The Logic of Solving an Equation

Charles Delman

January 20, 2014

The Logic of
Solving an
Equation
Charles
Delman

The Language
and Logic of
Mathematics
Propositions \&
Sets
Logic
The Real
Number
System

1 The Language and Logic of Mathematics

- Propositions \& Sets

■ Logic

2 The Real Number System

Solving an Equation the "Old" (Sloppy) Way

The Logic of
Solving an
Equation
Charles
Delman

The Language
and Logic of
Mathematics
Propositions \&
Sets
Logic
The Real
Number
System

$$
x=\sqrt{x+2}
$$

Solving an Equation the "Old" (Sloppy) Way

The Logic of
Solving an
Equation
Charles
Delman

The Language

$$
\begin{aligned}
x & =\sqrt{x+2} \\
x^{2} & =x+2
\end{aligned}
$$

Solving an Equation the "Old" (Sloppy) Way

The Logic of
Solving an
Equation
Charles
Delman

The Language

$$
\begin{aligned}
x & =\sqrt{x+2} \\
x^{2} & =x+2 \\
x^{2}-x-2 & =0
\end{aligned}
$$

Solving an Equation the "Old" (Sloppy) Way

The Logic of
Solving an
Equation
Charles
Delman

$$
\begin{aligned}
x & =\sqrt{x+2} \\
x^{2} & =x+2 \\
x^{2}-x-2 & =0 \\
(x+1)(x-2) & =0
\end{aligned}
$$

Solving an Equation the "Old" (Sloppy) Way

The Logic of
Solving an
Equation
Charles
Delman

$$
\begin{aligned}
x & =\sqrt{x+2} \\
x^{2} & =x+2 \\
x^{2}-x-2 & =0 \\
(x+1)(x-2) & =0 \\
x=-1 \text { or } x & =2
\end{aligned}
$$

Solving an Equation the "Old" (Sloppy) Way

The Logic of
Solving an
Equation
Charles
Delman

$$
x=-1 \text { or } x=2
$$

But wait!
$-1 \neq \sqrt{-1+2}=\sqrt{1}=1 \otimes \quad 2=\sqrt{2+2}=\sqrt{4}=2$
So $x=2$ is the only solution.

Clear Exposition and Precise Reasoning is the Goal

Charles

How can we explain and justify our solution to the equation?

■ How do we describe each step to show what we really did?
■ What is the logical relationship among the steps?
■ Why did we get the false solution $x=-1$?
■ How do we know we have all the solutions?
A clear, precise, and fully justified solution requires that we use logic!

An Equation is an Open Proposition

- An equation is a proposition.

■ A proposition is a statement that must be true or false.

- An opinion is not a proposition.
(Example: "Mozart's music is boring." Some would say "true", others would say "false".)
- A question is not a proposition. It is not a statement.

■ An equation states that two numbers are equal. Either they are or they are not. The equation must be either true or false (but not both). (Example: $2=5$. This is false.)

- An equation involving variables is an open proposition.
- The value of the variable is left open.
- Whether the statement is true or false depends on the value of the variable.

Propositions Define Sets

Charles Delman

- Solving an equation means finding all values of the variable that make the equation true.
- The set of all such values is called the solution set of the equation. Thus, the solution set of the equation $x=\sqrt{x+2}$ is the set $\{2\}$. More formally:

$$
\{x: x=\sqrt{x+2}\}=\{x: x=2\}=\{2\}
$$

These symbols stand for the (true) statement, "The set of numbers x such that $x=\sqrt{x+2}$ is equal to the set of numbers x such that $x=2$, which is (of course) the set containing exactly the element 2." (Two sets are equal if their elements are the same.)

Solving an Equation Requires Logic

Charles Delman

- The terms we just discussed may be familiar.
- The explicit reasoning used to solve the equation may not.
- We must first translate our equation of sets,

$$
\{x: x=\sqrt{x+2}\}=\{x: x=2\}
$$

into a pair of conditional relationships:
1 If $x=\sqrt{x+2}$, then $x=2$.
This means that 2 is the only possible solution.
2 If $x=2$, then $x=\sqrt{x+2}$.
This means that 2 really is a solution.

