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x =
√

x + 2

x2 = x + 2

x2 − x − 2 = 0

(x + 1)(x − 2) = 0

x = −1 or x = 2
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Solving an Equation the “Old” (Sloppy) Way

x =
√

x + 2

x2 = x + 2

x2 − x − 2 = 0

(x + 1)(x − 2) = 0

x = −1 or x = 2

But wait!

−1 6=
√
−1 + 2 =

√
1 = 1 x© 2 =

√
2 + 2 =

√
4 = 2

√

So x = 2 is the only solution.
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Clear Exposition and Precise Reasoning is the Goal

How can we explain and justify our
solution to the equation?

How do we describe each step to show what we really did?

What is the logical relationship among the steps?

Why did we get the false solution x = −1?

How do we know we have all the solutions?

A clear, precise, and fully justified solution
requires that we use logic!
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An Equation is an Open Proposition

An equation is a proposition.

A proposition is a statement that must be true or false.

An opinion is not a proposition.
(Example: “Mozart’s music is boring.” Some would say
“true”, others would say “false”.)
A question is not a proposition. It is not a statement.

An equation states that two numbers are equal. Either
they are or they are not. The equation must be either true
or false (but not both). (Example: 2 = 5. This is false.)

An equation involving variables is an open proposition.

The value of the variable is left open.
Whether the statement is true or false depends on the
value of the variable.
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Propositions Define Sets

Solving an equation means finding all values of the
variable that make the equation true.

The set of all such values is called the solution set of the
equation. Thus, the solution set of the equation
x =
√

x + 2 is the set {2}. More formally:

{x : x =
√

x + 2} = {x : x = 2} = {2}.

These symbols stand for the (true) statement,“The set of
numbers x such that x =

√
x + 2 is equal to the set of

numbers x such that x = 2, which is (of course) the set
containing exactly the element 2.” (Two sets are equal if
their elements are the same.)
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Solving an Equation Requires Logic

The terms we just discussed may be familiar.

The explicit reasoning used to solve the equation may not.

We must first translate our equation of sets,

{x : x =
√

x + 2} = {x : x = 2},

into a pair of conditional relationships:

1 If x =
√

x + 2, then x = 2.
This means that 2 is the only possible solution.

2 If x = 2, then x =
√

x + 2.
This means that 2 really is a solution.
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Logical Connectives

Logical connectives are words or phrases that convey a
relationship between the truth or falsity of propositions.

You need to know six of them:
not, and, or, if (commonly used with then), only if, implies.

The meanings of “not” and “and” should be clear from
common sense. Examples: “2 + 2 = 4” is true;
“2 + 2 6= 4” is false; “2 + 2 6= 5” is true; “2 + 2 = 4 and
2 + 3 = 5” is true; “2 + 2 = 4 and 2 + 2 = 5” is false.
(The symbol 6= means “does not equal”.)

In mathematical language, “or” is not exclusive. It is used
as in “blanket or pillow”, rather than “coffee or tea”: you
can have both. Thus, “2 + 2 = 4 or 2 + 3 = 5” is true;
“2 + 2 = 4 or 2 + 2 = 5” is also true; “2 + 2 = 5 or
2 + 2 = 6” is false.
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Logical Connectives Continued:
Conditional Statements

The connectives “if ”, “only if ”, and “implies” are used to
relate open propositions.

The following (true) propositions are synonymous:

If x = 2, then x2 = 4.
x = 2 only if x2 = 4.
x = 2 implies x2 = 4.

In the above statements, the condition x = 2 forces - leads
to - the consequence x2 = 4.

Important note: Nothing is conveyed about forcing - that
is, implication - in the other direction. In fact, the
statement “If x2 = 4, the x = 2 is false. (x could be −2.)
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Logical Connectives Continued:
Convenient Abbreviations & Symbols

The following (true) propositions are synonymous:

If x = 2, then x2 = 4.
x = 2 only if x2 = 4.
x = 2 implies x2 = 4.
x = 2⇒ x2 = 4.

