . , nk

have already been defined, and define nk+1 to be the smallest element of N such
that nk+1 > nk and nk ∈ A. Such an element must exist, since if it didn’t, we
would have A ⊆ {b1, b2, b3, . . . , bnk

}, and we proved that a subset of a finite set
is finite.

We thus obtain ni for all i ∈ N. In other words, we have recursively defined
an injection g : N → N, where g(i) = ni. Let ai = bni

. In other words, we
obtain an injection f ◦ g : N → A, where ai = f ◦ g(i). We claim that f ◦ g
is also a surjection onto A. For suppose by way of contradiction that there is
some a ∈ A such that ∀i ∈ N, a 6= bni

. Since A ⊆ B, we know a = bn for
some n ∈ N. Setting j to be the smallest element of N such that n < nj (why
must such a number exist?), we would have nj−1 < n < nj, contradicting our
recursive definition of nj.

1.1.6 Assume S is an ordered set, ∅ 6= A ⊆ S, A is bounded above, and supA exists.
Assume in addition that supA 6∈ A. Let a1 be any element of A. Since a1
cannot be equal to supA, it follows that a1 < supA; therefore, a1 is not an
upper bound for A. More generally, no element of A can be an upper bound for
A. Let a2 be an element of A such that a1 < a2. Proceeding recursively, assume
that a1 < a2 < a3 < · · · < ak have been chosen, and let ak+1 be an element of
A such that ak < ak+1. In this manner we obtain a countably infinite subset
{a1, a2, a3, . . .}. Note that our recursive definition requires the Axiom of Choice,
because we have to have a chosen element of A at each stage “ready to go all
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at once” in order for the function i → ai to be defined, and there is no rule by
which to make this choice. We can achieve this by using the Axiom of Choice
to select an element from every subset of A; then we will have one for each set
{a ∈ A : ai < a}. (If S were well-ordered, we could choose the smallest element
in each subset of S, using this rule to avoid the Axiom of Choice, but S was
not given to be well-ordered.) For a thorough and rigorous discussion of the
Axiom of Choice, the Principle of Recursive Definition, and a variety of other
foundational matters, see the introductory chapter of Topology: a first course,
by J. Munkres.

1.1.8 It is clear how to define addition and multiplication, and it is clear that a
finite field cannot be ordered (as a field); taking the field of three elements as a
representative example, we would have 0 < 1 < 1 + 1 = 2 < 2 + 1 = 0, violating
anti-symmetry. I just want to make sure you understand why the addition and
multiplication tables you created are the only way these operations may be
defined on {0, 1, 2}. The key idea is that, thanks to the existence of inverses,
x+y = x+z ⇒ y = z, and for any x 6= 0, xy = xz ⇒ y = z. Thus, each element
may appear only once, and hence exactly once, in each row of the addition table.
We know 1 + 0 = 1 by definition of 0, so our choice is 1 + 1 = 0 or 1 + 1 = 2.
But if 1 + 1 = 0, we would have to have 1 + 2 = 2, which would in turn imply
that 1 = 0, contradicting the implicit assumption that 1 6= 0. Now by process
of elimination, since 2 + 0 = 2 and 2 + 1 = 0, we must have 2 + 2 = 1. For the
multiplication table, we proved that ∀x ∈ F, x · 0 = 0, and the definition of 1
implies that ∀x ∈ F, x · 1 = x. Thus, the only entry left in the multiplication
table is 2 · 2. We proved that, in any field, xy = 0 ⇔ x = 0 or y = 0 (make
sure you know how to prove that!), so 2 · 2 6= 0. And 2 · 1 = 2, so by process of
elimination we must have 2× 2 = 1.

1.1.12 In any ordered field F, 1 = 12 > 0; hence, 0 < 1 < 1 + 1 < 1 + 1 + 1 < · · · .
To write this rigorously, recursively define an injection N → F in this way and
identify n ∈ N with its image in F. (In other words, identify n+ 1 ∈ N with the
sum of n ∈ F, as already defined, and 1 ∈ F. There is a “copy” of the natural
numbers, and more generally the integers, in any ordered field, and it is natural,
if a bit confusing, to use the same notation in both contexts.)