Logical Connectives

Charles Delman

■ Logical connectives are words or phrases that convey a relationship between the truth or falsity of propositions.
■ You need to know six of them: not, and, or, if (commonly used with then), only if, implies.

- The meanings of "not" and "and" should be clear from common sense. Examples: " $2+2=4$ " is true; " $2+2 \neq 4$ " is false; " $2+2 \neq 5$ " is true; " $2+2=4$ and $2+3=5$ " is true; " $2+2=4$ and $2+2=5$ " is false. (The symbol \neq means "does not equal".)
■ In mathematical language, "or" is not exclusive. It is used as in "blanket or pillow", rather than "coffee or tea": you can have both. Thus, " $2+2=4$ or $2+3=5$ " is true; " $2+2=4$ or $2+2=5$ " is also true; " $2+2=5$ or $2+2=6$ " is false.

Logical Connectives Continued: Conditional Statements

■ The connectives "if", "only if", and "implies" are used to relate open propositions.

- The following (true) propositions are synonymous:
- If $x=2$, then $x^{2}=4$.
- $x=2$ only if $x^{2}=4$.
- $x=2$ implies $x^{2}=4$.
- In the above statements, the condition $x=2$ forces - leads to - the consequence $x^{2}=4$.

■ Important note: Nothing is conveyed about forcing - that is, implication - in the other direction. In fact, the statement "If $x^{2}=4$, the $x=2$ is false. (x could be -2 .)

Logical Connectives Continued: Convenient Abbreviations \& Symbols

Charles Delman

- The following (true) propositions are synonymous:
- If $x=2$, then $x^{2}=4$.
- $x=2$ only if $x^{2}=4$.
- $x=2$ implies $x^{2}=4$.
- $x=2 \Rightarrow x^{2}=4$.
- The following (true) propositions are synonymous:
- If $x=2$, then $x+1=3$, and if $x+1=3$, then $x=2$.
- $x+1=3$ if $x=2$, and $x+1=3$ only if $x=2$.
- $x+1=3$ if and only if $x=2$.
- If $x+1=3$, then $x=2$, and if $x=2$, then $x+1=3$.
- $x=2$ if $x+1=3$, and $x=2$ only if $x+1=3$.
- $x=2$ if and only if $x+1=3$.

Logical Connectives Continued: One More Convenient Symbol

The Logic of
Solving an
Equation
Charles Delman

- The following (true) propositions are synonymous:
- $x=2 \Rightarrow x+1=3$ and $x+1=3 \Rightarrow x=2$.
- $x+1=3 \Rightarrow x=2$ and $x=2 \Rightarrow x+1=3$.
- $x=2 \Leftrightarrow x+1=3$.
- $x+1=3 \Leftrightarrow x=2$.
- The propositions $x+1=3$ and $x=2$ are equivalent.

Practice: Determine Which Propositions are True

The Logic of
Solving an Equation

Charles Delman

1 $2>5$ or $2<5$.
2 $2>5$ and $2<5$.
(3) $2<5$ or $3<5$.
$42<5$ and $3<5$.
$54<5$ and $5 \nless 5$.
6 $x<5 \Rightarrow x+1<5$.
$7 x+1<5 \Rightarrow x<5$.
$8 x<5 \Rightarrow x+1<6$.
(9 $x+1<6 \Rightarrow x<5$.
$10 x+1<6 \Leftrightarrow x<5$.

Practice: Determine Which Propositions are True

The Logic of
Solving an Equation

Charles Delman

1 $2>5$ or $2<5$.
2 $2>5$ and $2<5$.
(3) $2<5$ or $3<5$.
$42<5$ and $3<5$.
5 $4<5$ and $5 \nless 5$.
6 $x<5 \Rightarrow x+1<5$.
$7 x+1<5 \Rightarrow x<5$.
$8 x<5 \Rightarrow x+1<6$.
9 $x+1<6 \Rightarrow x<5$.
$10 x+1<6 \Leftrightarrow x<5$.