The following (true) propositions are synonymous:

If x = 2, then x + 1 = 3, and if x + 1 = 3, then x = 2.
x + 1 = 3 if x = 2, and x + 1 = 3 only if x = 2.
x + 1 = 3 if and only if x = 2.
If x + 1 = 3, then x = 2, and if x = 2, then x + 1 = 3.
x = 2 if x + 1 = 3, and x = 2 only if x + 1 = 3.
x = 2 if and only if x + 1 = 3.
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Logical Connectives Continued:
One More Convenient Symbol

The following (true) propositions are synonymous:

x = 2⇒ x + 1 = 3 and x + 1 = 3⇒ x = 2.
x + 1 = 3⇒ x = 2 and x = 2⇒ x + 1 = 3.
x = 2⇔ x + 1 = 3.
x + 1 = 3⇔ x = 2.

The propositions x + 1 = 3 and x = 2 are equivalent.
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Practice: Determine Which Propositions are True

1 2 > 5 or 2 < 5.

2 2 > 5 and 2 < 5.

3 2 < 5 or 3 < 5.

4 2 < 5 and 3 < 5.

5 4 < 5 and 5 6< 5.

6 x < 5⇒ x + 1 < 5.

7 x + 1 < 5⇒ x < 5.

8 x < 5⇒ x + 1 < 6.

9 x + 1 < 6⇒ x < 5.

10 x + 1 < 6⇔ x < 5.
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Equal Sets are Defined by Equivalent Propositions

We can now summarize our solution to the equation
logically and succinctly in symbols:

x =
√

x + 2⇔ x = 2

The propositions x =
√

x + 2 and x = 2 are equivalent.

To fully understand how we know they are equivalent, we
must understand operations in the real number system.
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What is a Real Number?

The somewhat misleading name real number has nothing
to do with the existence of these numbers; all numbers
exist as concepts, including the (equally misnamed)
imaginary numbers and the complex numbers.

Historically, the name “real” probably arose because these
numbers describe physical quantities such as length, area,
volume, and mass. Since complex numbers also play a
vital role in describing physical phenomena such as waves,
this justification really doesn’t hold up.

The real number system is the smallest system big enough
to use for calculus.

We say system because it is not just a set of numbers;
there are also operations on the numbers.
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Number operations

Two basic operations: addition and multiplication.

An operation associates an output to a set of inputs in
such a way that the inputs determine the output. That is,
there is one and only one output that goes with the inputs.

As a contrasting example to help explain this, the
association of a daughter to a couple is not an operation:

The couple may not have a daughter; hence, there is no
output.
The couple may have more than one daughter; hence, the
inputs (parents) do not determine a unique output.

An operation is really just a special name for a basic type
of function.
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Properties of Operations with Real Numbers

Addition and multiplication are binary operations: they
associate an output to two inputs.

Addition and multiplication are commutative operations:
the order of the inputs does not affect the output. That is:

If x and y are (any) real numbers, x + y = y + x .
If x and y are (any) real numbers, xy = yx .

Addition and multiplication are associative operations: the
grouping of three or more inputs into pairs does not affect
the ultimate output. That is:

If x , y , and z are real numbers, (x + y) + z = x + (y + z).
For example, (1 + 2) + 3 = 3 + 3 = 6 = 1 + 5 = 1 + (2 + 3)
If x , y , and z are real numbers, (xy)z = x(yz).

Since grouping doesn’t matter, we can leave it out, simply
writing x + y + z and xyz .
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Operations Illustrated

yx

{ x+y

x

y xy
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Properties of Operations on Real Numbers
Continued

Please note that addition and multiplication are not
associative in combination. For example,
(1 + 2) · 3 6= 1 + (2 · 3).
However, these operations do have a property in
combination: the distributive property. Multiplication
distributes over addition:
If x , y , and z are real numbers, x(y + z) = xy + xz .

y

x(y+z) = xy + xz

x

z

xy xz
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Existence of Identities and Inverses: Additive

The special number 0 is the additive identity:
Adding 0 to any number gives the same number. That is,
if x is any real number, then x + 0 = x .

