AXIOMS OF THE REAL NUMBER SYSTEM

Axioms of Addition and Multiplication (Field Axioms)

There exist binary operations + and \cdot on \mathbb{R}, such that:
(1) These operations are associative:
(a) $\forall x, y, z \in \mathbb{R},(x+y)+z=x+(y+z)$.
(b) $\forall x, y, z \in \mathbb{R},(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
(2) These operations are commutative:
(a) $\forall x, y \in \mathbb{R}, x+y=y+x$.
(b) $\forall x, y \in \mathbb{R}, x \cdot y=y \cdot x$.
(3) Each operation has a distinct identity element:
(a) There exists an element $0 \in \mathbb{R}$ such that, $\forall x \in \mathbb{R}, x+0=x$.
(b) There exists an element $1 \in \mathbb{R}$ such that $1 \neq 0$ and, $\forall x \in \mathbb{R}, x \cdot 1=x$.
(4) All possible inverses exist:
(a) For each x in \mathbb{R}, there exists a y in \mathbb{R} such that $x+y=0$.
(b) For each x in \mathbb{R} different from 0 , there exists a y in \mathbb{R} such that $x \cdot y=1$.
(5) The operation \cdot distributes over + :
$\forall x, y, z \in \mathbb{R}, x \cdot(y+z)=(x \cdot y)+(x \cdot z)$.

Axioms of the Order with Respect to the Operations

There is a total order relation $<$ on the real number system with the following properties:
(6) The operations respect the order relation:
(a) If $x>y$, then $x+z>y+z$.
(b) If $x>y$ and $z>0$, then $x \cdot z>y \cdot z$.
(7) The order relation $<$ has the least upper bound property (to be discussed).