Practice: Determine Which Propositions are True

The Logic of
Solving an Equation

Charles Delman

1 $2>5$ or $2<5$.
2 $2>5$ and $2<5$.
(3) $2<5$ or $3<5$.
$42<5$ and $3<5$.
5 $4<5$ and $5 \nless 5$.
6 $x<5 \Rightarrow x+1<5$.
$7 x+1<5 \Rightarrow x<5$.
$8 x<5 \Rightarrow x+1<6$.
(9 $x+1<6 \Rightarrow x<5$.
$10 x+1<6 \Leftrightarrow x<5$.

False

Practice: Determine Which Propositions are True

The Logic of
Solving an Equation

Charles Delman
$12>5$ or $2<5$.
2 $2>5$ and $2<5$.
(3) $2<5$ or $3<5$.
$42<5$ and $3<5$.
$54<5$ and $5 \nless 5$.
6 $x<5 \Rightarrow x+1<5$.
$7 x+1<5 \Rightarrow x<5$.
$8 x<5 \Rightarrow x+1<6$.
(9 $x+1<6 \Rightarrow x<5$.
$10 x+1<6 \Leftrightarrow x<5$.

Practice: Determine Which Propositions are True

The Logic of
Solving an Equation

Charles Delman
1 $2>5$ or $2<5$.2 $2>5$ and $2<5$.

$$
32<5 \text { or } 3<5 \text {. }
$$

$$
42<5 \text { and } 3<5 \text {. }
$$

$$
54<5 \text { and } 5 \nless 5 \text {. }
$$

$$
6 x<5 \Rightarrow x+1<5 \text {. }
$$

$$
7 x+1<5 \Rightarrow x<5
$$

$$
8 x<5 \Rightarrow x+1<6 \text {. }
$$

$$
9 x+1<6 \Rightarrow x<5 \text {. }
$$

$$
10 x+1<6 \Leftrightarrow x<5 \text {. }
$$

Practice: Determine Which Propositions are True

The Logic of
Solving an Equation

Charles Delman
[1 $2>5$ or $2<5$.

$$
22>5 \text { and } 2<5 .
$$

$$
32<5 \text { or } 3<5 \text {. }
$$

$$
42<5 \text { and } 3<5 \text {. }
$$

$$
54<5 \text { and } 5 \nless 5 \text {. }
$$

$$
6 x<5 \Rightarrow x+1<5 \text {. }
$$

$$
7 x+1<5 \Rightarrow x<5
$$

$$
8 x<5 \Rightarrow x+1<6 \text {. }
$$

$$
9 x+1<6 \Rightarrow x<5
$$

$$
10 x+1<6 \Leftrightarrow x<5
$$

Practice: Determine Which Propositions are True

The Logic of
Solving an Equation

Charles Delman
[1 $2>5$ or $2<5$.

$$
22>5 \text { and } 2<5 \text {. }
$$

$$
32<5 \text { or } 3<5 \text {. }
$$

$$
42<5 \text { and } 3<5 \text {. }
$$

$$
54<5 \text { and } 5 \nless 5 \text {. }
$$

$$
6 x<5 \Rightarrow x+1<5 \text {. }
$$

$$
7 x+1<5 \Rightarrow x<5
$$

$$
8 x<5 \Rightarrow x+1<6 \text {. }
$$

$$
9 x+1<6 \Rightarrow x<5
$$

$$
10 x+1<6 \Leftrightarrow x<5 \text {. }
$$

Practice: Determine Which Propositions are True

The Logic of
Solving an Equation

Charles Delman
[1 $2>5$ or $2<5$.