Every real number has a unique additive inverse:
When additive inverses are added, the result is 0.

Example: 5 + (−5) = 0.
0 is its own additive inverse: 0 + 0 = 0.
−(x + y) = (−x) + (−y), since
x + y + (−x) + (−y) = x + (−x) + y + (−y) = 0 + 0 = 0
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An Important Consequence

If x is any real number, then 0x = 0:

0x = (0 + 0)x , since 0 + 0 = 0.
(0 + 0)x = 0x + 0x , by the distributive property.
Thus, 0x = 0x + 0x .

Whatever 0x is, it has an additive inverse, −(0x). When
we add pairs of equal numbers, we get the same output;
hence

0 = 0x + (−(0x)) = 0x + 0x + (−(0x)) = 0x + 0 = 0x .
Thus 0x = 0
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Existence of Identities and Inverses: Multiplicative

The special number 1 is the multiplicative identity:
Multiplying any number by 1 gives the same number.

Every real number except 0 has a unique multiplicative
inverse:
When multiplicative inverses are multiplied, the result is 1.

Example: (5)
(

1
5

)
= 1.

1 is its own additive inverse: (1)(1) = 1.
1
xy =

(
1
x

) (
1
y

)
, since

(xy)
(

1
x

) (
1
y

)
= x

(
1
x

)
y
(

1
y

)
= (1)(1) = 1.

Zero cannot have multiplicative inverse because, as we
have seen, if x is any real number, 0x = 0. There is no
real number x for which 0x = 1; that is impossible.
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An Important Consequence

If xy = 0, then x = 0 or y = 0:

We will show that if x is not zero, then y is. This shows
that one or the other must be zero.
If x 6= 0, then it has a multiplicative inverse,

(
1
x

)
. Thus:

y = 1y =

(
1

x

)
xy =

(
1

x

)
0 = 0.

We use this fact often when solving quadratic equations!
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Defined Operations

Subtraction is defined to be addition of the additive
inverse:
If x and y are real numbers, x − y = x + (−y).

Division is defined to be multiplication by the
multiplicative inverse:

If x and y are real numbers, and y 6= 0, x
y = x

(
1
y

)
.

Since 0 has no multiplicative inverse, division by 0 is not
defined.

Many other operations and functions may be defined using
the basic ones. For example, x2 is defined by x2 = (x)(x).
Squaring is a unitary operation, since it only takes one
input, which is used for both factors.
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Using the Properties of Operations

The properties of addition and multiplication are clear
from examples and pictures.

Why do we specify them in general abstract terms?

Undoubtedly, you did not need to know the commutative,
associative, or distributed property to understand, as a
small child, that 2 + 3 = 5 or that 2 + 3 + 5 = 10.

We specify these properties in order to correctly work with
expressions involving variables.

It is easy to calculate with specific numbers, but harder to
calculate with unknown numbers.

Variables represent numbers. The properties we have
specified tell us how numbers behave, even if we don’t
know which specific numbers the variables might represent.
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Practice: Simplify Each Expression

1
(2)(3) + 3

3

2
xy + y

y
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Practice: Simplify Each Expression

1
(2)(3) + 3

3
=

(6 + 3)

3
=

9

3
= 3

2
xy + y

y



The Logic of
Solving an
Equation

Charles
Delman

The Language
and Logic of
Mathematics

Propositions &
Sets

Logic

The Real
Number
System

Practice: Simplify Each Expression

1 Using instead the multiplicative identity, distributive
property, definition of division, and associativity provides a
more illuminating method:

(2)(3) + 3

3
=

(2)(3) + (1)(3)