$$
22>5 \text { and } 2<5 \text {. }
$$

$$
32<5 \text { or } 3<5 \text {. }
$$

$$
42<5 \text { and } 3<5 \text {. }
$$

$$
54<5 \text { and } 5 \nless 5 \text {. }
$$

$$
6 x<5 \Rightarrow x+1<5 \text {. }
$$

$$
7 x+1<5 \Rightarrow x<5
$$

$$
8 x<5 \Rightarrow x+1<6
$$

$$
9 x+1<6 \Rightarrow x<5 \text {. }
$$

$$
10 x+1<6 \Leftrightarrow x<5 \text {. }
$$

Practice: Determine Which Propositions are True

The Logic of
Solving an Equation

Charles Delman

1. $2>5$ or $2<5$.

$$
22>5 \text { and } 2<5 .
$$

$$
32<5 \text { or } 3<5 \text {. }
$$

$$
42<5 \text { and } 3<5 \text {. }
$$

$$
54<5 \text { and } 5 \nless 5 \text {. }
$$

$$
6 x<5 \Rightarrow x+1<5 \text {. }
$$

$$
7 x+1<5 \Rightarrow x<5
$$

$$
8 x<5 \Rightarrow x+1<6 \text {. }
$$

$$
9 x+1<6 \Rightarrow x<5 \text {. }
$$

$$
10 x+1<6 \Leftrightarrow x<5
$$

Practice: Determine Which Propositions are True

The Logic of
Solving an Equation

Charles Delman

1. $2>5$ or $2<5$.

$$
22>5 \text { and } 2<5 .
$$

$$
32<5 \text { or } 3<5 \text {. }
$$

$$
42<5 \text { and } 3<5 \text {. }
$$

$$
54<5 \text { and } 5 \nless 5 \text {. }
$$

$$
6 x<5 \Rightarrow x+1<5 \text {. }
$$

$$
7 x+1<5 \Rightarrow x<5
$$

$$
8 x<5 \Rightarrow x+1<6 \text {. }
$$

$$
9 x+1<6 \Rightarrow x<5 \text {. }
$$

$$
10 x+1<6 \Leftrightarrow x<5
$$

Practice: Determine Which Propositions are True

The Logic of
Solving an Equation

Charles Delman

$\mathbf{1} 2>5$ or $2<5$.	True
$\mathbf{2} 2>5$ and $2<5$.	False
$\mathbf{3} 2<5$ or $3<5$.	True
$\mathbf{4} 2<5$ and $3<5$.	True
$\mathbf{5} 4<5$ and $5 \nless 5$.	True
$\mathbf{6} x<5 \Rightarrow x+1<5$.	False
$\mathbf{7} x+1<5 \Rightarrow x<5$.	True
$\mathbf{8} x<5 \Rightarrow x+1<6$.	True
$\mathbf{9} x+1<6 \Rightarrow x<5$.	True
$\mathbf{1 0} x+1<6 \Leftrightarrow x<5$.	True

Equal Sets are Defined by Equivalent Propositions

The Logic of
Solving an
Equation
Charles
Delman

■ We can now summarize our solution to the equation logically and succinctly in symbols:

$$
x=\sqrt{x+2} \Leftrightarrow x=2
$$

- The propositions $x=\sqrt{x+2}$ and $x=2$ are equivalent.
- To fully understand how we know they are equivalent, we must understand operations in the real number system.

What is a Real Number?

Charles Delman

■ The somewhat misleading name real number has nothing to do with the existence of these numbers; all numbers exist as concepts, including the (equally misnamed) imaginary numbers and the complex numbers.

■ Historically, the name "real" probably arose because these numbers describe physical quantities such as length, area, volume, and mass. Since complex numbers also play a vital role in describing physical phenomena such as waves, this justification really doesn't hold up.

- The real number system is the smallest system big enough to use for calculus.

■ We say system because it is not just a set of numbers; there are also operations on the numbers.

Number operations

■ Two basic operations: addition and multiplication.

- An operation associates an output to a set of inputs in such a way that the inputs determine the output. That is, there is one and only one output that goes with the inputs.
- As a contrasting example to help explain this, the association of a daughter to a couple is not an operation:
- The couple may not have a daughter; hence, there is no output.
- The couple may have more than one daughter; hence, the inputs (parents) do not determine a unique output.
- An operation is really just a special name for a basic type of function.

Properties of Operations with Real Numbers

■ Addition and multiplication are binary operations: they associate an output to two inputs.

- Addition and multiplication are commutative operations: the order of the inputs does not affect the output. That is:
- If x and y are (any) real numbers, $x+y=y+x$.
- If x and y are (any) real numbers, $x y=y x$.

■ Addition and multiplication are associative operations: the grouping of three or more inputs into pairs does not affect the ultimate output. That is:

- If x, y, and z are real numbers, $(x+y)+z=x+(y+z)$. For example, $(1+2)+3=3+3=6=1+5=1+(2+3)$
- If x, y, and z are real numbers, $(x y) z=x(y z)$.

■ Since grouping doesn't matter, we can leave it out, simply writing $x+y+z$ and $x y z$.

Operations Illustrated

The Logic of
Solving an
Equation
Charles
Delman

The Language
and Logic of
Mathematics
Propositions \&
Sets
Logic
The Real
Number
System

Properties of Operations on Real Numbers Continued

The Logic of
Solving an
Equation
Charles Delman

■ Please note that addition and multiplication are not associative in combination. For example, $(1+2) \cdot 3 \neq 1+(2 \cdot 3)$.
■ However, these operations do have a property in combination: the distributive property. Multiplication distributes over addition:
If x, y, and z are real numbers, $x(y+z)=x y+x z$.

Existence of Identities and Inverses: Additive

The Logic of
Solving an
Equation
Charles
Delman

■ The special number 0 is the additive identity:
Adding 0 to any number gives the same number. That is, if x is any real number, then $x+0=x$.

- Every real number has a unique additive inverse: When additive inverses are added, the result is 0 .
- Example: $5+(-5)=0$.
- 0 is its own additive inverse: $0+0=0$.
- $-(x+y)=(-x)+(-y)$, since $x+y+(-x)+(-y)=x+(-x)+y+(-y)=0+0=0$

An Important Consequence

Charles Delman

- If x is any real number, then $0 x=0$:
- $0 x=(0+0) x$, since $0+0=0$.
- $(0+0) x=0 x+0 x$, by the distributive property.
- Thus, $0 x=0 x+0 x$.

■ Whatever $0 x$ is, it has an additive inverse, $-(0 x)$. When we add pairs of equal numbers, we get the same output; hence

- $0=0 x+(-(0 x))=0 x+0 x+(-(0 x))=0 x+0=0 x$.
- Thus $0 x=0$

Existence of Identities and Inverses: Multiplicative

■ The special number 1 is the multiplicative identity: Multiplying any number by 1 gives the same number.

- Every real number except 0 has a unique multiplicative inverse:
When multiplicative inverses are multiplied, the result is 1 .
- Example: $(5)\left(\frac{1}{5}\right)=1$.
- 1 is its own additive inverse: $(1)(1)=1$.
- $\frac{1}{x y}=\left(\frac{1}{x}\right)\left(\frac{1}{y}\right)$, since

$$
(x y)\left(\frac{1}{x}\right)\left(\frac{1}{y}\right)=x\left(\frac{1}{x}\right) \text { y }\left(\frac{1}{y}\right)=(1)(1)=1 .
$$

■ Zero cannot have multiplicative inverse because, as we have seen, if x is any real number, $0 x=0$. There is no real number x for which $0 x=1$; that is impossible.

An Important Consequence

Charles
Delman

■ If $x y=0$, then $x=0$ or $y=0$:

- We will show that if x is not zero, then y is. This shows that one or the other must be zero.
- If $x \neq 0$, then it has a multiplicative inverse, $\left(\frac{1}{x}\right)$. Thus:

$$
y=1 y=\left(\frac{1}{x}\right) x y=\left(\frac{1}{x}\right) 0=0 .
$$

■ We use this fact often when solving quadratic equations!