3
=

(2 + 1)(3)

3

=
(3)(3)

3
= (3)(3)

(
1

3

)
= (3)(1) = 3

2
xy + y

y
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Practice: Simplify Each Expression

1

(2)(3) + 3

3
=

(2 + 1)(3)

3
= (3)(3)

(
1

3

)
= 3

2 While more longwinded than needed for working with
specific numbers, this deeper understanding helps us
correctly simplify the second expression:

xy + y

y
=

(x + 1)y

y
= (x + 1)(y)

(
1

y

)
= x + 1
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Practice: Simplify Each Expression

3
2

3
+

3

5

4
x

y
+

y

z
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Practice: Simplify Each Expression

3

2

3
+

3

5
=

(
2

3

)(
5

5

)
+

(
3

5

)(
3

3

)
=

(2)(5)

(
1

3

)(
1

5

)
+ (3)(3)

(
1

5

)(
1

3

)
= (10 + 9)

(
1

15

)
=

19

15

4
x

y
+

y

z
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Practice: Simplify Each Expression

3
2

3
+

3

5
=

10

15
+

9

15
=

19

15

4
x

y
+

y

z
=

xz

yz
+

y2

yz
=

xz + y2

yz
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Practice: Simplify Each Expression

5
√

4 + 9

6

√
x2 + y2
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Practice: Simplify Each Expression

5
√

4 + 9 =
√

13

Note that
√

4 +
√

9 = 2 + 3 = 5 6=
√

13. (52 = 25.)

6

√
x2 + y2 cannot be simplified.
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Our Example from Algebra: Logical Relationships

First, let’s fill in the logical relationships among the
equations.

x =
√

x + 2⇒ (1)

x2 = x + 2⇔ (2)

x2 − x − 2 = 0⇔ (3)

(x + 1)(x − 2) = 0⇔ (4)

x = −1 or x = 2 (5)

The relationship between equation (1) and equation (2) is
the weak link; since the implication goes only one way, our
argument shows only that x =

√
x + 2⇒ x = −1 or x − 2.
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Our Example from Algebra: Justifying our Logic

Next, we will justify each logical relationship.

The implication

x =
√

x + 2⇒ (1)

x2 = x + 2 (2)

is true because the expressions on each side of equation
(1) represent the same number; therefore, we get the same
result on each side when we square that number.

We cannot assume the reverse implication is true. Recall
that

√
means the positive square root. If x is negative,√

x = −x . The converse implication is true for positive
values of x , but not for negative values.
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Our Example from Algebra: Justifying our Logic

The biconditional (that is, two-way) implication

x2 = x + 2⇔ (2)

x2 − x − 2 = 0 (3)

is true because if we add −x − 2 to the equal sides of
equation (2) we get the same result and, conversely, if we
add x + 2 to the equal sides of equation (3), we get the
same result.
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Our Example from Algebra: Justifying our Logic

The biconditional (that is, two-way) implication

x2 − x − 2 = 0⇔ (3)

(x + 1)(x − 2) = 0 (4)

is true because we have simply used the distributive
property to rewrite the expression on the left side of
equation (3) in a different way.

We did so in order to use our result, shown earlier, that if
the product of two real numbers is zero, then at least one
of the numbers must be zero. (The converse, that if one
of the two factors is zero, then the product is zero, is also
obviously true.)
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Our Example from Algebra: Justifying our Logic

Using the fact that the product of two numbers is zero if
and only if one of the two factors is zero, we obtain

(x + 1)(x − 2) = 0⇔ (4)

x = −1 or x = 2 (5)

We now know that −1 and 2 are the only possible
solutions, and we have explained why. Since our earlier
reasoning showed that the converse of the implication
relating equations (1) and (2) is false for negative values
of x and true for positive values, we know that −1 is not a
solution, but 2 is a solution.

Thus, we have justified that x =
√

x + 2⇔ x = 2.
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