Defined Operations

- Subtraction is defined to be addition of the additive inverse:
If x and y are real numbers, $x-y=x+(-y)$.
- Division is defined to be multiplication by the multiplicative inverse:
If x and y are real numbers, and $y \neq 0, \frac{x}{y}=x\left(\frac{1}{y}\right)$.
■ Since 0 has no multiplicative inverse, division by 0 is not defined.
- Many other operations and functions may be defined using the basic ones. For example, x^{2} is defined by $x^{2}=(x)(x)$. Squaring is a unitary operation, since it only takes one input, which is used for both factors.

Using the Properties of Operations

Charles Delman

- The properties of addition and multiplication are clear from examples and pictures.

■ Why do we specify them in general abstract terms?
■ Undoubtedly, you did not need to know the commutative, associative, or distributed property to understand, as a small child, that $2+3=5$ or that $2+3+5=10$.

■ We specify these properties in order to correctly work with expressions involving variables.
■ It is easy to calculate with specific numbers, but harder to calculate with unknown numbers.
■ Variables represent numbers. The properties we have specified tell us how numbers behave, even if we don't know which specific numbers the variables might represent.

Practice: Simplify Each Expression

The Logic of
Solving an
Equation
Charles
Delman

The Language
and Logic of
Mathematics
Propositions \&
Sets
Logic
The Real Number System
$1 \frac{(2)(3)+3}{3}$
$2 \frac{x y+y}{y}$

Practice: Simplify Each Expression

The Logic of
Solving an
Equation
Charles
Delman

The Language
and Logic of
Mathematics
Propositions \&
Sets
Logic
The Real
Number System

$$
1 \frac{(2)(3)+3}{3}=\frac{(6+3)}{3}=\frac{9}{3}=3
$$

$$
2 \frac{x y+y}{y}
$$

Practice: Simplify Each Expression

The Logic of
Solving an
Equation
Charles Delman

1 Using instead the multiplicative identity, distributive property, definition of division, and associativity provides a more illuminating method:

$$
\begin{gathered}
\frac{(2)(3)+3}{3}=\frac{(2)(3)+(1)(3)}{3}=\frac{(2+1)(3)}{3} \\
=\frac{(3)(3)}{3}=(3)(3)\left(\frac{1}{3}\right)=(3)(1)=3
\end{gathered}
$$

$2 \frac{x y+y}{y}$

Practice: Simplify Each Expression

The Logic of
Solving an
Equation
Charles Delman

1

$$
\frac{(2)(3)+3}{3}=\frac{(2+1)(3)}{3}=(3)(3)\left(\frac{1}{3}\right)=3
$$

2 While more longwinded than needed for working with specific numbers, this deeper understanding helps us correctly simplify the second expression:

$$
\frac{x y+y}{y}=\frac{(x+1) y}{y}=(x+1)(y)\left(\frac{1}{y}\right)=x+1
$$

Practice: Simplify Each Expression

The Logic of
Solving an
Equation
Charles
Delman

The Language
and Logic of
Mathematics
Propositions \&
Sets
Logic
The Real
Number
System

$$
4 \frac{x}{y}+\frac{y}{z}
$$

Practice: Simplify Each Expression

The Logic of
Solving an
Equation
Charles Delman

The Language
and Logic of Mathematics
Propositions \& Sets
Logic
The Real
Number System

3

$$
\begin{gathered}
\frac{2}{3}+\frac{3}{5}=\left(\frac{2}{3}\right)\left(\frac{5}{5}\right)+\left(\frac{3}{5}\right)\left(\frac{3}{3}\right)= \\
\begin{array}{c}
(2)(5)\left(\frac{1}{3}\right)\left(\frac{1}{5}\right)+(3)(3)\left(\frac{1}{5}\right)\left(\frac{1}{3}\right) \\
=(10+9)\left(\frac{1}{15}\right)=\frac{19}{15}
\end{array}
\end{gathered}
$$

$$
4 \frac{x}{y}+\frac{y}{z}
$$

Practice: Simplify Each Expression

The Logic of
Solving an
Equation
Charles
Delman

The Language
and Logic of Mathematics

$$
3 \frac{2}{3}+\frac{3}{5}=\frac{10}{15}+\frac{9}{15}=\frac{19}{15}
$$

$$
4 \frac{x}{y}+\frac{y}{z}=\frac{x z}{y z}+\frac{y^{2}}{y z}=\frac{x z+y^{2}}{y z}
$$

Practice: Simplify Each Expression

The Logic of
Solving an
Equation
Charles
Delman

The Language
and Logic of
Mathematics
Propositions \&
Sets
Logic
The Real
Number

$$
5 \sqrt{4+9}
$$

$6 \sqrt{x^{2}+y^{2}}$

Practice: Simplify Each Expression

The Logic of
Solving an
Equation
Charles
Delman

The Language
and Logic of Mathematics
$5 \sqrt{4+9}=\sqrt{13}$

Note that $\sqrt{4}+\sqrt{9}=2+3=5 \neq \sqrt{13} .\left(5^{2}=25.\right)$

6 $\sqrt{x^{2}+y^{2}}$ cannot be simplified.

Our Example from Algebra: Logical Relationships

Charles Delman

■ First, let's fill in the logical relationships among the equations.

$$
\begin{align*}
x & =\sqrt{x+2} \Rightarrow \tag{1}\\
x^{2} & =x+2 \Leftrightarrow \tag{2}\\
x^{2}-x-2 & =0 \Leftrightarrow \tag{3}\\
(x+1)(x-2) & =0 \Leftrightarrow \tag{4}\\
x=-1 & \text { or } x=2 \tag{5}
\end{align*}
$$

- The relationship between equation (1) and equation (2) is the weak link; since the implication goes only one way, our argument shows only that $x=\sqrt{x+2} \Rightarrow x=-1$ or $x-2$.

Our Example from Algebra: Justifying our Logic

Charles

■ Next, we will justify each logical relationship.

- The implication

$$
\begin{align*}
x & =\sqrt{x+2} \Rightarrow \tag{1}\\
x^{2} & =x+2 \tag{2}
\end{align*}
$$

is true because the expressions on each side of equation (1) represent the same number; therefore, we get the same result on each side when we square that number.
■ We cannot assume the reverse implication is true. Recall that $\sqrt{ }$ means the positive square root. If x is negative, $\sqrt{x}=-x$. The converse implication is true for positive values of x, but not for negative values.

Our Example from Algebra: Justifying our Logic

Charles
Delman

- The biconditional (that is, two-way) implication

$$
\begin{align*}
x^{2} & =x+2 \Leftrightarrow \tag{2}\\
x^{2}-x-2 & =0 \tag{3}
\end{align*}
$$

is true because if we add $-x-2$ to the equal sides of equation (2) we get the same result and, conversely, if we add $x+2$ to the equal sides of equation (3), we get the same result.

Our Example from Algebra: Justifying our Logic

Charles Delman

- The biconditional (that is, two-way) implication

$$
\begin{align*}
x^{2}-x-2 & =0 \Leftrightarrow \tag{3}\\
(x+1)(x-2) & =0 \tag{4}
\end{align*}
$$

is true because we have simply used the distributive property to rewrite the expression on the left side of equation (3) in a different way.
■ We did so in order to use our result, shown earlier, that if the product of two real numbers is zero, then at least one of the numbers must be zero. (The converse, that if one of the two factors is zero, then the product is zero, is also obviously true.)

Our Example from Algebra: Justifying our Logic

Charles Delman

■ Using the fact that the product of two numbers is zero if and only if one of the two factors is zero, we obtain

$$
\begin{align*}
& (x+1)(x-2)=0 \Leftrightarrow \tag{4}\\
& x=-1 \text { or } x=2 \tag{5}
\end{align*}
$$

■ We now know that -1 and 2 are the only possible solutions, and we have explained why. Since our earlier reasoning showed that the converse of the implication relating equations (1) and (2) is false for negative values of x and true for positive values, we know that -1 is not a solution, but 2 is a solution.

- Thus, we have justified that $x=\sqrt{x+2} \Leftrightarrow x=2$.

